Are You moved by Your Social Network Application?

Abderrahmen Mtibaa
Thomson Paris Research Lab

Joint works with:
Augustin Chaintreau, Anna-Kaisa Pietilainen, Jason Lebrun, Earl Olivier, Christophe Diot
Evolution in socializing techniques

- **Before the Internet:** socialize by physical meeting
 - People communicate only if they know each others AND if they are together

- **Today:** Internet allows “virtual” socializing
 - Chat, e-mail, Online Social Network
 - No need for locality

- **Tomorrow:** MobiClique
 - Meet your virtual community using opportunistic contacts and locality
Motivation

- Explore the relation between virtual social interactions and human physical meetings.
- Understand complex temporal properties based on simple social properties.
- Forwarding based on social network properties.
Structure of this talk

- Overview of the MobiClique experiment
- Topological comparison
 - Properties of nodes, contacts and paths
 - Is there any similarities?
- Exploring social rules on opportunistic forwarding
 - Overview of the opportunistic forwarding problem
 - Proposed social forwarding rules
- Discussions
Mobiclique experiment

- Distribute smartphones to 28 participants
- 3 days experiment at CoNext 2007
- Initially, each participant identifies its friends among the 150 CoNext participants
- Three applications:
 - Opportunistic socializing: make new friends based on friends and interests
 - Epidemic newsgroup
 - Asynchronous messaging
Mobiclique experiment: Social Graph

<table>
<thead>
<tr>
<th></th>
<th>Initial Graph</th>
<th>Final Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td># connected nodes</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td># edges</td>
<td>56</td>
<td>115</td>
</tr>
<tr>
<td>average degree</td>
<td>5.2</td>
<td>9.5</td>
</tr>
<tr>
<td>clustering coefficient</td>
<td>0.2</td>
<td>0.36</td>
</tr>
<tr>
<td>diameter</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>
Node properties

- **Characterize Node** *heterogeneity*
 - High/low activity,
 - Popularity,
 - Contact rate

- **We measure two metrics**
 - **Node degree:**
 - Social Graph: number of friends
 - Contact Graph: average number of device seen per scan (every 2mn)
 - **Centrality of nodes**
 - Social Graph: measure the occurrence of the node inside all shortest paths
 - Contact Graph: measure the occurrence of the node at each time \(t \) inside all shortest paths
Node similarities

Ordering error 10.8%

Ordering error 3.97%

Avg. device seen per scan

Degree

Centrality in contact graph

Centrality in social graph
Contact properties

- Compare contacts according to:
 - **social** distance (friends have distance 1, friends of friends have distance 2, etc.).
 - **contact** duration, and time between two successive contacts.
Path properties

Delay-optimal paths as a function of the social distance between the source and the destination
Structure of this talk

● Overview of the MobiClique experiment
● Topological comparison
 – Properties of nodes, contacts and paths
 – Is there any similarities?
● Exploring social rules on opportunistic forwarding
 – Overview of the opportunistic forwarding problem
 – Proposed social forwarding rules
● Conclusion and Discussions
Social forwarding paths

Path construction rules:

- **neighbor(k):**
 - $(u \rightarrow v)$ is allowed if and only if u and v are within distance k in the social graph.

- **non-decreasing-centrality:**
 - $(u \rightarrow v)$ is allowed if and only if $C(u) < C(v)$.

- **non-decreasing-degree:**
 - $(u \rightarrow v)$ is allowed if and only if $d(u) < d(v)$.

- **non-increasing-distance:**
 - $(u \rightarrow v)$ is allowed if and only if the social distance from v to d is no more than the one from u to d.
Comparison of rules

- The neighbor rule performs reasonably well.
- The rule based on centrality outperforms all the rules we have tested.
- The combination of neighbor and centrality rules reduces the cost (best trade-off).
Summary of results

- Beyond local divergence, nodes have heavy relation in the two graphs.
 - Similarities in the properties of nodes, contacts, and paths.
 - Nodes may be ranked according to their centrality
- Use **central nodes and social neighbors to communicate can be effective**
 - improves selectivity
 - offers more flexibility
 - best trade-off
 - Difficult to compute in real-time
- **Limitations and future work:**
 - single event inside a community
 - more traces, more social graphs
Thank You

abderrahmen.mtibaa@thomson.net
http://thlab.net/~mtibaa
http://haggleproject.org