

Are You moved by Your Social Network Application?

Abderrahmen Mtibaa Thomson Paris Research Lab

Joint works with: Augustin Chaintreau, Anna-Kaisa Pietilainen, Jason Lebrun, Earl Olivier, Christophe Diot

Evolution in socializing techniques

Before the Internet: socialize by physical meeting

- People communicate only if they know each others AND if they are together
- Today: Internet allows "virtual" socializing
 - Chat, e-mail, Online Social Network
 - No need for locality
- Tomorrow: MobiClique
 - Meet your virtual community using opportunistic contacts and locality

Motivation

- Explore the relation between virtual social interactions and human physical meetings.
- Understand complex temporal properties based on simple social properties
- Forwarding based on social network properties.

Structure of this talk

Overview of the MobiClique experiment

Topological comparison

- Properties of nodes, contacts and paths
- Is there any similarities?

Exploring social rules on opportunistic forwarding

- Overview of the opportunistic forwarding problem
- Proposed social forwarding rules

Discussions

- Distribute smartphones to 28 participants
- 3 days experiment at CoNext 2007
- Initially, each participant identifies its friends among the 150 CoNext participants
- Three applications:
 - Opportunistic socializing: make new friends based on friends and interests
 - Epidemic newsgroup
 - Asynchronous messaging

Mobiclique experiment: Social Graph

7

Node properties

• Characterize Node *heterogeneity*

- High/low activity,
- Popularity,
- Contact rate
- We measure two metrics
 - Node degree:
 - Social Graph: number of friends
 - Contact Graph: average number of device seen per scan (every 2mn)
 - Centrality of nodes
 - Social Graph: measure the occurrence of the node inside all shortest paths
 - Contact Graph: measure the occurrence of the node at each time *t* inside all shortest paths

Node similarities

Contact properties

• Compare contacts according to:

- *social* distance (friends have distance 1, friends of friends have distance 2, etc.).
- contact duration, and time between two successive contacts

Delay-optimal paths as a function of the **social distance** between the source and the destination

Structure of this talk

- Overview of the MobiClique experiment
- Topological comparison
 - Properties of nodes, contacts and paths
 - Is there any similarities?

Exploring social rules on opportunistic forwarding

- Overview of the opportunistic forwarding problem
- Proposed social forwarding rules
- Conclusion and Discussions

Social forwarding paths

• Path construction rules:

– neighbor(k):

(u → v) is allowed if and only if u and v are within distance k in the social graph.

– non-decreasing-centrality:

- $(u \rightarrow v)$ is allowed if and only if C(u) < C(v).
- non-decreasing-degree:

• $(u \rightarrow v)$ is allowed if and only if d(u) < d(v).

- non-increasing-distance:
 - (u → v) is allowed if and only if the social distance from v to d is no more than the one from u to d.

Comparison of rules

- The neighbor rule performs reasonably well
- The rule based on centrality outperforms all the rules we have tested
- The combination of neighbor and centrality rules reduces the cost (best trade-off).

Summary of results

- Beyond local divergence, nodes have heavy relation in the two graphs.
 - Similarities in the properties of nodes, contacts, and paths.
 - Nodes may be ranked according to their centrality
- Use central nodes and social neighbors to communicate can be effective
 - improves selectivity
 - offers more flexibility
 - best trade-off
 - Difficult to compute in real-time
- Limitations and future work:
 - single event inside a community
 - more traces, more social graphs

Thank You

abderrahmen.mtibaa@thomson.net http://thlab.net/~mtibaa http://haggleproject.org

