Authenticating Out-of-Band Communication Over Social Links

Anirudh Ramachandran and Nick Feamster
School of Computer Science, Georgia Tech
{avr,feamster}@cc.gatech.edu
Motivating Application: Secured Web Server

- Alice wishes to set up a *secure* web service to share her photos *only* with her friends. She must

1. Distribute the URL of the service to her friends
 - *What if the server is unreachable or its IP / location changes* (e.g., DHCP)?
2. Create and distribute credentials for the service to each friend
 - Email/IM: *What if she wants to add or revoke friends?*
How can Online Social Networks help?

- Social networks store and manage a user's friends
 - Expresses real-life relationships online
- Security based on social relationships is exactly what many applications need
- **Challenge**: How can we leverage relationships on OSNs for securing inter-app communication?
Securing a Web server using OSNs

1. Alice Log in

2. Create friend group

3. Publish service details to group

 Group Name: Buddies
 Permissions: Members Only
 Alice's server IP: 100.1.1.1
 Alice's password: "insecure"
 Status: Online

4. Get Alice's server credentials

5. Present credentials to Alice's server

If only applications could do this automatically...
Our Contribution: Authenticatr

Trust in real life

Requirements for the social network

- The social network must be *authenticated*
- It must support *basic messaging* between friends
Design Overview

- Three components
 - A set of applications that can use *social context* for authentication
 - A set of social communication protocols
 - An API that exports a uniform interface to all applications.

Applications using Social Authentication

- Authenticatr API

Supported Social Networks

- Facebook
- Flickr
- Google Talk
- LinkedIn

“Hourglass” design
Motivating Application #2: P2P file sharing

Authenticatr API

More Applications!

Ongoing and Future Work

Related Work

Summary
Motivating Application #2: P2P sharing

- Alice wishes to *securely* share large files with some of her friends
 - *Send it via email or IM*: file size limits; Alice must initiate each file transfer; friends cannot be added or removed
 - *Share it on a P2P network (e.g., Gnutella)*: No security (or Alice must password-protect the files, and distribute the file names and keys to each friend)

- All of peer discovery, secure communication, and scalability are difficult to achieve
P2P Filesharing with Authenticatr

Alice
- Present credentials
- Log In
- Retrieve list of friends
- P2P client over Authenticatr
- Choose files to share
- Choose friends
- Wait for connections
- Exchange IPs, password, etc. using social messaging

Bob
- Present credentials
- Wait for connections
- Present credentials Initiate direct connection
- Bob's P2P client
Authenticatr API

<table>
<thead>
<tr>
<th>Goal</th>
<th>Function Prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attempt to log onto network (n), returning a session handle</td>
<td><code>session* login (network *n, credential *cred)</code></td>
</tr>
<tr>
<td>Send an opaque message (msg) to friend (f) using session (s)</td>
<td><code>send (session *s, friend *f, message *msg)</code></td>
</tr>
<tr>
<td>Receive opaque message (msg) from friend (f) over session (s)</td>
<td><code>recv (session *s, friend *f, message **msg)</code></td>
</tr>
<tr>
<td>Get the list of friends of user (f) from session (s) as the list (l)</td>
<td><code>get_friends (session *s, friend *f, friend **l)</code></td>
</tr>
</tbody>
</table>
More Applications!

- Alice wants to conduct a network measurement from Bob's computer
 1. Alice's application logs in and inspects Bob's profile to see if his application is active
 2. Alice's app sends a message to Bob such as “ping google.com”
 3. Bob's app picks up the message, conducts the experiment, and sends the result back as another message

- May be used for root-causing network disruptions

Alice's application:
```c
s = login (facebook, cred_alice);
get_friends_list (s, NULL, &friend_list);
send (s, friend_list[1], ”ping google.com”);
```

Periodically:
```c
recv (s, friend_list[1], &meas_response);
```

Bob's application:
```c
recv (s, friend_list[2], &meas_request);
// Perform measurement
send (s, friend_list[2], meas_response);
```
Application: Key exchange

- Alice and Bob want to *negotiate a shared secret*
 1. Alice and Bob set up *Diffie-Hellman* parameters in a set of messages over the social network of choice
 2. Using D-H, a key can be established in one more roundtrip
Practical Considerations

- *Changes to host applications*: mainly user input
 - Retrieves user/pass from social network instead of prompting the user

- *Session Multiplexing*: many application instances must use one social network session
 - Each message passed on the social network contains identifying tags (similar to an object broker)
Ongoing and Future Work

- Two applications: secured web service and a P2P filesharing service
- Two social networks: Google Talk and Facebook
- Challenges:
 - Facebook does not provide a way for desktop applications to send or receive messages
 - Using *notifications* as a hack
 - Can only get “unread” notifications
 - Message ordering/timestamping, locking
- Discussion topic: Wishlist for OSN APIs?
Related Work

- **OpenSocial**: Attempts to unify social networks for web-based applications
 - Authenticatr unifies social networks for desktop apps; also can work across IM, mailing lists, etc.

- **Lockr**: Attempts to reuse social relationships from one DB/service on other services for access control

- **SocialGraph**: Similar goal, except it uses publicly declared relationships (no security)
 - Authenticatr does not try to combine two social networks; provides a uniform interface for each (to apps)

- **FriendStore, Pownce**: Share files within friend networks
 - Authenticatr extends and generalizes this idea
Summary

- Many desktop applications could benefit from secure communication
 - Many, however, forsake it for usability
- Social networking channels offer a secure messaging path to initiate authentication
 - Implements real-world trust relationships online
- **Authenticatr** allows desktop applications to use these social channels for authentication
Thanks!

- Coffee, anyone?