Conclusion

Introduction

Mining Second Life: Characterizing User Mobility in a Popular Virtual World

Chi-Anh La - Pietro Michiardi

ACM WOSN 2008 Seattle, WA, U.S.

Outline of the talk

Introduction

- **1** Introduction
- Mining Second Life
- Measurement Methodology
- Results
- Conclusion

Characterizing human mobility:

Introduction

Objectives of this work:

Define a novel methodology to carry out experiments on human mobility with the following goals:

Measurement Methodology

- Affordable experiments
- No logistic organization
- Wireless technology independent
- Scalability of experiments

Related works

Introduction

Objectives of prior works:

- Build mobility models from traces
- Performance evaluation of forwarding strategies in DTNs
- Chaintreau et. al.: IEEE Trans. Mobile Computing 2007
- Karagiannis et. al.: ACM Mobicomm 2007
- Rhee et. al.: IEEE Infocom 2008.

Related works: Experimental Methodology

- Select hardware → exhausting task
- Neighbor discovery → hard for wifi in ad-hoc mode
- Prepare / finalize the experiment → logistic problems

Related works: Restrictions

- Available traces are difficult to use (and debug)
- Experiments are bound to specific wireless hardware
- In general, only "temporal" information is available
- GPS-based experiments only for out-door scenarios
- Number of participants to experiments is fixed

Introduction

Exploit Virtual Worlds

Networked Virtual Environment are a tremendously popular concept of on-line communities:

- User interaction is synchronous
- Contrast with Social-Networking applications such as FaceBook: asynchronous interaction

In this work we use Second Life and capture user interaction as well as user spatial distribution.

- Second Life architecture:
 - Flat, Earth-like world simulated on a large server farm
 - World is divided into 256x256 m "lands", one server per land
 - → Limitation on number of concurrent users on each land

- Each land has attributes:
 - private
 - public
 - sandbox
 - → Limitations on user-generated content deployment

Monitoring Architectures

- Measurements in Second Life can be approached under different angles
 - Use Second Life to build and deploy monitoring probes

Measurement Methodology

- Use Second Life to mimic real world experiments
- System approach: connect to Second Life and get data
- We built a lightweight client wich crawls a selected land
 - Input:
 - Valid Login/passwd
 - Target Land
 - Measurement granularity
 - Measurement duration
 - Output:
 - Anonymized user ID
 - (x, y, z) of **every user** on the target land every τ seconds

The Crawler Approach

Introduction

Observations:

- The crawler is a user → should not introduce bias in experiments
- One crawler per land is sufficient
 - All users concurrently connected to the target land can be tracked: we override a method used to build maps
 - Multiple lands can be tracked using an "army" of crawlers
- Limitation: maximum number of concurrent users

We present results for the following lands:

- Open Spaces:
 - Apfel Land: a german-speaking arena for newbies

Measurement Methodology

- Island of View: Valentine's day event
- Confined areas:
 - Dance Island: a virtual discotheque

Note:

Introduction

- Selecting lands is a tedious manual exercise
- Automate the process

Using SecondLife Traces

How do we use the traces?

Using the coordinates of users connected to a target land we create several snapshots of **radio networks**

- Given a communication range r, a link between two users u_i, u_j exists if their distance $d(u_i, u_j) \le r$
- We build snapshots every measurement interval $\tau = 10$ sec
- $r \in \{r_b, r_w\}$, where $r_b = 10$ m (bluetooth) and $r_w = 80$ m (WiFi at 54 Mbps)

Results

Metrics

Temporal:

- Contact Time
- Inter Contact Time

Spatial:

- Node degree distribution
- Network diameter
- Clustering Coefficient
- Zone occupation

Mobility:

- Cumlative traveled distance
- Login time

Results: Some Numbers

24-hours traces

Apfel Land:

Introduction

Unique visitors: 1568

Average concurrent users: 13

Dance Island:

Unique visitors: 3347

Average concurrent users: 34

Isle of View:

Unique visitors: 2656

Average concurrent users: 65

Measurement Methodology

Results: Temporal Analysis (1)

- Contact Time = transfer opportunities between users
- Large values are good

to wait before **a pair** meets again

Inter Contact Time = time

 Large values are supposedly bad

Results: Trip Characteristics

- Users do not exercise a lot!
- Closed vs. open spaces

- Max on-line time \sim 4 h
- 90-th perc. on-line < 1 h

Our explanation:

Quite obvious (and similar to real world): users do not move when they chat!

Results: Spatial Distribution

Introduction

- Not a uniform distribution
- Most of the users are grouped
- Closed vs. open spaces

Results

Concluding remarks

- Novel approach to study mobility
- Do real people walk like avatars?

Beyond mobility analysis

- Epidemiology
- Sociology
- Virtual playground to test applications

Thank you!

Need traces?

Contact: Pietro.Michiardi@eurecom.fr

Web: www.eurecom.fr/~ michiard