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ABSTRACT
Enterprises currently employ Cloud services to improve the scal-
ability of their services and resource providers strategically price
resources to maximize their utilities. While Nash equilibrium is
the dominant concept for studying such kind of interaction, evolu-
tionary game theory seems more appropriate for modeling agents’
strategic interactions as it relaxes many strong assumptions. This
paper applies evolutionary dynamics to generate resource providers’
evolutionary stable strategies. We present a sequential monte carlo
approach for simulation of multi-population evolutionary dynamics
in which each agent’s strategy space is continuous. We use resam-
pling and Gaussian smoothing to prevent degeneration of particle
samples. Simulation results show that the proposed approach al-
ways converges to evolutionary stable strategies. Our approach is
general in that it can be used to generate agents’ evolutionary stable
strategies for other resource allocation games.
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1. INTRODUCTION
Cloud computing is a new paradigm of computing in which dy-

namically scalable and often virtualized resources are provided as
a service over the Internet. As resource consumers rely on Cloud
providers to supply their resource needs, Cloud providers will need
to consider and meet different resource requirements of each in-
dividual consumer. To achieve this, Cloud providers can no longer
continue to deploy traditional system-centric resource management
architecture that do not provide incentives for them to share their
resources and still regard all service requests to be of equal im-
portance [1]. Instead, market-oriented mechanisms are necessary
to regulate the supply and demand of resources. Recently, many
research projects have proposed a variety of market structures for
Cloud resource allocation.

This paper develops new techniques for generating evolutionary
stable strategies for resource allocation problems in Cloud markets
consisting of selfish resource consumers and resource providers.
Resource consumers (buyers) have tasks to finish and each buyer
has multiple functionally equivalent plans for its high level task
and each plan consists of a set of resources. Resource providers
(sellers) sell resources to buyers following a simple protocol: sell-
ers announce their prices first and then buyers determine the set of
resources to buy. One immediate question arising from the resource
allocation game is to finding agents’ equilibrium strategies, which
is important for predicting agents’ selfish behavior and optimizing
system level objectives. We apply evolutionary dynamics to gen-
erate agents’ evolutionary stable strategies. Since agents’ strategy

space is continuous, we present a sequential monte carlo approach
for simulation of multi-population evolutionary dynamics.

2. RESOURCE ALLOCATION PROBLEM
We consider a resource allocation game among agents A = B ∪

S where B is the set of buyers and S is the set of sellers. For ease
of analysis, we assume that each seller s ∈ S can only provide
one resource rs and s can serve multiple buyers simultaneously.
Let cs be seller s’s (marginal) cost for providing resource rs to a
buyer and the cost is the same for different resource consumers.
Let R = ∪s∈Srs be the set of resources provided by all sellers S.
Each buyer b ∈ B has a high level task and there are multiple plans
Pb for the task. Each plan P ∈ Pb consists of a set of resources
R(P ) ⊆ R. Let vb be buyer b’s value of finishing its task, which
is also the highest price b can pay to buy resources (services).

Buyers and sellers interact with each other following a simple
contracting protocol: Sellers announce their prices first. Then each
buyer will decide whether to buy a seller’s resource or not. Given
sellers’ prices θ, buyer b’s utility ub(θ) is the difference between
its gain of completing its high level task and its cost of buying re-
sources. Similarly, seller s’s utility us(θ) is the difference between
its received payment and its cost of providing resources. Since sell-
ers announce their prices simultaneously, there exists no optimal
strategy for each agent and it leads us to study agents’ equilibrium
strategies. Given the two stage protocol, we can represent each
buyer’s optimal action as a function of sellers’ strategies. There-
fore, we only need to focus on sellers’ equilibrium strategies.

An evolutionary stable strategy (ESS) is a strategy which, if
adopted by a population of players, cannot be invaded by any al-
ternative strategy that is initially rare. An ESS is a Nash equilib-
rium which is “evolutionary” stable meaning that once it is fixed in
a population, natural selection alone is sufficient to prevent alterna-
tive (mutant) strategies from successfully invading [3].

3. COMPUTING EVOLUTIONARY STABLE
STRATEGIES

Here we present a design of evolutionary dynamics using the
sequential Monte Carlo methods. The replicator dynamics is con-
ducted in discrete time indexed by {0, 1, . . . }. There are multi-
ple populations, each representing a seller. Let the population for
seller s at time t be δs(t). Each population consists of N sam-
ples, i.e., δs(t) = {δ1

s (t), . . . , δ
N
s (t)} where δi

s(t) represents a
price in the range [cs,∞). The state of populations at time t is
δ(t) = ∪s∈Sδs(t). The population δs(t) for each seller s is evolved
from the population state δs(t− 1) at time t− 1 following the pro-
cedure outlined in Algorithm 1.

Initialization: The initial population δs(0) for seller s can be



1) Initialization: At time t = 0, randomly choose N samples δs(0)
from the initial distribution.
2) Importance Weight Evaluation: Evaluate the importance weight
wi

s(t) of each sample δi
s(t).

3) Resampling : Resample N samples δi
s(t + 1) from set δs(t)

according to the normalized weight of all samples in δs(t).
4) Smoothing: Add a small smoothing term sampled from a Gaussian
distribution to each sample δi

s(t + 1). Set t = t + 1 and go to step 2).

Algorithm 1: SMC Model of Replicator Dynamics

randomly chosen from its strategy space (cs, $s] where $s is the
maximum price seller s can propose. $s can be set as the maxi-
mum value of all buyers.

Importance Weight Evaluation: After generating a new popula-
tion δs(t) at time t, the weight wi

s(t) of each sample δi
s(t) is evalu-

ated based on its interaction with other populations. Let δ−s(t) =∏
s
′∈{S−s} δs′ (t) be the all strategy profiles of all sellers other

than s. The weight wi
s(t) is averaged over all utilities it can get

with all possible strategy combination of other sellers. Formally,

wi
s(t) =

∑
θ−s∈δ−s(t)

us(δ
i
s(t), θ−s)

|δ−s(t)|
where |δ−s(t)| is the number of strategy combinations for all sellers
other than s.

Resampling: At step 3, the weights of all samples δs(t) will be
normalized to satisfy the condition

∑
i wi

s(t) = 1. The normalized
weight wi

s(t) represents the probability that sample δi
s(t) will be

selected during the resampling process. Resampling corresponds
to selection operator in genetic algorithms. That is, the sample with
a higher weight (i.e., utility) has a higher surviving probability.

Smoothing: After the resampling process, a number of the sam-
ples could be identical, i.e., they are of the same price. When one
sample has a large weight, many samples chosen in the resampling
process could be the same and the sample degeneration problem
become dominant. To overcome the degeneration problem, we add
some random noise to each sample to smooth the sampling space.
If there is not the smoothing step, all samples in different time steps
use the fixed set of strategies, which are only a small part of the
whole strategy space. The discretized strategies result in informa-
tion loss due to using a small number of strategies and thus the
evolutionary dynamics may not converge. In contrast, if there is
too much perturbation, over-dispersion problem occurs.

To overcome the degeneration problem and information loss, we
use the a smoothing step to adjust the strategies of the samples gen-
erated in the resampling process. To overcome the over-dispersion
problem in the sequential simulation, we use the Gaussian kernel
with a shrinkage rule suggested by Liu and West [2]. Specifically,
let δs(t) be the weighted mean of all samples δs(t) and let δ̃s(t)
be the weighted variance of all samples δs(t). Then each sam-
ple δi

s(t + 1) is replaced by a new sample generated from the
smoothing Gaussian distribution G(δi

s(t + 1)) with mean M i
t =

αδi
s(t + 1) + (1− α)δs(t) and variance V i

t = (1− α2)δ̃s(t). We
can find that all the samples generated in Step 4 have the same sam-
ple mean and weighted sample variance as that of samples at step
2. Thus, over-dispersion is corrected. The smoothing step can be
treated as mutation in genetic evolution. The parameter α ∈ [0, 1]
is a smoothing parameter.

4. PRELIMINARY SIMULATION RESULTS
We implemented a testbed to evaluate our approach in a variety

of test environments. For each scenario, we measured average con-
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(a) Average variance of population utility
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(b) Ratio of social welfare

Figure 1: Population size, convergence, and social welfare: example 1
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(a) Average variance of population utility
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(b) Ratio of social welfare

Figure 2: Population size, convergence, and social welfare: example 2

vergence time and the ratio of the social welfare of the allocation
given by the evolved evolutionary stable strategies and the optimal
social welfare. Figs. 1 and 2 show the simulation results in two
different scenarios.

The main findings from simulation are: 1) the proposed approach
always converges to evolutionary stable strategies; 2) evolutionary
dynamics converges with a small population size; 3) evolutionary
stable strategies achieved very good social welfare; and 4) the scale
of resource allocation problems does not affect the convergence
speed of the evolutionary dynamics.

5. CONCLUSION
The contributions of this paper include: 1) We adopt the realistic

concept of evolutionary stability and introduce replicator dynamics
to compute agents’ evolutionary stable strategies. 2) Since agents’
strategy space is continuous, we present a sequential monte carlo
approach for computing evolutionary stable strategies. Experimen-
tal results suggest that the proposed evolutionary dynamics always
converges to evolutionary stable strategies. Our approach is general
and can be used in many related applications. Our approach can be
easily extended to handle incomplete information. For example,
consider that there are two sellers s and s′. Assume that the cost
of seller s could be either 1) ch

s with probability ωh
s or 2) cl

s with
probability 1 − ωh

s . Then for seller s, we create two populations:
one for cost ch

s and the other for cost cl
s. The utility of an individual

in the population for ch
s (or cl

s) is based on its competition with the
population for s′. However, the utility of an individual δi

s′(t) in the
population for s′ is wi

s′(t) = ωh
s wi

s′(c
h
s , t) + (1 − ωh

s )wi
s′(c

l
s, t)

where wi
s′(c

h
s , t) (wi

s′(c
l
s, t)) is the utility wi

s′(t) of δi
s′(t) when it

competes with the population for s with cost ch
s (cl

s).
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