
ELMR: Efficient Lightweight Mobile Records

Arvind Kumar, Jay Chen, Michael Paik, Lakshminarayanan Subramanian
Dept. of Computer Science, New York University

arvind.kumar@cs.nyu.edu, jchen@cs.nyu.edu, mpaik@cs.nyu.edu, lakshmi@cs.nyu.edu

ABSTRACT

In this paper we describe Efficient Lightweight Mobile
Records (ELMR), a system that provides a practical pro-
tocol for accessing and updating database records remotely
from low-end mobile devices using the 140-byte SMS chan-
nel.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed Applications

General Terms

Algorithms, Design, Experimentation

Keywords

Cell Phones, User Interface, Healthcare, Compression

1. INTRODUCTION
In rural regions around the world, especially underde-

veloped areas, it is often difficult to gain access to basic
healthcare. In these areas much of the burden of healthcare
delivery falls on community health workers (CHWs). The
massive penetration of cellular services in these regions po-
sition mobile devices and applications to revolutionize the
way healthcare is delivered by providing a channel for these
CHWs to gain on-demand access to relevant data to improve
quality of treatment. Most countries in Africa have over 50%
cellular coverage [2] and a significant fraction of their rural
population owns or has access to a mobile phone [6].

Several recent research and developmental efforts such as
OpenRosa [5], OpenMRS [4], and Voxiva [7] have explored
the use of mobile phones as a low-cost computing platform
for distributed healthcare applications. However, these ex-
isting systems are not scalable and sustainable in develop-
ing contexts because the software implementation itself (re-
liant on TCP/IP and SQL) is typically too heavyweight for
low-end mobile phones, calling for the additional expense of
smartphones. They also depend on GPRS network connec-
tivity which is feasible only in urban settings; in most rural
settings only voice and Short Messaging Service (SMS) (140
byte packets) services are available.

Alternative efforts based around SMS exist. FrontlineSMS
[1] provides SMS broadcast capabilities, and SMS-NIC [3] fo-

Copyright is held by the author/owner(s).
MobiHeld’09, August 17, 2009, Barcelona, Spain.
ACM 978-1-60558-444-7/09/08.

cuses on creating a reliable low bandwidth communications
channel using SMS. However, neither of these is perfectly
suitable for a mobile record application such as ELMR since
they either provide the wrong abstraction and/or are not
optimized for our main application requirement: cost.

To address these limitations we designed and implemented
ELMR, a generic record system that is both feature-complete
and cost effective. ELMR is SMS-based and runs on low-end
mobile phones enabling health workers and patients in rural
areas to fetch and update their patient records and doctors
to remotely track their patients’ health.

2. ELMR DESIGN
At a high level, the architecture of ELMR is simple: a

client running on the user’s mobile phone accesses the re-
mote database by sending and receiving SMS messages to
and from the server. The novelty of ELMR lies in the com-
bination of its message encoding scheme, transmission pro-
tocol, and reliability/consistency management.

2.1 Restricted Set of Operations
We support only the following operations: create, ap-

pend, update, destroy, search, fetch, and aggreg-

ate fetch.
A given command message contains the operation ID, the

schema ID, bits reserved for control information and the
payload containing the variable-length data sent to perform
the operation specified by the operation ID.

2.2 Semantic Compression
ELMR employs semantic compression which reduces the

number of messages exchanged between the client and server
to complete an operation by reducing payload space required
for each command’s requisite data.

To better utilize the space in each SMS message we limit
the types of fields in a schema. All fields in the form are
represented by one of these data types: 1. Date 2. Integer
3. String 4. Boolean 5. Multiple Choice

We optimize by automatically assigning the minimum num-
ber of bits to each datatype (e.g. 1 bit to booleans) during
schema encoding and decoding. In addition, each integer
and date field carries a precision modifier and each multiple
choice contains a finite number of options, which aids in cor-
rectly assigning the minimum number of bits to make the
most of the 140-byte SMS payload. Variable-length strings
have a 1-byte length value prepended to them.

69

2.3 Lightweight SMS Reliability
We propose a thin layer of best-effort reliability that does

not guarantee 100% reliability. Our protocol is essentially
stop-and-wait per session, and outlined below:

Session Definition:
1. Every session has a unique 8 bit identity.
2. A session contains at most 16 messages.
3. Each message per session contains a 4-bit sequence #.
4. A session has 3 phases.

Phase 1: The client initiates a session and then sends at
most 16 messages to the server. The first of these messages
has a single bit set indicating that it is the first message in
the session and uses its sequence number field to indicate the
total number of messages in the session. The server waits
for SMS messages and does not send any acknowledgements.

Phase 2: After either a certain amount of time passes and
the session times out or all messages are successfully received
by the server, the server sends a message with a 16-bit ACK
vector. The vector contains 1’s for the sequence numbers
which have been received, and 0’s for those wihch have not.
The client retransmits these missing messages, if any, when
the ACK vector is received. If the server is waiting for miss-
ing messages but does not receive them, it attempts one
more round of sending an ACK vector and waiting for a re-
sponse, then fails the session. Once the server has received
all messages, either in the first round or in a subsequent
retransmission round, the ACK may either be sent immedi-
ately or piggybacked on a response in phase 3. If messages
are still not received the server resends a NACK one last
time. If messages are received the server sends an ACK.

Phase 3: The server sends up to 16 messages in response to
the client in a session. In this case, the client does not ACK
the server messages unless the client receives some of the
messages and others are lost. This is the mirror of phase 2
from the client side. If all messages are received or all mes-
sages are lost, the client does not send a NACK.

In this protocol, a session may not complete under three
scenarios: a) All messages from client to server are lost. b)
All messages from server to client are lost. c) Transmission
of the initialization vector is lost in either direction. In any
of these cases, the client times out and asks the user whether
he wishes to retry the session.

2.4 User Driven Consistency
Since ELMR uses an append only database model we

don’t directly deal with consistency and choose to leverage
user driven consistency where inconsistencies are either han-
dled by the system administrators or the users themselves.
In scenarios where explicit consistency guarantees are re-
quired, timestamps and conflict resolution mechanisms can
easily be incorporated into our design.

3. EVALUATION
We performed a preliminary evaluation of ELMR using

real medical forms used by hospitals in Africa. Our evalua-
tion is composed of two parts: we evaluate the effectiveness
of ELMR at reducing the size of messages and analyze the
message overhead of our reliability protocol.

Date
Boolean
Multiple Choice
String
Integer

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

E
LM

R

E
LM

R
+

G
zi

p(
10

0)

G
zi

p

G
zi

p(
10

0)

N
ai

ve

E
LM

R

E
LM

R
+

G
zi

p(
10

0)

G
zi

p

G
zi

p(
10

0)

N
ai

ve

S
iz

e
(B

yt
es

)

Compression Scheme
Update Create

Figure 1: Field sizes after various compression

schemes

Figure 1 illustrates the difference in average size per form
between naive un-optimized text forms, simple gzip com-
pression, aggregate gzip compression, and ELMR. As the
effectiveness of semantic compression is a function of the
data types, the results are broken down according to the
types of the original forms. Gzip is the average compression
rate for single messages. Gzip(100) refers to the average
operation across 100 aggregate operations. ELMR is the
benchmark where only semantic compression is used. We
observe that semantic compression improves upon the un-
compressed version for both Intake and HIV/TB. We can see
that the uncompressed performs the most poorly in both
cases. The Gzip compression performs only slightly bet-
ter than uncompressed for HIV/TB and worse for Intake,
and the Gzip(100) further compacts strings across messages.
ELMR is not currently optimizing string fields using seman-
tic compression, but even if we simply compress the strings
in ELMR using Gzip we achieve improved results as seen
in ELMR+Gzip(100) reducing the original payload size by
nearly 50% in the aggregate case.

For the evaluation of reliability and consistency protocol
we simulated our protocol over a range of loss rates from 0
to 20%. We observe from the results that the overhead is
low even for loss rates of up to 20%.

4. REFERENCES
[1] FrontlineSMS. http://www.frontlinesms.com/.
[2] International Telecommunication Union.

http://www.itu.int/.
[3] E. Oliver. Exploiting the Short Message Service as a

Control Channel in Challenged Network Environments.
In Proceedings of the third ACM workshop on
Challenged networks, 2008.

[4] OpenMRS. http://openmrs.org/wiki/OpenMRS.
[5] OpenRosa. http://www.openrosa.org/.
[6] M. Paik et al. The Case for SmartTrack. IEEE/ACM

Conference on Information and Communication
Technologies and Development (ICTD), 2009.

[7] Voxiva. http://www.voxiva.com/platform.php.

70

