
Router Primitives for Programmable Active Measurement

Joel Sommers
Colgate University

jsommers@colgate.edu

Paul Barford
University of

Wisconsin-Madison
Nemean Networks
pb@cs.wisc.edu

Mark Crovella
Boston University

crovella@cs.bu.edu

ABSTRACT

Active probe-based measurements are the foundation for under-
standing important network path properties such as SLA compli-
ance and available bandwidth. Well-known challenges in active
probe-based measurement include the logistics of deploying and
managing host-based measurement infrastructures, the load that
probe packets place on network resources, the inaccuracy of re-
sultant measurements, and the relatively limited set of features that
can be measured. In this paper, we argue that these challenges can
be addressed through programmable, router-based support for ac-
tive measurement. While commercial routers today have some ba-
sic capabilities for emitting probe packets, these mechanisms are
minimal and do not allow the necessary flexibility in the kinds of
probing that can be done. We describe a set of functional primitives
that enable a wide range of router-based active measurements and
would improve and simplify the ability to assess and understand
network structure and dynamic network state. We discuss the asso-
ciated resource requirements and implications of our approach re-
lated to configuration, security and privacy. Finally, we support and
illustrate the powerful potential of our approach through a series of
measurement scenarios and describe our ongoing efforts toward a
Click-based implementation of our framework.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network management, Network mon-
itoring; C.2.5 [Local and Wide-Area Networks]: Internet (e.g.,
TCP/IP); C.2.6 [Internetworking]: Routers; C.4 [Performance of

Systems]: Measurement Techniques

General Terms

Design, Experimentation, Measurement

Keywords

Active Measurement, Programmable Measurement, Router
Programmability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$5.00.

1. INTRODUCTION
The ability to measure and assess network path characteristics

such as SLA compliance, available bandwidth and the underlying
topological structure is critical in the design and development of
network systems and protocols and in day-to-day network opera-
tions. The primary means for gathering data on network path char-
acteristics is through the use of active probe-based techniques that
focus on generating carefully crafted sequences of packets and ob-
serving characteristics of those packets after they have traversed a
path.

There are two classes of challenges in active probe-based mea-
surement: technical and logistical. Among the technical challenges
are issues related to precision in the generation and reception of
packet probe streams, including accurate timestamping. A key lo-
gistical challenge is that there is essentially no intrinsic support for
active probe-based measurements in the Internet. Thus, deploy-
ment and management of additional infrastructure specifically for
active measurement is generally required. Furthermore, it is well
known that some standard techniques such as traceroute-like prob-
ing are often blocked by service providers who are concerned about
the load that these measurements place on their routers.

In this position paper, we argue that routers are in a unique posi-
tion to provide programmatic support for active probe-based mea-
surement of network paths. If available, this capability could pro-
vide a number of important advantages. First, router-based active
measurement would mean that no additional infrastructure would
be required to measure path properties. Second, by virtue of their
in-line perspective, probing methods could be designed to virtually
eliminate concerns over accuracy and the interference of probing on
customer traffic. Third, programmability would mean that entirely
new probing techniques could be developed to enable a broader
range of path characteristics to be measured. Fourth, when cou-
pled with carefully considered access control policies, router-based
measurement could open the door to a greater overall understand-
ing of the Internet’s structure and behavior. Finally, we note that
our proposal for implementing a programmable probing capability
“deeper” in the network in order to improve performance and accu-
racy is motivated by a key aspect of the end-to-end arguments [13].

In this paper, we describe an architecture and prototype imple-
mentation framework for programmable active measurement capa-
bility in routers. The high level requirements of the architecture
include: (1) flexible and accurate probe generation and reception;
(2) the ability to measure nodes (e.g., router delay), links (delay
between two nodes) and/or paths (delays between multiple nodes);
(3) flexible specification of measurement experiments (paths taken
by probes, targets of probes, experiment start and duration); (4) low
space and computational overhead; and (5) flexible access control.

Our implementation framework is designed to meet the above

13

requirements and consists of a set of functional primitives designed
around the concepts of events and actions. An example of an event
is the expiration of a timer. Events trigger actions such as the
generation of a probe packet. We describe our set of primitives
and highlight their utility through a series of illustrative examples.
While our initial set of primitives provides a great deal of intrinsic
probe-based measurement capability, it remains a work in progress.
Our study is in its early stages and we are presently developing
an implementation in Click [6] in order to better assess the details
of hardware impact and the design and scope of our set of primi-
tives. We remain confident that our ongoing implementation work
will underscore the transformative potential of router-based pro-
grammable measurement.

2. RELATED WORK
In-network active measurement is valuable and ISPs already do

some of it in an ad hoc way. For example, many ISPs set up servers
to allow in-network generation of traceroute probes. Further, a re-
cent effort [1] has set up in-network tools to aid users in understand-
ing the performance of their providers. These capabilities could be
provided more completely and simply through the deployment of
the methods we propose in this paper.

In commercial routers today, there exist various capabilities to
facilitate both passive and active network measurements. While
a range of configuration options are available for these facilities,
there are no programmable capabilities. For active measurements
in particular, there are facilities to generate probes according to pre-
set emission processes, perform basic statistics on these measure-
ments, and generate SNMP traps when statistics cross a configured
threshold (e.g., if delay exceeds a given value) [2, 3]. While our
focus is also on router capabilities, we propose a set of primitives
that can be composed by a user to achieve a much wider variety of
measurement objectives.

Extensive facilities for router-based measurement were a feature
in the early ARPAnet Interface Message Processors. According
to Kleinrock and Naylor, “. . . we were careful to include in every
specification of the network design the ability to monitor network
behavior with the use of specific measurement tools” [5]. For ex-
ample, the IMPs had a capability to record four timestamps over
the course of processing a given packet in order to examine de-
tailed performance characteristics. There were also capabilities to
accumulate various statistics (e.g., histograms of packet sizes), the
ability to take a snapshot of system resources and an “artificial mes-
sage generation” capability, i.e., the ability to send probe packets.
The authors point out that the ARPAnet had two goals: (1) exper-
imentation with packet switching, and (2) providing connectivity.
It appears that by 1974 goal (2) had pushed out goal (1) and these
measurement capabilities were dropped. Some of the capabilities
we propose are similar to those offered in these early packet pro-
cessing systems.

There have recently been a number of proposals for programmable
passive measurement systems. Ramaswamy et al. [12] describe
a programmable passive measurement system based on network
processor-based systems deployed in a network. More recently,
Yuan et al. describe the ProgME system which is based around
the notion of capturing flowsets (arbitrary collection of flows) [17].
In [4], Khan et al. examine an FPGA-based query-driven collec-
tion engine that can be reprogrammed based on user/application
requirements. Our focus is different in that we propose a set of
capabilities for router-based active measurement rather than on ca-
pabilities of an external passive measurement system.

Most closely related to our work is that by Sommers and Bar-
ford in which they describe a flexible system for facilitating active

measurement in a shared testbed such as Planetlab [14]. However,
their focus is on end-hosts and the range of capabilities offered is
quite narrow. In a somewhat similar vein, the Scriptroute system
provides special library support in the Ruby language to facilitate
active measurements [16] in an environment like Planetlab. More
loosely related to our efforts, Machiraju and Veitch propose flexi-
ble priority handling of probe packets at routers in order to isolate
performance measures at different hops a long a path [9].

Finally, The IP Measurement Protocol described by Luckie et

al. [8, 7] is related to our effort in the sense that IPMP is designed
to facilitate router-based measurement. The payload of an IPMP
packet consists of path records (e.g., timestamps, interface IP ad-
dresses) that can be added by routers as the packets are forwarded.
Similarly, Pezaros et al. discuss extensions to a IPv6-based “ac-
tive network” software router designed to augment packets with
passively collected measurement data (e.g., to add timestamps to
packets as they are forwarded through the software router) [11].

3. SYSTEM DESIGN
In this section we first discuss our general objectives for a set of

primitives for enabling programmable router-based active measure-
ment. We then describe our proposed primitives, their function and
purpose. Next, we discuss resource requirements of these primi-
tives. Finally, we present examples of the kinds of measurements
possible with our design.

3.1 Objectives
The objectives behind the design of the set of primitives de-

scribed below are as follows:

1. Permit flexibility in specifying the probe emission and

processing by intermediate routers. Our first objective is to
embed as few assumptions as possible in the active measure-
ment mechanisms available in a router. The available prim-
itives should enable a wide range of probing processes and
algorithms to be implemented, including stream-based and
non-stream-based probing. Users should be able to specify
probe packet sizes, payloads, spacing among packets, and so
forth.

In addition to flexibility in probe packet emission, the avail-
able primitives should provide latitude in the kinds of pro-
cessing that can be done upon probes at intermediate routers
along a path. For example, a user should be able to con-
trol or influence the route that probes take from a source to
a destination. Users should be able to specify how a probe
packet might be modified in order to include information as
the probe is handled by a given router, e.g., to add a high-
resolution timestamp or to add an interface address.

2. Improve the accuracy of active measurement. The router
primitives should enable improvements in the accuracy of
active measurements, as compared to what is possible using
current (end-system) active measurement approaches. Routers
are in a unique position to be able to provide information that
can yield insight into network performance and behavior.

3. Optionally suppress probing-induced effects. Active mea-
surements impose extraneous load on networks that can cause
unwanted packet delays or packet loss. An explicit objective
of our design is to be able to avoid these effects where rea-
sonably possible. Clearly, this should only be optional; e.g.,
a probe intended to measure packet loss would not use it.

14

However, for some kinds of probing (e.g., probing for topol-
ogy information), a router is in the position to handle probes
in such as way as to avoid affecting non-probe traffic.

4. Permit multiple, simultaneous users. Multiple users should
be able to use the primitives available in routers simultane-
ously. For example, multiple operations groups within an
ISP may wish to initiate probings in order to measure a char-
acteristic of interest; they should be able to do so at the same
time.

5. Provide secure access for users along with selective user

rights. The router primitives should not be accessible to
users without proper credentials. Furthermore, an ISP may
wish to allow some users access to certain primitives but not
others; the ISP should have the flexibility to assign different
rights to users. For example, the network operations center
for a friendly peer ISP may be given access to certain prim-
itives in order for that peer to troubleshoot customer prob-
lems. However, use of all primitives might be disallowed so
that the peer cannot gain “too much” information.

6. Provide the ability to enforce limits on resource usage. In
addition to securing access and providing selective access to
the router measurement primitives, accounting is an impor-
tant capability that should be provided. Probe traffic quotas
should be supported as well as processing time quotas. For
example, it may be desirable to set an upper limit on traffic
induced by a particular user over a given time interval be-
tween two routers or across an entire network. Practically, it
may be very difficult to support hard limits, i.e., ensuring that
no limits are ever exceeded, across an entire network. On the
other hand, soft limits, in which a user may temporarily ex-
ceed a threshold, may be possible and still provide the key
benefit of rapidly detecting user errors or deliberate misuse.

7. Low impact on router. The measurement primitives should
impose as little computational and memory load requirements
on a router as possible. Most importantly, a programmable
active measurement capability should have negligible per-
formance impact on the standard processing of packets on
the data plane (and no negative performance impact on other
router subsystems).

3.2 The Primitives
In our system design, there are two types of primitives: events

and actions. Simply put, particular actions or sequences of ac-
tions can be tied to the occurrence of an event. Below, we describe
the events of interest in our current design, and the various actions
that can be performed. For each primitive, we introduce simple
assembly-like instructions and their semantics. In Section 3.4 we
present a set of scenarios to show how the primitives can be used
together to achieve different measurement goals.

Note that in this work, we assume that we are concerned only
with measuring data plane activity. Thus, measurements or events
related to the control plane are out of scope.

3.2.1 Events

The occurrence of particular events can trigger the execution of
actions. In our current design, there are two events of interest:

• Timer expiry. An action or sequence of actions can be asso-
ciated with the expiration of a timer that has been previously
set. Timers may be set with the after action primitive, de-
scribed below.

• Probe packet receipt. An action or sequence of actions can
be associated with the arrival of a packet that matches cer-
tain criteria. In this work, we do not specify the syntax or
scope of the kinds of criteria that may be used to match in-
coming packets. At minimum, the ability to match IP source
and destination addresses, protocol number, and source and
destination ports should be sufficient in order to identify in-
coming probe packets. These matching capabilities are stan-
dard features in router access control lists; we propose that
these basic ACL capabilities be augmented to allow a set of
measurement primitive actions to be performed upon a suc-
cessful match. Further, to meet our objective of supporting
multiple simultaneous users, probes should be distinguish-
able on a per-user basis. This will require a unique identifier
shared between each probe packet and its associated action
code in each router.

3.2.2 Actions

When an event has fired, a sequence of one or more actions may
be performed to process an incoming probe packet or to generate
new probe packets. The action primitives in our system design are
as follows:

• Set a timer. The after primitive can be used to set a timer
so that a sequence of actions is performed in the future. This
primitive takes two parameters: the amount of time after
which the timer should expire, and an identifier indicating
the action of a sequence at which to start execution on timer
expiry. When the after action is encountered, execution is
halted until the timer expires, at which time execution begins
at the identifier given in the statement. Thus, the following
set of actions causes a timer to be fired every second at which
time nothing is done except to reset the timer.

start:
after 1.0 start

• Forward a packet. The forward action may be used to
control the path that a probe packet takes through a network.
The forward action takes one parameter, the destination.
The destination may be a specific IP address, or it may be the
keyword next-hop, indicating that the packet should be for-
warded to the next hop towards the destination in the probe’s
IP header, according to the router forwarding table.

Note that the forward action enables a user to send a packet
out an interface not on any standard forwarding path, thus
creating the capability to probe over an alternative IP rout-
ing configuration. One example application of this facility
could be to test router ACLs by forwarding probe packets to
a router that should drop them, and testing whether the pack-
ets are indeed dropped.

• Create and send a packet. The probe action can be used
to generate and send a new probe packet. Parameters to the
probe action specify the packet header details for the probe
to be generated.

probe destination [optional parameters]

Optional parameters might be used to specify the source ad-
dress, destination address, protocol, port numbers, payload,
outgoing interface or next-hop, etc.

• Append a timestamp to a packet. A key action to per-
form at a router is to append a high-resolution timestamp to a
probe packet. This action can be performed immediately on

15

packet receipt using the input-timestamp action, and/or
when it is queued to be forwarded to the next hop with the
output-timestamp action.

In this work, we assume that a router has a high-resolution
timestamp capability in order to provide these actions. Fur-
thermore, we do not specify how the timestamp is appended
to the probe packet. One possibility would be to use the idea
from the IP Measurement Protocol proposal of path records

to facilitate adding this information [8].

• Append an interface address to a packet. Similar to the
addition of timestamps, addresses of the input and/or output
interfaces may be appended to a probe packet with the ac-
tions input-address and output-address.

• Append passive measurement data to a packet. More gen-
erally, data that is available through passive means at a router
may be appended to a probe packet, i.e., information avail-
able through SNMP. For example, we might request that cur-
rent output queue size be appended to a probe packet, or we
might request that the input packet count be appended. The
input-mib and output-mib actions can be used to collect
such input-address and output-address information.
One parameter is given to these actions, the MIB object iden-
tifier Note that any MIB table index (i.e., which interface) is
implied by the arrival or departure interface of the packet.

For example, to collect the ifHCInOctets counter (from the
Interfaces Group MIB [10]) from an input interface, as well
as a timestamp, the following would suffice:

input-timestamp
input-mib 1.3.6.1.2.1.31.1.1.1.6.

• Store a packet for subsequent retrieval.

If a router is the destination of probes, the probes can be
stored for later retrieval by a user using the store action.

To the above actions, two conditional clauses may be used: if
and when. With these conditional clauses, an action can be per-
formed if a condition is true, or an action can be performed when
a condition becomes true, i.e., wait until a condition is true, then
perform the action.

At present, we allow the standard binary comparison operators
==, ! =,<,>,<= and >=. We allow numeric operands as well as
three keyword operands: outputqueue, empty, and full. Thus,
to delay forwarding an incoming packet while the output queue is
non-empty, the following expression could be used:

forward next-hop when outputqueue == empty

Finally, a definite loop statement repeat is provided as part of
the action primitive set. The repeat action takes two parameters:
an iterator variable and the number of iterations to perform. The
iterator variable takes on the values 0..n−1, where n is the number
of iterations specified. The set of actions to be repeated is delim-
ited by the repeat and subsequent endrepeat keywords. Thus,
the following statements cause three probes to be emitted back-to-
back. The payload for each packet is a sequence number (0..2) as a
four-byte integer.

repeat i in 3:
probe 10.0.1.1 udp dport 3000 payload {i/4B}

endrepeat

3.2.3 Execution Model

When and how are the actions executed? While the answer to
this question likely depends on the router hardware architecture,
our initial design and implementation is conceived in the context
of a shared memory router with a central processor. We believe
that our system will be able to be naturally extended to distributed
router architectures.

For each event that is fired, a virtual thread of execution is spawned
to process the sequence of actions. The set of action primitives has
been designed for safety with respect to memory and CPU resource
usage. It precludes arbitrary-length or infinite loops and does not
allow access to arbitrary memory locations. The goal is that the
resource demand (CPU and memory) of any action set be statically
analyzable (i.e., offline); this allows the use of an admission con-
trol procedure for accepting requests to install measurement code.
A small set of numeric variables are preserved across invocations
of virtual threads, similar to the MAD system [14]. These vari-
ables can enable a user to maintain sequence numbers and other
information over time. To manipulate these variables, a basic set of
arithmetic instructions are provided, as well as instructions for gen-
erating random numbers, again similar to the instructions available
in [14].

3.2.4 System Coordination

Although not explicitly part of our design, an external host is
necessary for requesting installation or removal of events and ac-
tions in different routers of interest. It is this host that would trans-
late a high-level measurement plan into primitives to be set up at
routers in the network. For example, a general plan such as “mea-
sure router processing delays at each hop along a path” might be
translated into a sequence of primitives to be installed in the routers
of interest. It is also this host that completes the control loop for
any reactive-type probe algorithms, e.g., a stream-based available
bandwidth measurement methodology in which the probing may
change over time based on results of past probes. An external host
is also necessary for retrieving stored probes and for any additional
processing of the probes. (Below, we describe how this host would
gain access to the system and present authentication and authoriza-
tion information to a router.) At this time, we do not specify the
control protocol(s) by which an external host interacts with a router
or with the authentication system described below.

3.3 Resource Requirements
Given the simplicity of the primitives and restrictions placed on

the number of variables that persist across executions of action se-
quences, we expect the computational and memory overheads of
our system to be small. Existing access control list mechanisms
can be extended to support packet arrival events, and there are also
timers and scheduling mechanisms that can likely be extended to
support timer events.

Some amount of memory will need to be reserved for packets
held due to when clauses; a conservative maximum can be placed
on this amount of memory in order to bound this cost. A control
interface to query and/or flush packets held due to when clauses
would provide the ability to test whether any probes are being held
pending a condition becoming true. Furthermore, we note also that
memory costs related to the store action would likely be far less
than is used for current passive flow measurement capabilities in
routers.

Depending on traffic conditions, there may be situations in which
packets waiting on a when condition consume memory resources
for an extended period of time. In such situations, there may not be
sufficient storage for an arriving packet that requires when process-

16

ing. How should these conditions be handled? Generally speak-
ing, the measurement activity responsible for the probes should be
quickly notified, and may need to be paused or stopped altogether
while the situation is resolved. We have not yet defined the mech-
anisms for performing such error notification and system-wide ex-
ception processing.

Aggregate resource costs at a router for all users of the measure-
ment primitives can be bounded through accounting mechanisms
and policies that allow only a certain number of users to access
the measurement primitives (and which primitives) at a given time.
Below, we describe how such policies could be implemented.

3.4 Illustrative Examples
We now describe a set of examples that illustrate the powerful

potential of our set of measurement primitives.
Existing standard end-to-end probing algorithms. We first

note that well-known existing probing mechanisms are easily im-
plemented using our primitives. For example, the following timer-
based action sequence could be used to implement the Badabing
packet loss probing algorithm [15]:

set seq 0
set slot 0
nextprobe:

repeat i in 3:
probe 10.0.1.1 udp dport 3000 \
payload {slot/4B seq/4B i/4B}

endrepeat
; if this is the first probe of a pair
if slot % 2 == 0:

; send next probe at next time slot
set next 1

else:
; otherwise, wait for some
; geometrically distributed number of
; time slots before sending next
set next geom-rv

slot += next
seq += 1
; wait ’next’ discrete time intervals
; before sending next probe
wait = next * 0.005
after wait nextprobe

In the above code, the slot variable holds the discrete time slot
at which a probe triple is sent. If a slot is even, the next probe
is sent at the next time slot, otherwise it is sent at a geometrically
distributed random interval. The duration of each time slot is 5
milliseconds.

Minimal-impact record route. A record route implementation
that applies both input and output interface addresses to a probe
packet is given below:

input-timestamp
input-address
output-address
forward next-hop when outputqueue == 0
output-timestamp

This action sequence could be executed given a matching incom-
ing packet. Perhaps most importantly, this record-route implemen-
tation is designed not to cause any packet loss at the output queue
through use of the when clause. Such an implementation minimizes
impact on network links and customer traffic, though clearly there
is some impact on the routers as they must process the measurement
primitives.

Router-internal delay measurement. Through simple modifi-
cation of the above action sequence, delay measurement internal to
a router can be captured. As shown below, if the when clause is

removed, we see that two timestamps are added to a probe packet,
one on input, and the other at output. The difference in these times-
tamps could give a measure close to the amount of time a packet
takes to pass through a router. Again, this action sequence could be
triggered through the arrival of a particular matching packet.

input-timestamp
input-address
output-address
output-timestamp

“Drive-by” passive measurement collection. Using the actions
that enable collection of MIB data, a probe packet could collect a
set of related data as it traverses a path through the network. For
example, routers along a path might be configured to append the
input and output byte counters to a probe. By sending multiple
probes over time, an estimate of spare capacity along a path could
be collected. To accomplish this, the following code segment might
be installed in the routers of interest:

; include interface time stamp
; and octet count on ingress
input-timestamp
input-mib 1.3.6.1.2.1.31.1.1.1.6.

; include interface time stamp
; and octet count on egress
output-timestamp
output-mib 1.3.6.1.2.1.31.1.1.1.6.

Moreover, consider a scenario in which not only are specific
MIB data appended to a probe, but the probe forwarding path is
constructed (using the forward action) such that the probe visits
all routers in a network, or routers within a particular region of a
network. Such a capability would enable an efficient collection of
passive measurement data.

The capability to collect drive-by passive data opens up the pos-
sibility to collect this information in conjunction with active prob-
ing as a way to compare and calibrate active and passive measure-
ments. For example, the final packet of a probe stream designed
for measurement of available bandwidth could be augmented with
sufficient information to compute a passive measure of available
bandwidth. At present, such calibration measurements typically
require external high-precision passive measurement equipment.

4. SECURITY AND ACCESS CONTROL
In order to gain access to a router for adding or removing an

event trigger and associated actions, a user must obtain a ticket from
a central authentication and authorization system. The ticket has a
limited lifetime and is encrypted using a secret key that is shared
between the auth system and given router, i.e., the user cannot mod-
ify the ticket.

The ticket includes timestamp information (i.e., when the ticket
expires), a unique user identifier, the source address for the user,
a unique identifier for the router, a static capability set and a dy-

namic capability set. The unique user identifier can be used in the
probe packet to allow demultiplexing of probe packets on arrival
at a router and to match an incoming probe to its associated event
actions. The static capability identifies the action and event primi-
tives that the user is allowed access to for the router. For example,
a user might not be given access to actions that enable gathering
of MIB data, or to specify an address other than next-hop for the
forward action. The dynamic capability contains information re-
garding quotas and other limits that must be monitored over time
for adherence. For example, a user might be limited to some maxi-
mum bandwidth for probe traffic. Due to space constraints, we omit

17

discussion of issues related to capability revocation in the case of,
e.g., exceeding a bandwidth limit.

A user must obtain separate tickets for each router in which the
user wishes to install events and actions. Because a ticket contains
the user’s source address and a router identifier, it cannot be trans-
ferred to another user or used with a different router. The central
broker must keep track of a user’s currently active tickets in order
to possibly issue any capability revocations or to deny issuance of
a ticket in the case that a user already has exceeded some threshold
of outstanding tickets. Each router with events and actions installed
for a given user must maintain accounting information such as pro-
cessing and memory usage in order to monitor dynamic capabilities
and also to monitor system-wide usage of the measurement prim-
itives. If, in processing user actions, a dynamic capability thresh-
old is exceeded, the router informs the central broker which issues
ticket revocations to any affected routers. Events and actions for
the user are then temporarily disabled. User access may be auto-
matically re-enabled when the ticket expires, or upon manual inter-
vention by an administrator. Note that each router must maintain
a ticket revocation list so that any future attempts to use the ticket
(within its lifetime) are disallowed.

Fine-grained capabilities allow the possibility to create, for ex-
ample, policies that allow a friendly peer ISP limited access for
collecting certain types of measurements in order to troubleshoot
problems. VPN customers could also be granted limited access in
order to measure performance across a provider’s network and to
verify compliance with SLAs. Events and actions could be installed
for anonymous users in order to enable some types of measure-
ments by outsiders. For example, non-authenticated users could
be given limited access for collecting routing information. If too
many probes were observed, the dynamic capability processing
could cause the access to be temporarily disabled.

5. SUMMARY AND CONCLUSIONS
In this position paper, we argue for programmable active mea-

surement capability in routers. Routers are in a distinctive posi-
tion for supporting accurate and flexible active measurement, and
router-based measurement programmability could enable new and
fundamentally transformative ways of understanding network per-
formance and behavior. Our framework for router-based programmable
active measurement consists of two types of primitives: events and
actions. We describe each of our proposed primitives and exam-
ined the potential of our framework through a set of measurement
scenarios.

Our ongoing work is to develop an implementation of our frame-
work in the Click modular router. As we gain experience with using
our proposed primitives, we expect to refine them and to develop a
better understanding of their potential memory and computational
cost. We also expect to understand better the range of measurement
methodologies enabled through our framework.

Acknowledgments

We thank the anonymous reviewers for their constructive comments.
This work was supported in part by National Science Foundation
(NSF) grants CNS-0347252, CNS-0627102, and CCR-0325701.
Any opinions, findings, conclusions or other recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the view of the NSF.

6. REFERENCES
[1] Measurement lab.

http://www.measurementlab.net/.

[2] Cisco IOS IP SLAs.
http://www.cisco.com/go/ipsla, 2009.

[3] JUNOS Real-time Performance Monitoring Services
Overview.
http://www.juniper.net/techpubs/software/junos/junos74/-
swconfig74-services/html/rpm-overview.html,
2009.

[4] F. Khan, L. Yuan, C.-N. Chuah, and S. Ghiasi. A
programmable architecture for scalable and real-time
network traffic measurements. In ANCS ’08: Proceedings of

the 4th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, November 2008.

[5] L. Kleinrock and W. Naylor. On the measured behavior of
the ARPA network. In AFIPS Conference Proceedings,

National Computer Conference, volume 43, May 1974.

[6] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Transactions on

Computer Systems, 18(3), August 2000.

[7] M. Luckie and T. McGregor. Path diagnosis with IPMP. In
NetT ’04: Proceedings of the ACM SIGCOMM workshop on

Network troubleshooting, 2004.

[8] M. Luckie, T. McGregor, and H.-W. Braun. Towards
improving packet probing techniques. In IMW ’01:

Proceedings of the 1st ACM SIGCOMM Workshop on

Internet Measurement, 2001.

[9] S. Machiraju and D. Veitch. A measurement-friendly
network (MFN) architecture. In INM ’06: Proceedings of the

2006 SIGCOMM workshop on Internet network

management, 2006.

[10] K. McCloghrie and F. Kastenholz. The Interfaces Group
MIB. IETF RFC 2863, 2000.

[11] D. Pezaros, M. Sifalakis, M. Schmid, and D. Hutchison.
Dynamic link measurements using active components. In
Sixth International Working Conference on Active

Networking (IWAN’04), October 2004.

[12] R. Ramaswamy, N. Weng, and T. Wolf. A network
processor-based passive measurement node. In PAM

Workshop, 2005.

[13] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Transactions on Computer

Systems, 2(4), November 1984.

[14] J. Sommers and P. Barford. An active measurement system
for shared environments. In Proceedings of ACM Internet

Measurement Conference, October 2007.

[15] J. Sommers, P. Barford, N. Duffield, and A. Ron. Improving
Accuracy in End-to-end Packet Loss Measurement. In
Proceedings of ACM SIGCOMM, August 2005.

[16] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A
Public Internet Measurement Facility . In Proceedings of

USENIX Symposium on Internet Technologies and Systems

(USITS), 2003.

[17] L. Yuan, C.-N. Chuah, and P. Mohapatra. ProgME: towards
programmable network measurement. In ACM SIGCOMM,
August 2007.

18

http://www.measurementlab.net/
http://www.cisco.com/go/ipsla

	Introduction
	Related Work
	System Design
	Objectives
	The Primitives
	Events
	Actions
	Execution Model
	System Coordination

	Resource Requirements
	Illustrative Examples

	Security and Access Control
	Summary and Conclusions
	References

