
A Programmable, Generic Forwarding Element Approach
for Dynamic Network Functionality

Ran Giladi
Department of Communication Systems

Engineering, Ben Gurion University
Beer-Sheva, Israel
ran@bgu.ac.il

Niv Yemini
Department of Communication Systems

Engineering, Ben Gurion University
Beer-Sheva, Israel
nivye@bgu.ac.il

ABSTRACT

Communication networks are growing exponentially, and new
services and applications are being introduced unceasingly.
To meet the demands of these services and applications,
current network systems have to be modified, replaced or
supplemented. Various technologies, such as reconfigurable
devices or active networks, have attempted to address this
problem. In this paper, we introduce a programmable, generic
forwarding element (GFE), which can be used as a plat-
form for a flexible and reconfigurable network system. This
platform and the resulting network system enable on-the-fly
definition of adaptive and dynamic network functionalities,
so that the demands of new services and applications can
be met. Additionally, specific service instances or traffic
flows can be handled by this platform on a temporary and
locality basis, according to traffic patterns, application de-
mands, and provisioning decisions. The proposed GFE com-
plies with today’s standards and can easily be adopted for
future standards. A network processor is used to implement
this platform, so that frame processing is achieved at wire
speed, even though each frame is analyzed and processed by
a meta-program. An XML-based definition of the forward-
ing element is used to describe frame processing, based on
the frame contents and ingress port, and on various system
and network parameters. 1

Categories and Subject Descriptors

B.4.1 [INPUT/OUTPUT AND DATA COMMUNI-
CATIONS]: Data Communications Devices;
C.2.1 [COMPUTER-COMMUNICATION NETWO-
RKS]: Network Architecture and Design.

General Terms

Design

1The research was funded by the European Community’s
Seventh Framework Program [FP7/2007-2013] under grant
agreement number 215462.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$10.00.

Keywords

Network Systems, Programmable netwroks, Forwarding el-
ement

1. INTRODUCTION
Communication networks are growing exponentially, both

in aggregate bandwidth and in number of users. (IP traffic
has doubled approximately every 2 years and will proba-
bly surpass 16.8 Tbps by 2012 [1]. As of 2008, the Internet
serves more than 1.4 billion users [2].) Researchers are there-
fore working intensively on new network architectures, the
Internet of the future, and novel technologies for new ser-
vices. New network applications, services and technologies
are materializing at an ever-increasing rate and require dif-
ferent network behaviors and functionalities. Current net-
works (Internet, Ethernet, mobile networks, etc.) limit po-
tential applications and services, since network systems – the
building blocks of the networks (e.g., routers and bridges)
– are designed to support specific, predefined sets of opera-
tions and standards, with predetermined functionalities. To
support new services, a long process of standardization –
followed by modifications of network systems – is required.
It is impossible to shorten this process, since it involves both
integration of many network entities (some of which do not
even exist, and others are yet to be programmed) and mas-
sive investment in network equipment. Such a massive un-
dertaking can obviously not be accomplished on the fly.

A flexible and dynamic network system could relieve the
problem described above and provide an answer to the re-
quired redefinition of network systems and programming of
network functionality. Various approaches have been pro-
posed for flexible and programmable network systems. Among
them, the Click Project [8] proposed a software architecture
for building flexible and configurable routers and can be con-
sidered as a data path programming and virtualization tool
on PC platforms [7]. Once programmed, however, the net-
work system cannot change its functionality. Another ap-
proach – active networks – which was suggested as early as
the mid-1990s [14], enables active, programmable network
behavior by injecting code into the network. Various net-
work elements then execute the injected code capsules [3]
for per-frame processing and other computations for vari-
ous specific tasks. Active networks are based on the use of
general-purpose processors for executing the injected code
and implementing the software re-configuration algorithms.
Active networks are focused on programming arbitrary and
complex tasks of upper layer functions, and the forwarding

19

elements (FE) of the active network systems are not changed
or redefined.

Separation of the management or control plane from the
forwarding plane (or data-path) functionalities has been used
as a basis for various programmable network systems. Such
an approach was presented in the NEon project [11]: Enti-
ties in the control plane configure pre-defined tasks of the
network system (e.g., shaper or forwarder) by policy rules
and actions that define the operation of various network ser-
vices of a NEon system on a per-frame basis. 4D [5] defined
a network architecture with four planes: decision, dissemi-
nation, discovery and data: the data plane (e.g., switches
and routers) forwards packets according to what the de-
cision plane dictates and disseminates. Ethane [4], Open-
Flow [10] and Forwarding and Control Element Separation
(ForCES)[15] also separate management and control from
forwarding functionalities and allow managers to remotely
define network-wide policy in a central controller. Ethane
and OpenFlow represent a popular approach that simplifies
the data path and lifts out complexity into the control plane.
As a result, however, a performance issue may arise, since
complex forwarding functions have to be carried out in a
general-purpose processor, rather than in a network proces-
sor that can nowadays cope with 10 to 100 G-bps wire speed
processing.

Software [6] and reconfigurable [13] routers have also been
suggested to define low-level behavior of a network node.
These suggestions are limited to the configuration of routing
tasks and require pre-installation of software on the network
node for supporting new applications. However, such tasks
cannot be done on the fly and require knowledge of the un-
derlying programmable components. A more general recon-
figurable network hardware platform (not only for routing)
has been suggested [12] to reconfigure specific network tasks
by using a field programmable port extender (FPX) [9]. The
FPX is an FPGA designed to support different network ap-
plications, such as IP routing, per flow queuing, and flow
control algorithms. The FPX is, however, limited to spe-
cific tasks (specifically, configuration of network flows) and
should be pre-programmed, i.e., it is not dynamic solution.

Most of the research described above has focused on pro-
gramming and reconfiguration of specific, pre-defined net-
work services [6, 13, 12] or sets of rules and actions [11, 10]
rather than on the complete scope of frame flow through a
network system. In addition, most of these approaches re-
quire knowledge of the internal implementation of the FE
and are dependent on it.

In this paper, we address the problems described above
by introducing a heterogeneous, multifunctional, generic for-
warding element (GFE) that serves as a platform for a flexi-
ble network system. This platform inherently supports new
and on-demand network services, various network architec-
tures, and multiple management protocols. This platform’s
functionality is fully programmable, on the fly, using an
XML-based API. This API is used to retrieve information
from the network system and to upload data for its meta-
program. The uploaded XML data contains the relevant
information that is used by the network systems to: de-
fine forwarding behavior and decisions; adapt classification,
forwarding and processing rules; execute modifications in
frames’ contents and format; encapsulate and decapsulate
frames; obey quality of service (QoS) criteria; and shape,
learn, and filter traffic flows, frames and fields, and more.

Per port characterization can be applied using these XML
definitions, and a default characterization at bootstrap can
be used.

The GFE is based on the ForCES framework, which is cur-
rently being standardized by an IETF working group [15].
The network system’s functionalities are logically separated
into: a management plane that configures and manages the
network system; a control plane, including routing and sig-
naling; and a forwarding plane, where per-packet activities,
such as forwarding and queuing, occur. We use ForCES prin-
ciples and mechanisms, albeit in the opposite way to their
conventional means of application: in ForCES, a forwarding
element model describes the existing FE [16], so that the
control plane will know how to communicate with and con-
trol the FE, whereas in our GFE architecture, we use the
FE model to define how the FE will work and generate its
functionality.

ForCES was developed in parallel to network processors
with the aim to utilize the rich forwarding capabilities that
network processors offer. Although the GFE can be based
on a variety of FE models and communication protocols,
we find ForCES simple and adequate for our requirements.
In addition, it allows designing of a generic definition of
forwarding functionalities.

The proposed GFE is not limited to specific services, and,
as mentioned above, users (e.g., vendors, operators, admin-
istrators) can use ForCES and XML API to define and pro-
gram the GFE functionality. The XML data and meta-data
are translated to internal structures and mechanisms, which
are used by a meta-program to define the GFE behavior. No
code writing or machine specific programming language (or
programming at all) is required to program the GFE, and
the GFE is configured in an abstract manner. The GFE thus
can be used for building a generic forwarding plane that can:
change the classification rules of packets, change forward-
ing behavior, modify frames’ contents and format, support
multicast and OAM functions, and change queuing policies,
shaping mechanisms, learning and filtering algorithms, and
encapsulation and decapsulation rules.

The GFE supports a pre-defined library of many functions
that are used for an on-the-fly definition of forwarding func-
tionalities (as described above, e.g., mapping, classifying, or
traffic management). These functions constitute the basic
building blocks for the required forwarding plane’s function-
alities; additional functions can be written, either by extend-
ing the library or by re-directing the frame that requires a
specific forwarding functionality to a service agent that re-
sides in the FE or the control element (CE).

The GFE architecture is described in the next section, fol-
lowed by a section that defines how to program the GFE.
The fourth section describes the GFE prototype and its per-
formance, and the fifth section concludes the paper.

2. ARCHITECTURE
The proposed GFE is based on concepts of the ForCES

framework, which is used to separate control and forward-
ing entities into different planes and to define uniform inter-
faces and protocols for exchanging information between the
planes. Specifically, ForCES defines two types of elements:

• The FE is responsible for the actual, per-packet pro-
cessing functionality, which includes classifying, me-
tering, shaping, queuing, and tasks alike. The FE is

20

typically implemented by specific network hardware
such as FPGAs, ASICs, or network processors;

• The CE controls FE functionality in a master/slave
mode, using routing and signaling protocols (e.g., RSVP,
BGP) and is typically implemented by general purpose
CPUs.

ForCES also defines an FE model [16] that contains Logical
Function Blocks (LFBs), which are the basic building blocks
of the FE and are connected in the FE by using a directed
graph. Each LFB defines a set of packet processing opera-
tions; when a packet flows through the FE, it is served by
one or more LFB instances.

The GFE takes the ForCES model one step forward. Orig-
inally, specific functionalities were assumed by the FE (re-
garding supported frames, protocols, and other network ser-
vices) and were described by the FE’s LFBs. The details
of implementations of data-paths inside an FE (i.e., LFB
topology, and the operational capabilities and attributes of
the LFBs) are communicated to the CE at the association
stage of the ForCES protocol. The CE then uses the FE-
supported features (according to the LFBs) to configure and
define the FE operation. The GFE, on the other hand, has
no specific functionality upon bootstrap but to accept ”in-
structions” from the CE for defining its functionalities. In
other words, the GFE’s functionality is programmed from
scratch by the CE; thus the CE decides how the GFE should
behave. A meta-program in the GFE is used to implement
the forwarding functionalities and frame processing, accord-
ing to XML-based LFBs that are received from the CE, using
API and the ForCES protocol.

The flexibility level of the GFE regarding radically new
services depends on the ability to define the new service
using LFBs and on the extent to which the ForCES/XML
description of LFBs is sufficient. As noted at the end of
the Introduction, pre-defined LFBs can be used for an on-
the-fly definition of the required service, or, if the existing
LFBs are not sufficient, a new LFB or service agent must be
programmed.

2.1 GFE modules
The GFE contains two groups of modules (see Figure 1):

management modules and run-time modules. The manage-
ment modules interact with the CE, receive the LFB infor-
mation from the CE, analyze the information, and create
internal data structures that define and control the way the
run-time modules process each of the frames. The three
main GFE modules are the ForCES agent, the XML parser,
and the Low Level Rule Enforcer. The ForCES agent and the
XML parser are management modules, and the Low Level
Rule Enforcer is a run-time module.

The ForCES agent communicates with the CE and im-
plements the ForCES protocol, which governs FE to CE
communications. The XML Parser parses XML informa-
tion that programs different LFB functionalities and trans-
lates this information into relevant LFB specific data struc-
tures that reside in the GFE. The Low Level Rule Enforcer
executes the GFE meta-program and implements the vari-
ous LFBs that were defined by the CE and communicated
through the ForCES agent and the XML parser. As noted
above, these LFBs are the building blocks of the GFE; some
of these LFB classes are common to all frames (i.e., each
frame passes through at least one instance of these LFB

Figure 1: The GFE Architecture

classes). The common LFB classes include the LFB Classi-
fier, which defines how to identify a frame and that frame’s
classification rules, and the LFB Forwarder, which includes
the required information for defining a forwarding decision.
The LFB Forwarder is also used as a reference to additional
LFBs, such as the LFB Mapper, and the LFB Auto-Learner.

The ability to map any LFB to the Low Level Rule En-
forcer is not trivial and depends both on the complexity level
of the LFB, and on hardware limitations (e.g., memory or
search engines).

An Adaptation Layer module is used for abstracting the
hardware implementation of the Low-Level Rule Enforcer to
the management modules, as detailed in the next subsection.

Two other module types are included in the GFE to sup-
port additional services. Some LFBs can divert specific in-
band traffic frames, if programmed to do so, to the Dis-
patcher module. The Dispatcher then sends these frames to
various Service Agents, according to the frame type. These
service agents are implemented either in the FE or the CE,
depending on the service functionalities. One obvious ser-
vice agent in the FE is the ForCES agent to which the
dispatcher sends ForCES frames that arrive from the GFE
ingress ports as in-band traffic. Another example of such
a service agent in the FE is an OAM processor, which has
to be implemented in the forwarding plane. The frame is
re-directed to the CE for services that are implemented in
the control plane. In addition, a Frame Generator is an-
other module that can be used to generate frames in the
forwarding element when required (e.g., ARP requests).

2.2 Implementation
The management modules can be implemented by general

purpose processors, using high-level language, since the GFE
programming procedure that is performed by these manage-
ment modules can tolerate some latency. On the other hand,
per-frame processing must be carried out at wire speed. The
run-time module (i.e., the Low Level Rule Enforcer) must
thus be implemented by embedded programmable network
hardware (e.g., ASIC or network processor). The run-time
modules have to be written in the most efficient way (i.e., in
low-level machine language), when they use the data struc-
tures (which were created by the management modules) to
execute the required procedure on each of the frames, ac-
cording to the frame’s header and payload information.

The Low Level Rule Enforcer is therefore hardware depen-
dent but can be implemented by various hardware platforms;

21

<LFBs>

<LFB_Classifier>

<synopsis> LFB used to classify frames. It include all frame definitions <�synopsis>

<frameDefs>

<frame>

<frameTypeId>0x01<�frameTypeId>

<name>802.1Q<�name>

<synopsis> Ethernet frame with tag <�synopsis>

<fields>

<field type=øforwarding-keyø length=ø48" name=øDest addressø�>
<field type=øregularø length=ø48" name=øSrc addressø�>
<field type=øidentifier-keyø length=ø16" name=øEther Type>0x8100<field�>
<field type=øQoS-keyø length=3 name=øpriorityø�>
<field type=øregularø length=1 name=øformat indicatorø�>
<field type=øforwarding-keyø length =ø12" name=øVIDø�>
<�fields>

<�frame>

<frame>

<frameTypeId>0x02<�frameTypeId>

<name>foobar<�name>

<synopsis> Sample frame <�synopsis>

<fields>

<field type=øidentifier-and-forwarding-keyø length=ø16" name=øSample fieldø�>
<�fields>

<�frame>

<�frameDefs>

<�LFB_Classifier>

<�LFBs>

Figure 2: LFB Classifier

it may differ from one GFE implementation to another. The
most flexible hardware, which can still meet performance de-
mands, is a network processor. To cope with various hard-
ware platforms, the Adaptation Layer abstracts the hard-
ware and provides a separation between the high-level func-
tionalities and the low-level implementation of the GFE. In
other words, the adaptation layer interfaces and handles the
interactions between the specific hardware implementation
and the management modules. When a specific hardware
implementation is replaced by another embedded hardware,
the adaptation layer should be modified.

3. GFECONFIGURATIONANDPROGRAM-

MING
Every frame flows though two parts of the run-time mod-

ules of the Low Level Rule Enforcer. The first part is the
Classification Phase, which determines the type of frame and
how to make a forwarding decision. A per-port classification
can be defined, so that each frame can flow through a port-
specific classification, based on its ingress port. Any frame
that cannot be classified (not recognized or not supported)
is dropped. The classification phase sends a message to the
next part of the Low Level Rule Enforcer, the Forwarding
Phase, which uses the message to construct keys in internal
tables that define its forwarding behavior. The two logical
independent parts enable the reclassification of frames for
additional processing and support multiple instances of the
same original frame to flow through the forwarding phase
(enabling multicasting).

Each of the Low Level Rule Enforcer phases is constructed
from LFBs (the basic building blocks of the GFE’s run-time
modules). The LFBs are defined by the CE and communi-
cated to the GFE using an XML-based definition as part of
the ForCES protocol payload. Therefore, to configure and
program the GFE, we need to take a closer look at how the
CE defines and sends LFBs.

3.1 LFB Classifier
This is the first LFB, which is mandatory in the classifica-

tion phase of the Low Level Rule Enforcer. The CE defines
first, with this LFB, the various frames that should be han-
dled by the FE. The frames’ fields are described by tags,
which include a name and length (bit wise). Some fields can
be defined as special tags that represent keys in the frame.
The keys are:

• Identifier key (mandatory for each frame): Each frame
is assumed to contain a unique identifier that distin-
guishes it from other frames (e.g., Ethernet type, pro-
tocol type);

• Forwarding key (optional): A field in the frame that is
used for forwarding decisions (e.g., destination address,
VLAN tag);

• QoS key (optional): A field in the frame which is used
to represent the QoS level;

• Metering key (optional): A field in the frame that is
used for metering decisions.

There is no limit on the header length or the number, lengths
and location (offset) in the frame of the keys. After defining
the frames, the CE can then use the ForCES protocol to
associate the frames with several GFE attributes (such as
ingress ports that support specific frame types, token bucket
rate, or shaping and metering policies). An example of a
frame structure definition is illustrated in Figure 2.

3.2 LFB Forwarder
This is the first and mandatory LFB in the forwarding

phase of the Low Level Rule Enforcer. The LFB Forwarder
defines a unique forwarding behavior for a frame instance.
The forwarder can be considered as a table containing entries
of a key and results. The key is constructed from several
parameters:

• The frame type (identifier);

• The ingress or virtual port, which enables different be-
haviors that depend on the ingress port, even for the
same frame types (virtual ports are used for loopback
purposes, as described below);

• The forwarding key values, which were defined in the
LFB Classifier for forwarding decisions; not all for-
warding keys must be used, and if a forwarding key
is not used, it will be ignored in the GFE (enabling
wildcard forwarding keys, such as any VLAN Tag).

Since the forwarding key usage is optional, the forwarding
behavior can be associated solely with a frame type (iden-
tifier) or a port and a frame type combination. A default
forwarding behavior, which is the result of the forwarding
table, can also be defined if no match occurs. The result
contains the following information:

• Reference to additional LFBs – referred by a unique
identifier; additional LFBs are described by an XML-
based definition;

• Outgoing egress ports, virtual ports, or the dispatcher
(for frames designated to the GFE itself); if additional
LFBs are called, these ports are used after the called
LFBs are executed;

22

• QoS (for a specific frame type);

• Priority list of operations that replace fields’ contents
in the frame;

• Multicast or unicast treatment.

Virtual ports are used for loopback, i.e., to send frames for
reclassification and forwarding after changes are made in the
frame format or contents, thereby enabling additional oper-
ations for the modified frames. The virtual port can then be
used as a key to the forwarder. Multicasting is supported
simply by defining multiple results for one key. Each result
defines a different forwarding behavior. In addition to send-
ing a frame multiple times to several ports, this mechanism
also enables the forwarding of the copied frame in several
processing versions, i.e., using different format or field con-
tents for some ports. The operations that replace fields in
the frame can be immediate values (i.e., constants), either
copied from other fields or computed by arithmetic/logic
operations (e.g., incrementing the TTL value). Figure 3 de-
scribes the LFB Classifier XML.

3.3 LFB Mapper
This LFB is an example of an optional LFB in the for-

warding phase. Changes in the frame format are performed
by the LFB mapper, using a simple API for defining the
required changes. The LFB mapper is required when an
ingress frame format has to be converted to a different frame
format, encapsulated or decapsulated. Each mapping has a
unique identifier, and the LFB mapper maps two frame for-
mats, source and target, and defines the association between
fields in the source frame to fields in the target frame.

4. GFE IMPLEMENTATIONANDRESULTS
Flexibility is, almost always, achieved at the expense of

performance. In a system that deals with ultra-high for-
warding speed and extreme packet processing performance,
it is important to evaluate the generic and flexible offering
in performance measure. To this end, a prototype was built,
programmed, and tested in various scenarios. This section
provides initial results for the performance-flexibility trade-
off.

4.1 Prototype
The GFE was implemented, using a network processor,

on development platforms that contain EZchip’s network
processors (NP-1 and NP-2). These platforms enable ten
1 Gbps Ethernet ports and 10-Gbps full duplex packet pro-
cessing. EZchip’s NP is a highly integrated network proces-
sor that is based on pipeline architecture for packet process-
ing and therefore fits the logical phases of the run-time mod-
ules, as presented in section 3. The development platform
also contains a general-purpose CPU that allows high-level
programming (e.g., C++) and functionalities that are inte-
grated with the network processor via the EZdriver. We
built a prototype that contains the basic module of the
GFE, i.e., the Low Level Rule Enforcer meta-program (pro-
grammed in micro-code), the adaptation layer (using the
EZdriver), the ForCES agent and other agents (using C++).
We also implemented a simple CE that programs the GFE
using the out-band ForCES protocol (above TCP/IP) and
the basic XML LFBs (classifier, forwarder, and mapper).

<LFBs>

<LFB_Forwarder>

<synopsis> LFB holding the forwarding database <�synopsis>

<entries>

<fdbntry active=øyesø id=ø0x01" frameTypeID=ø0x01" tableID=ø0x07" static=øyesø�>
<incoming_fr>

<key>

<ports>

<portId>0x03<�portId>

<portId>0x09<�portId>

<�ports>

<frameFields>

<frameField name=øDest addressø>0x00AABBCCDDEEFF<�frameField>

<frameField name=øVIDø>0xABC<�frameField>

<�frameFields>

<�key>

<�incoming_frame>

<outgoing_frame>

<isMulticast value=ønoø�>
<results>

<resultId>0x01"<�resultId>

<destPortId>0x02<�destPortId>

<qos>0x05<�qos>

<frameFields>

<frameField name=øSrc addressø>0x001122334455<�frameField>

<�frameFields>

<mappidId>0<�mappidId>

<�results>

<�outgoing_frame>

<�fdb_entry>

<�entries>

<�LFB_Forwarder>

<�LFBs>

Figure 3: LFB Forwarder

4.2 Results
Several bridging algorithms and functionalities were pro-

grammed on the GFE, using two types of network proces-
sors. First, the GFE was programmed to solely support
bridging, and then it was programmed to support multiple
frame formats and various network tasks, including bridging.
In addition, for purposes of comparison, a normal Ethernet
bridge was implemented using the same network processors.
We measured the performance of both bridge implementa-
tions (generic and normal) using the same equipment and
environment. Performance was evaluated in terms of the av-
erage frame latency (i.e., the average frame processing time)
caused by implementation of a bridge. To calculate perfor-
mance, the average traverse time of a frame was measured
in a specific network topology, when frames of various sizes
(from 100 to 1500 bytes) were transmitted into the network,
10,000 frames for each size. Then, by rearranging the net-
work topology and omitting one bridge, we were able to
calculate (by subtraction) the average processing time of a
bridge implementation that is required to bridge a frame in
the various ways described above.

Figures 4 and 5 compare the frame processing time be-
tween a normal Ethernet bridge and the GFE bridging, us-
ing NP-1c and NP-2, respectively. The GFE was tested un-
der two scenarios. In the first scenario, it was programmed
to support more than 40 frame formats and network ser-
vices. In the second, it was programmed to support only
the bridging functionality. The comparison shows that the
GFE requires several additional micro-seconds of overhead
per frame, regardless of the frame length. This fixed over-
head is dependent on the complexity of the required func-
tionality that is executed by the GFE. For plain bridging,
the GFE overhead is less than 50% in most cases, and when
the GFE performs more complicated tasks, this overhead in-
creases (although complicated tasks are compared to simple
bridging).

23

Figure 4: Bridging time - NP-1c

Figure 5: Bridging time - NP2

5. CONCLUSIONS
A GFE can provide a solution to the increasing require-

ments for dynamic, programmable high-speed network sys-
tems, which become essential for concurrent networks and
services. The flexibility is provided by the suggested GFE,
based on the ForCES protocol and the FE model, albeit
from the opposite perspective, i.e., generating the function-
ality rather than using it. The GFE was architected, pro-
grammed, and prototyped, and performance comparisons
were performed for evaluating the trade-offs of this flexi-
bility. The results show that the GFE is quite efficient, and
that the overhead in the case of a simple switch was less
than 50% above the performance of a dedicated, inflexible,
special-purpose switch.

The GFE functionality was examined by an independent
group of researchers, who successfully used a CE platform
to quickly define FEs that support OAM, protections, mul-
ticast and other network functionalities using ForCES and
the XML API.

OpenFlow is a subset of the GFE in terms of forward-
ing functionalities (i.e., classifier and forwarder LFBs in the
GFE can do exactly what the OpenFlow switch [10] does).
Therefore, the GFE can also be used as an enabled Open-
Flow switch [10], by defining classifier and forwarder LFBs
instances and implementing or translating OpenFlow proto-
col.

Acknowledgment

The authors would like to thank Nir Amira, Kfir Damari,
Jenia Feldman and Eliav Menachi for their help with the
designing and programming of the GFE prototype.

6. REFERENCES
[1] Cisco Visual Networking Index - Forecast and

Methodology, 2007-2012.
http://www.cisco.com/en/US/netsol/ns827
/networking solutions sub solution.html

[2] Miniwatts Marketing Group,”World Internet Usage
Statistics News and Population”
http://www.internetworldstats.com/stats.html.

[3] K. Calvert ”Reflections on Network Architecture: an
Active Networking Perspective”, ACM SIGCOMM
Computer Communication Review, 36(2), pp 27-30,
2006.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N.
McKeown, S. Shenker, ”Ethane: Taking Control of the
Enterprise”, ACM SIGCOMM, 2007.

[5] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang, ”A
Clean Slate 4D Approach to Network Control and
Management”, ACM SIGCOMM Computer
Communication Review, Vol. 35, Issue 5, pp. 41-54,
2005.

[6] I. Houidi, W. Louati, D. Zeghlache, ”An extensible
software router data-path for dynamic low-level service
deployment”. Proceedings of the 7th IEEE Workshop
on High Performance Switching and Routing ,
Poznan, Poland, pp. 161-166, 2006.

[7] E. Keller, E. Green, ”Virtualizing the data plane
through source code merging”, ACM SIGCOMM
(PRESTO), 2008.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F.
Kaashoek, ”The Click modular router”, ACM
Transactions on Computer Systems, 18(3), pp.
263-297, 2000.

[9] J. W. Lockwood, N. Naufel, J. S. Turner, D, E.
Taylor, ”Reprogrammable Network Packet Processing
on the Field Programmable Port Extender (FPX)”,
ACM International Symposium on Field
Programmable Gate Arrays, pp. 87-93, 2001.

[10] N. McKeown, T. Anderson, H. Balakrishnan, G.
Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.
Turner, ”OpenFlow: Enabling Innovation in Campus
Networks”, ACM SIGCOMM Computer
Communication Review, Vol. 38, Issue 2, pp. 69-74,
2008.

[11] C. L. Schuba, J. G., M. F. Speer, M. Hefeeda, ”Scaling
Network Services Using Programmable Network
Devices”, Computer, 38(4), pp. 52-60, 2005.

[12] T.S Sproull, J.W. Lockwood, D.E. Taylor, ”Control
and Configuration Software for a Reconfigurable
Networking Hardware Platform”, Proceedings of
Field-Programmable Custom Computing Machines,
pp. 45- 54, 2002.

[13] E. Suet, H. Tse, Y. Kogan, ”Architectural designs for a
scalable reconfigurable IP router”, Journal of Systems
Architecture, Vol. 54, Issue 1-2, pp. 197-223, 2008.

[14] D. L. Tennenhouse, D. L. Wetherall, ”Towards an
Active Network Architecture”, Computer
Communications Review, 26(2), pp. 5-18, 1996.

[15] L.Yang et al., ”Forwarding and Control Element
Separation (ForCES) Framework”, RFC 3746, 2004.

[16] L.Yang et al., ”ForCES Forwarding Element Model”,
Internet Draft, 2005.

24

