Design of a Network Service Processing Platform for Data
Path Customization -

Qiang Wu and Tilman Wolf
Department of Electrical and Computer Engineering
University of Massachusetts
Amherst, MA, USA
{qwu,wolf}@ecs.umass.edu

ABSTRACT

Custom packet processing functionality in routers is one of
the key characteristics of next-generation Internet architec-
tures. Network services have been proposed as an abstrac-
tion to describe, compose, and deploy end-to-end connec-
tions with custom communication features. We present a
novel hardware architecture for high-performance process-
ing of such network services in the data path. The design
provides simple processing units to implement services and
a custom hardware infrastructure to manage packets and
processing context. The design allows for simple software
development, flexible network service allocation, and high
scalability to handle traffic at Gigabit line rates.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internet-
working— Routers; C.1.4 [Processor Architectures]: Par-
allel Architectures

General Terms

Design, Performance

Keywords

Network processor, next-generation Internet, network ser-
vice

1. INTRODUCTION

Recent research in computer networking has focused on
the design of a new Internet architecture [5]. The goal of
defining a new architecture is to overcome the limitations
of the current Internet in accommodating new protocols
and communication paradigms. Unlike the current Internet,
where routers are limited to simple packet forwarding [1],

*This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. CNS-0626690
and CNS-0447873.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PRESTO’09, August 21, 2009, Barcelona, Spain.

Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$10.00.

next-generation architectures feature routers that support
dynamic deployment of novel packet processing functions in
the data path. This processing functionality can be seen as a
network service that implements custom data path features
for each connection [26].

The design of high-performance router systems with flex-
ible network services support is therefore fundamental to
next-generation networks. When using general-purpose pro-
cessors, packet processing functions can be reprogrammed
after deployment, but these systems usually consume too
much resources (e.g. power, space, etc.) when used for
high data rates. For better performance cost ratio, network
processors have been developed utilizing multiple embed-
ded processor cores on a single chip. Typical network pro-
cessors use a variety of memory interfaces, complex inter-
processor communications, and hardware accelerators. To
develop high-performance software for network processors,
an in-depth understanding of the underlying hardware is
necessary. However, researchers and practitioners who de-
sign and develop novel networking functionality are often
not experienced in tuning embedded software for multi-core
systems. This dichotomy has limited the deployment of net-
work processor systems in the existing testbeds for next-
generation Internet research.

To tackle this problem, we present a novel packet pro-
cessing platform that provides a very simple processing ab-
straction to the software developer and yields performance
by hiding more complex operational issues (e.g. packet and
state management) in hardware. In particular, we use our
previously proposed network services as processing abstrac-
tions for this platform. The design goals of our network
service processing platform are:

e Separation of complex I/0O, inter-processor communi-
cation, and state management from packet processing:
Packet processing should be performed on a very sim-
ple processor model. Hardware support should hide
more complex aspects of the system.

e Easy software development: The simplicity of the pro-
cessor model should allow for easy software develop-
ment.

e Scalability to large systems: The use of network ser-
vices as programming abstractions and simple proces-
sor models should allow the scaling of the system ar-
chitecture to support Gigabit data rates.

Guided by these goals, we present a network service pro-
cessing platform that uses a service processor as the basic

processing unit. In this paper, we describe the design and
operation of this system. Specifically, our contributions are

e a design of the service processor unit and the overall
network service processing platform,

e a description of how network service program instruc-
tions and data are managed by hardware to simplify
programming of network services, and

e an estimation of the performance of different system
configurations.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. The service processor design is
presented in Section 3. The design of the entire network ser-
vice processing platform is described in Section 4. Section 5
discusses performance estimates. Section 6 summarizes and
concludes this paper.

2. RELATED WORK

The concept of programmability in the data path has
been introduced in a variety of programmable router de-
signs [14, 18,27]. Programmable routers are conceptually
similar to routers in active networks [23]. The main differ-
ence is that programming of an active router is performed
in-band, whereas programmable routers are programmed
out-of-band. The latter is easier to manage and thus more
practical for deployment in an actual network. The packet
processing systems of programmable routers are typically
implemented using network processors [21,25], with a num-
ber of commercial network processors being available from
Intel, AMCC, EZchip, etc. Programmability in network sys-
tems has also been proposed on the basis of programmable
logic devices [9,22].

Programming abstractions in network processing systems
range from very open environments [7] to very structured en-
vironments, where networking functions are represented as
modules. Such modules have been proposed for Click [12]
and NP-Click [19] as well as for router plugins [3] and hard-
ware plugins [22]. Our network service architecture [6] uses
a similarly structured approach, where services usually im-
plement full network functionalities or protocols, which rep-
resent self-contained network processing and protocol oper-
ations. The concept of network services was first introduced
in [26]. Similar approaches permit composition of protocol
functionality in form of stacks [8,15,24], protocol heaps [2],
and per-flow stacks [4]. The runtime management of net-
work processor resources in environments that permit dy-
namically allocated packet processing functions is discussed
in [13,28,29]. We leverage these results for the manage-
ment of service processor resources on the network service
processing platform.

3. SERVICE PROCESSOR DESIGN

The overall design of our network service processing plat-
form is based on the idea that we want to perform process-
ing at the granularity of a network service. Thus, the service
processor design is tuned to perform the service processing
of a packet. Before describing the details of the service pro-
cessor design, we briefly discuss network services in general.

32

3.1 Network Services

We define a network service as any type of protocol fea-
ture or processing function that occurs within application-
to-application data communication. Examples of network
services include network address translation, multicast, in-
trusion detection system, Qos routing [30], functionalities
such as SSL termination [11] to provide reliability and pri-
vacy, etc. Some network services are confined to a sin-
gle location (e.g., network address translation); others are
used in matching pairs (e.g., reliability, privacy). We envi-
sion that the set of available services is globally coordinated
(e.g., through IETF standards), and the number of avail-
able services is in the order of dozens. When setting up
an end-to-end connection, the communicating parties spec-
ify which services should be instantiated. The ability to re-
quest custom services for each connection provides the neces-
sary flexibility to support new protocols and communication
paradigms. Limiting the number of distinct services keeps
the complexity of the system manageable, while permitting
a nearly unlimited number of service combinations and thus
allowing great flexibility.

A connection’s service requirements are expressed as a
sequence of services and can be passed as a parameter to a
service socket [20]. The control infrastructure in the network
service architecture then places the connection in the net-
work such that service instances are invoked along the path
of the connection. We have solved the distributed routing
problem of finding the least-cost connection and process-
ing setup in prior work [10]. Once instantiated, we assume
routes and service placement remains fixed for the duration
of a connection.

Routers in the network service architecture not only for-
ward traffic, but also perform service processing. When re-
ceiving a packet, the router needs to determine which (if
any) services need to be performed and perform the corre-
sponding processing. Clearly, packets belonging to different
connections may require very different service processing.
Since some services need to maintain processing state to per-
form correctly, a router also needs to manage the per-flow
and per-service processing state. Our work describes how to
implement an efficient network service processing platform
that can perform these functions.

3.2 Program Execution on Service Processor

As discussed above, one of the goals of our design is to
simplify code development for the network service process-
ing platform. Since network services already provide a clean
separation among network processing functionalities, we aim
at designing a processing system that can effectively process
one packet for one service and expanding it to a larger sys-
tem.

To achieve the desired simplicity, we use the logical system
design and memory layout of a service processor shown Fig-
ure 1. The service processor is assumed to be a simple pro-
cessor core (e.g., ARM-based RISC core) with an interface
for reading program instructions and an interface for access
to data memory. (If desired, the system can be designed
as a von Neumann architecture with unified instruction and
data memory. However, code section and data section are
usually isolated in network processing and thus the Harvard
architecture with separate instruction and data memories
shown in Figure 1 can be used.) In the instruction memory,
the code for running a particular service is placed at a fixed,

0x0...0- 0x0...0

packet
network service
program code service flow state
>
processor
local service state
global service state
Oxt...1 . : 0x1...1
instruction data
memory memory

Figure 1: Logical System Design and Memory Lay-
out for Service Processor.

well-known offset (e.g., 0x0). In data memory, the packet,
the flow state, and the local and global service state are also
placed at well-known offsets.

With this logical design, packet processing and code de-
velopment for packet processing becomes straightforward.
In order to access packet data, instructions simply need to
reference data memory based on the (fixed) packet offset.
Similarly, other state information can be accessed. The pro-
gram code is placed in a fixed location in the instruction
memory and thus can be accessed easily by the processor.

Clearly, this simple model cannot be implemented directly
in hardware. Multiple services and packets need to be sup-
ported by an effective and scalable system. While we de-
scribe the implementation for such a system below, it is
important to note that the logical view for any given service
remains that shown in Figure 1. The network service pro-
cessing platform ensures that the right instruction memory
and data memory context is available whenever a service
processor is activated.

3.3 Implementation of Service Processor

To achieve the simple logical perspective in which the ser-
vice processor core operates, we need to provide a supporting
infrastructure to handle physical program and state manage-
ment. The overall design of the service processor is shown
in Figure 2. The processor core is shown in the middle,
instruction memory on the left, and data memories on the
right.

The main difference to the logical view in Figure 1 is that
the instruction memory now contains program code for mul-
tiple services and the data memory contains flow and service
state for multiple services. Using the address shifter com-
ponents (explained in more detail below), it is possible to
select the program code (and flow and service state) that
is accessed by the processor when it operates in its simpli-
fied logical view. This multiplexing feature is one of the key
aspects of our architecture and provides us with the abil-
ity to handle complex program and state management in
hardware.

The address shifter component is responsible for mapping
the processor core’s address space to the memory section
that contains the appropriate data. We discuss this func-
tionality in the context of the instruction memory, but it
also applies to data memory as shown in Figure 2. In our
example, we assume a 16-bit address space used by the pro-
cessor core. Note that this design can also be parameterized
for other memory space sizes. We only present one configu-
ration for illustrative purposes. On the interface between the
service processor core and the instruction memory, the least

33

Service Tag

¥

SRAM
VI
as _ b3
az ‘—}j by
I, i
Ao - - bo

Figure 3: Address Shifter Design.

significant bits (the lower eight bits in the system shown
in Figure 2) are connected directly to the instruction mem-
ory. Thus, the address translation operates in chunks of 256
bytes. The eight most significant bits are sent into an 8-bit
address shifter component. The design of a 4-bit address
shifter is shown in Figure 3. By sending the appropriate
control signals from SRAM, the address shifter has the abil-
ity of either (1) forward an address bit (i.e., outputting b; on
a;) or (2) overwrite an address bit (i.e., outputting a stored
value from SRAM on a;). With these two options, the ser-
vice processor core’s address space can be shifted to another
range in the address space and it can be limited in size (if
less than 64kB are needed). For example, the processor uses
a 10-bit address space, which is stored in physical memory
from 0x0400 to 0x07FF, address bits 0...7 are connected di-
rectly to the memory, address bits 8...9 are forwarded by
the address shifter, address bits 10 is set to 1 by the address
shifter, and all higher address bits are set to 0. Note that
if the overall address space for service programs needs to
exceed 16 bits, additional address lines can be controlled by
the SRAM in Figure 3 (without having a choice of forward-
ing processor address lines since they do not exist beyond
16 bits). The selection of signals sent to the multiplexers
depends on the service tag. The service tag identifies which
service needs to be performed by the processor and thus
selects the service program that is executed.

3.4 PacketI/0

For the above design to work correctly, we also need to
have a mechanism to transfer packets into and out of the
service processor. As shown in Figure 2, there is a dedi-
cated packet memory to which part of the logical processor
data memory is mapped. For efficient operation, we have
designed a novel buffer shown in Figure 4.

The main idea is to have two physical packet buffers avail-
able. While one of them used by the processor to access
packet memory, the other can be used to transfer in the
next packet (after transferring out the previous packet).
Once processing of a packet has been completed (signaled
by PKT_DONE), the buffers are (logically) swapped. The data
1/0 of service processor is controlled by two FIFOs, which
provide data path connections among multiple service pro-

instruction

memory local data
R 3 - A memory
instructi 32
service 1 / - data infout < m—— -
flow 17
service %mlow 0
service 5 8 processoraddri1.0] =) o <ervice 1
- / addr(7..0] 217, 12) g a:'fi;zsrs & -
“3_ address “8_ addr[15..8] A0T[19..18] s | service 5
: ! . s
service 2 shifter PKT DONE| A packet
A ‘ memory
DEC | 1 packet
P | | —(ﬁ: (flow 17)
STATE_EN -4 <12
FLOW_EN ¢ d/—
) g8, ket
ServiceTag[7..0 pac
o701 24’ (flow 9)
FIowTag[23..O]< f
data[31..0] -} 3-2, ' -
addr{19..0] -} 18,'
PKT_IN[31..0} 2
32
PKT_OUT[31..0] -} =/

Figure 2: Service Processor Design.

Data[31..0]

’—J)—»FlowTag[za..O]
z T—»ServiceTag[T.O]

Packet
FIFO

Memory

PKT_IN
[31.0]

PKT_OUT
[31..0]

Packet
Memory | FT | ST

PKT_DONE —» Counter I

Address[9..0]

Figure 4: Packet Buffer Design.

cessor units. This design of a packet buffer can be expanded
in size to contain more than two packets. Such an expan-
sion may be necessary if moving of packets takes significantly
longer than the service processing that is performed.

Each packet also carries meta-information that ensures
that it is processed correctly. This information consists of:

e Service Tag: The service tag identifies which service is
to be performed by a service processor. As mentioned
above, the service tag is used by the address shifter
to determine to where to map the core’s instruction
address space.

e Flow Tag: The flow tag identifies to which flow a
packet belongs. This tag is used to demultiplex to
the correct flow state information.

These tags need to be set correctly before initiating the pro-
cessing of a packet. This step is done by the network service
processing platform as discussed below. Also, if multiple
services are to be performed on a packet, multiple service
tags are necessary.

34

4. NETWORK SERVICE PROCESSING PLAT-

FORM

The overall architecture of the network service processing
platform, which uses a number of parallel service processors,
is illustrated in Figure 5. In the data plane of the system,
packets enter through the 1/O interface and get classified
into flows. Once the flow has been identified, the system
can assign the appropriate service and flow tags to ensure
that the correct set of services is applied the packets. Then,
packets enter the grid of service processors, where each gets
processed as described above. Fach service processor has
access to shared busses for flow state data and service state
data. After completing the processing of the packet, it is
schedule for output on the outgoing interface (or the inter-
face connecting to the router switch fabric).

To ensure correct operation, the service information for
each flow needs to be set up correctly. This is done via the
control plane, where the flow manager and service manage
interface with the network service controller. The network
service controller performs connection setup, routing, and
service placement. Its functionality is described in more
detail in [6].

To achieve scalability in the grid of service processor, we
do not assume a single shared interconnect for packet trans-
mission between service processors. Instead, we arrange
them in a mesh (or possibly multiple parallel pipelines),
which requires each service processor only to support one
(or a few) local point-to-point connections. Note that the
service and flow state bus is still a global interconnect, but
we expect it to be utilized at a much lower rate than the
packet interconnection.

One of the key operational challenges in this system is the
runtime management of resources. In particular, we foresee
the following questions:

‘ Control Interface to Network Service Controller

[

. - Service
Flow Setup Service Setup K:H St
OIS Contfol Plane
Data Plane
Flow State Global Service State
Service State Bys
Flow State Bus
K K K
Packet Service K—) Service K—) Service K—)
. . Processor Processor o] Processor
Classification ' |
A
v K
Service 9 Service —)\ Service K—
Packet Processor Processor 4 Processor
Demux 4
K
Service — Service | Service K&—1)
Processor 4 Processor Y Processor
-
Y
Packet
Scheduler
‘ 1/0 System ‘

}

'

Figure 5: Network Service Processing Platform Design.

How can flows be mapped to traverse a patch through
the grid of service processors while allocating the right
set of services to them? Note that it is possible that
a packet traverses a service processor without being
processed.

How many (and specifically which) service programs
should be installed on any given service processor?

How can resources be reallocated when requirements
change during runtime (e.g., due to an increase of a
flow’s data rate)?

In our prior work on runtime management of network pro-
cessors we have already developed a solution to allocating
processing resources on demand [29]. This experience will
help us in solving the problems specific to the network ser-
vice processing platform.

S. PERFORMANCE

We provide a rough estimate of the performance of dif-
ferent network services processing platform configurations
in Table 1. We assume three configurations with increas-
ing system performance and increasing processing demands.
Configuration I assumes a modest 2x2 processor grid with
low clock rate and Configuration III represents a high-end
system. The cycles per instruction are based on 10ns SRAM
access time with an instruction mix containing 10% mem-
ory operations (no multi-threading). The effectiveness of the
runtime management system to utilize all system resources
decreases as more processors are available. The number of
instructions executed by a service ranges from 500 to 2,000

35

Table 1: Performance Estimates.
Configuration I 1I 111
Serv. proc. grid size 2x2|4x4 8 x 8
Serv. proc. clock rate (MHz) 500 | 1,000 [2,000
Cycles per instruction 1.5 2 3
Runtime effectiveness 95% | 90% 80%
Effective total MIPS 1,267 | 7,200 | 34,133
Service instr. per pkt. 500 | 1,000 [2,000
Packets per second (Mpps) 2.5 7.2 17.1
Data rate (Gbps) 6.1 17.3 41.0

per packet [17]. We assume an average packet size 300 bytes.
Based on the results in Table 1, we can see that even small
configurations of our system can support data rates of sev-
eral Gigabits per second for simple services. High-end con-
figurations can support tens of Gigabits per second with
more complex services.

As ongoing research, we are planning to develop an im-
plementation of the network service processing platform on
the NetFPGA system [16]. Once this prototype exist, we
can evaluate the performance (and chip area requirements)
more carefully and compare them to other network process-
ing systems.

6. SUMMARY AND CONCLUSIONS

We argue the programmable packet processing function-
ality is essential for next-generation networks. To overcome
the complexities of current network processor systems, we
propose a platform that provides custom data-path process-

ing based on network services. We discuss how our design
allows processing context to be managed in hardware to sim-

plify software development.

Our initial performance esti-

mates indicate that the system could support Gigabit per
second link rates.

7.
(1]

(2]

(3]

(5]

(6]

(8]

(10]

(11]

(12]

(13]

[14]

[15]

REFERENCES

BAKER, F. Requirements for IP version 4 routers. RFC
1812, Network Working Group, June 1995.

BRADEN, R., FABER, T., AND HANDLEY, M. From protocol
stack to protocol heap: role-based architecture. SIGCOMM
Computer Communication Review 33, 1 (Jan. 2003), 17-22.
DECASPER, D., DITTIA, Z., PARULKAR, G., AND PLATTNER,
B. Router Plugins - a modular and extensible software
framework for modern high performance integrated services
routers. In Proc. of ACM SIGCOMM 98 (Vancouver, BC,
Sept. 1998), pp. 229-240.

Durra, R., Rouskas, G. N., BALDINE, 1., BRAGG, A., AND
STEVENSON, D. The SILO architecture for services
integration, control, and optimization for the future
internet. In Proc. of IEEE International Conference on
Communications (ICC) (Glasgow, Scotland, June 2007),
pp. 1899-1904.

FELDMANN, A. Internet clean-slate design: what and why?
SIGCOMM Computer Communication Review 37, 3 (July
2007), 59-64.

GANAPATHY, S., AND WOLF, T. Design of a network service
architecture. In Proc. of Sixteenth IEEE International
Conference on Computer Communications and Networks
(ICCCN) (Honolulu, HI, Aug. 2007), pp. 754-759.

GOGLIN, S. D., HOOPER, D., KUMAR, A., AND YAVATKAR,
R. Advanced software framework, tools, and languages for
the IXP family. Intel Technology Journal 7, 4 (Nov. 2003),
64-76.

Gu, X., NAHRSTEDT, K., AND YU, B. SpiderNet: An
integrated peer-to-peer service composition framework. In
Proc. of Thirteenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC)
(Honolulu, HI, June 2004), pp. 110-119.

Habpzic, 1., MArRcus, W. S., AND SMITH, J. M. On-the-fly
programmable hardware for networks. In Proc. of IEEE
Globecom 98 (Syndey, Australia, Nov. 1998).

HuaNG, X., GANAPATHY, S., AND WOLF, T. A scalable
distributed routing protocol for networks with data-path
services. In Proc. of 16th IEEE International Conference
on Network Protocols (ICNP) (Orlando, FL, Oct. 2008).
KHAN, E., EL-KHARASHI, M. W., EHTESHAM RAFIQ, A.,
GEBALI, F., AND ABD-EL-BARR, M. Network processors for
communication security: a review. In Proc. of IEEE Pacific
Rim Conference on Communications, Computers and
Signal Processing 2003. PACRIM. 2003 IEEE Pacific Rim
Conference onCommunications, Computers and signal
Processing (PacRim 2008) (Waikiki, HI, Feb. 2003).
KOHLER, E., MoRrRis, R., CHEN, B., JANNOTTI, J., AND
KaASHOEK, M. F. The Click modular router. ACM
Transactions on Computer Systems 18, 3 (Aug. 2000),
263-297.

Kokku, R., RicHE, T., KUNZE, A., MUDIGONDA, J.,
JAsSON, J., AND VIN, H. A case for run-time adaptation in
packet processing systems. In Proc. of the 2nd Workshop
on Hot Topics in Networks (HOTNETS-1I) (Cambridge,
MA, Nov. 2003).

Kunns, F., DEHART, J., KANTAWALA, A., KELLER, R.,
Lockwoob, J., PAppu, P., RICHARD, D., TAYLOR, D. E.|
PARWATIKAR, J., SPITZNAGEL, E., TURNER, J., AND WONG,
K. Design of a high performance dynamically extensible
router. In Proc. of DARPA Active Networks Conference
and Ezhibition (San Francisco, CA, May 2002).
LAKSHMINARAYANAN, K., STo1cA, 1., AND WEHRLE, K.
Support for service composition in i3. In Proc. of the 12th
Annual ACM International Conference on Multimedia
(New York, NY, Oct. 2004), pp. 108-111.

36

[16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

[26]

27]

(28]

29]

(30]

Lockwoob, J. W., McKeEowN, N., WATsoN, G., GIBB, G.,
HARTKE, P., Naous, J., RAGHURAMAN, R., AND Luo, J.
NetFPGA—-an open platform for gigabit-rate network
switching and routing. In MSE ’07: Proceedings of the 2007
IEEE International Conference on Microelectronic Systems
Education (San Diego, CA, June 2007), pp. 160-161.
Ramaswamy, R., WENG, N.; AND WoLF, T. Analysis of
network processing workloads. In Proc. of IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS) (Austin, TX, Mar. 2005),
pPp. 226-235.

Rur, L., KELLER, R., AND PLATTNER, B. A scalable
high-performance router platform supporting dynamic
service extensibility on network and host processors. In
Proc. of ACS/IEEE International Conference on Pervasive
Services (ICPS’2004) (Beirut, Lebanon, July 2004).

SHAH, N., PLISHKER, W., RAVINDRAN, K., AND KEUTZER,
K. NP-Click: A productive software development approach
for network processors. IEEE Micro 24, 5 (Sept. 2004),
45-54.

SHANBHAG, S., AND WOLF, T. Implementation of
end-to-end abstractions in a network service architecture.
In Proc. of Fourth Conference on emerging Networking
EXperiments and Technologies (CoNEXT) (Madrid, Spain,
Dec. 2008).

SPALINK, T., KARLIN, S., PETERSON, L., AND GOTTLIEB, Y.
Building a robust software-based router using network
processors. In Proc. of the 18th ACM Symposium on
Operating Systems Principles (SOSP) (Banff, AB, Oct.
2001), pp. 216-229.

TAYLOR, D. E.; TURNER, J. S., LOCKWOOD, J. W., AND
HortA, E. L. Dynamic hardware plugins: Exploiting
reconfigurable hardware for high-performance
programmable routers. Computer Networks 38, 3 (Feb.
2002), 295-310.

TENNENHOUSE, D. L., AND WETHERALL, D. J. Towards an
active network architecture. ACM SIGCOMM Computer
Communication Review 26, 2 (Apr. 1996), 5-18.

VELLALA, M., WANG, A., Rouskas, G. N., DurTa, R.,
BALDINE, 1., AND STEVENSON, D. A composition algorithm
for the SILO cross-layer optimization service architecture.
In Proc. of the Advanced Networks and
Telecommunications Systems Conference (ANTS)
(Mumbai, India, Dec. 2007).

WoLFr, T. Challenges and applications for
network-processor-based programmable routers. In Proc. of
IEEE Sarnoff Symposium (Princeton, NJ, Mar. 2006).
WoLr, T. Service-centric end-to-end abstractions in
next-generation networks. In Proc. of Fifteenth IEEE
International Conference on Computer Communications
and Networks (ICCCN) (Arlington, VA, Oct. 2006),

pp. 79-86.

WoLF, T., AND TURNER, J. S. Design issues for high
performance active routers. In Proc. of the International
Zurich Seminar on Broadband Communications (Zurich,
Switzerland, Feb. 2000), pp. 199-205.

WoLFr, T., WENG, N., AND TAI, C.-H. Run-time support
for multi-core packet processing systems. IEEE Network
21, 4 (July 2007), 29-37.

Wu, Q., AND WoLF, T. On runtime management in
multi-core packet processing systems. In Proc. of
ACM/IEEE Symposium on Architectures for Networking
and Communication Systems (ANCS) (San Jose, CA, Nov.
2008).

Zuou, W., LIN, C., L1, Y., AND TAN, Z. Queue
management for QoS provision build on network processor.
In Proc. of the The Ninth IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS’03)
(San Juan, PR, May 2003), p. 219.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

