
Optimizing the BSD Routing System for
Parallel Processing

Qing Li
Blue Coat Systems, Inc.

Sunnyvale, CA, USA
qing.li@bluecoat.com,

qingli@freebsd.org

Kip Macy
The FreeBSD Project
Palo Alto, CA, USA

kmacy@freebsd.org

ABSTRACT
The routing architecture of the original 4.4BSD [3] kernel
has been deployed successfully without major design mod-
ification for over 15 years. In the unified routing architec-
ture, layer-3 (L3) IP routes are maintained with layer-2 (L2)
ARP entries in the same kernel structures. This meant that
a single table lookup can return both results. Today, the
prevalence of multi-core CPUs and parallel processor archi-
tectures is driving the re-design of software data structures
and control flows to fully exploit the parallel capabilities of
commodity hardware. A common parallel TCP/IP network
protocol stack design separates out L2 and L3 processing
from layer-4 (L4) and layer-5 (L5) (TCP and socket) onto
different CPU cores. The unified routing architecture cre-
ates data dependencies between these layers, complicating
the design and causing high levels of lock contention. In this
paper we will detail the routing architecture that we have
implemented for the upcoming FreeBSD 8.0 kernel, which
eliminates the data dependencies and facilitates better par-
allelization of the network protocol stacks. We will describe
the impact of this design on higher layer protocols such as
TCP and UDP flow processing, and provide performance
comparison between the original and the new design.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Ethernet, In-
ternet; C.2.6 [Internetworking]: Routers; D.4.1 [Operating
Systems]: Process Management – concurrency, mutual ex-
clusion, synchronization; D.4.4 [Communications Man-
agement]: Network Communication

General Terms
Algorithms, Design, Performance

Keywords
FreeBSD, synchronization, server load balancing (SLB), flow
table, IP, IPv6, ARP, Neighbor Cache, SMP, MP, routing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$5.00.

1. INTRODUCTION
Much of the original 4.4BSD operating system design, in-

cluding the unified routing architecture, can be found in the
NetBSD and OpenBSD operating systems, and in FreeBSD
up through version 7. These modern 4.4BSD descendants
have been widely adopted by industry and have been com-
mercialized into various networking and router products. In
this paper our discussion is centered around the FreeBSD
operating system. The FreeBSD networking kernel is an in-
tegral part of Wind River’s VxWorks 6.x, Cisco’s Ironport
products, Apple OS X, and Juniper’s routers. In addition,
FreeBSD is constantly being ported to new custom hardware
platforms.

The routing architecture of the original 4.4BSD kernel was
not modified in the FreeBSD OS for over 15 years. Although
the unified routing architecture is still present in most mod-
ern descendants of 4.4BSD, in this paper our focus is on
FreeBSD 8.0, in which it has been replaced. Thus we re-
fer to it as the “legacy unified design.” In the legacy uni-
fied design, the L3 IP routes were maintained with the L2
ARP entries in the same kernel data structures. Similarly,
the IPv6 routes were maintained with the Neighbor Cache
(ND6) [2] entries. This design, although somewhat more
complex, provided the benefit of reducing lookups by letting
the caller retrieve both the interface information and the L2
information in one function call. With the move from Uni-
Processor (UP) to Multi-Processor (MP), this design proved
to be problematic in several areas. Those products that are
based on FreeBSD inherited those design limitations unless
those limitations were resolved through custom design in the
derived products.

The main goals for redesigning the kernel routing infras-
tructure was to reduce the scope of the customization nec-
essary when deriving products from FreeBSD, and to offer a
generic solution that could be an integral part of the kernel.
The FreeBSD community can now evolve and improve this
general solution over time. In this paper IP or L3 refers to
both IPv4 and IPv6, and the L2 entries refer to both ARP
and ND6 entries.

1.1 Route Cloning and L2 Entry Creation and
Deletion

In the legacy unified routing design, each time an IP ad-
dress was assigned to an interface, a prefix route (or in-
terface route) was installed into the kernel routing table.
This prefix route had a property named route cloning ca-
pable. All directly reachable nodes of that prefix would
be cloned from the prefix route to store the L2 addresses

37



L3 Routing

L2 ARP/
ND6

searches for 
destination in 

route table

finds prefix route with 
RTF_CLONING

creates a new route 
and issues 

RTM_RESOLVE

fills in L2 info in the 
new route entry

1

2

3

routing 
table

Figure 1: L2 route entry creation

L3 Cloned Route

ARP 
entry

rt_refcnt

rt_mtx

rt_llinfo

L2  ARP Table

L3 Indirect Route

rt_refcnt

rt_mtx

rt_gateway

rt_parent

L3 Prefix Route

rt_refcnt

rt_mtx

Figure 2: legacy route types and inter-relations

of those nodes. Figure 1 illustrates the cloning process.
When creating an L2 entry, L3 allocated a routing table en-
try, rtentry, and inserted it into the routing table. The
new rtentry’s rt_parent pointer would be set to point
at the prefix route’s rtentry. In the event that the new
rtentry contained the link address for a gateway, the next
time any rtentry of an indirect route using that gateway
was accessed, the rt_gateway pointer in the indirect route’s
rtentry would be set to point at the new cloned route. Then
L3 issued a RTM_RESOLVE request to L2 to populate this new
rtentry with the corresponding L2 address. L2 performed
the appropriate address resolution according to the under-
lying network type, allocated a memory block to hold the
L2 address, and then initialized the rt_llinfo field of the
route entry to point to this memory block. Figure 2 depicts
the relationship among the various types of route entries.

When deleting an L2 entry, L3 issued a RTM_DELETE re-
quest to L2. L2 freed the memory block associated with the
L2 address and set the rt_llinfo pointer to NULL. L3 then
freed the rtentry and removed it from the routing table if
it was not currently in use by any other threads.

Figure 3 illustrates the cloned rtentry deletion process.
When deleting a prefix route, the routing table would first

need to be walked, deleting all rtentrys whose rt_parent

pointer pointed at the prefix route’s rtentry. Only then
could the prefix route’s rtentry be removed from the table
and freed.

delete the route entry 
if it is not in use

issues 
RTM_DELETE

frees L2 info and 
clears reference from 

the route entry

1

2

3

routing 
table

L3 Routing

L2 ARP/
ND6

Figure 3: L2 route entry deletion

bit 32
onoff

bit 33bit 33 onoff

end

0.0.0.0

default

0x00000000

onoff

bit 41
off

192.103.33.1
0xffffffff

bit 45off on

on

192.103.33.0
0xffffff00

128.1.1.2
0xffffffff

bit 47

128.0.0.0
0xff000000

off on

64.12.2.12
0xffffffff

bit 36

64.0.0.0
0xff000000

onoff

0xff000000

192.39.33.1
0xffffffff

bit 63

192.39.33.0
0xffffff00

off on

0xffffff00

bit 52off on

192.35.54.0
0xffffff00

bit 63

192.35.54.1
0xffffffff

0xffffff00

off on

192.35.62.0
0xffffff00

bit 63

192.35.62.1
0xffffffff

0xffffff00

off on

bit 63
off on

Figure 4: example radix tree

Figure 4 illustrates an example routing table that includes
both prefix routes and ARP entries [4]. The cloned routes
(or ARP entries) are represented by those radix tree nodes
that are enclosed in circles. In this example, the rout-
ing table represents a system with five interfaces that are
connected to five different IP networks. It is easy to see
from Figure 4 that when searching for an ARP entry, for
example for 192.35.62.1, unrelated nodes (of different pre-
fixes) needed to be visited before reaching the entry for
192.35.62.1.

1.2 Limitations of the Legacy Unified Design
Each rtentry has a reference count rt_refcnt which is

guarded by a lock (rt_mtx). When a rtentry is in use, the
rt_refcnt field has a non-zero value. The rt_mtx lock must
be held before updating the rt_refcnt. This lock may be
acquired and released multiple times throughout the packet
processing path. For example, for an indirect route, the
route’s rtentry was retrieved first to determine the first-hop
router. The RTF_GATEWAY flag had special significance to L2,
e.g. the ARP resolution function arpresolve(), indicating
that the rt_gwroute field, if non-NULL, contained a valid
pointer to the L2 rtentry for the gateway. Although vali-
dating rt_llinfo was a simple task, the coupling of L3 and
L2 rtentrys for gateway routes made the control flow and
locking in rt_check(), the function for validating rt_llinfo

38



in L2, extremely complicated and error-prone. One of the
main reasons for this locking complexity was the fact that
the L2 address that is associated with a cloned route may
be freed while references to the rtentry are held.

For example, in the FreeBSD 5.4 release, a TCP connec-
tion cached a reference to the rtentry that was used to
transmit the initial TCP SYN packet. This cached rtentry

was then passed from TCP to IP to avoid further rout-
ing lookup if it were still marked as valid. Although the
rt_refcnt is non-zero for this cached rtentry, indicating
that it is still live, the L2 address pointed at by rt_llinfo

may already have been freed by another thread. Thus, when
the L2 address that was stored in rt_llinfo is accessed,
the rt_mtx lock must be held to guarantee the liveness of
rt_llinfo. If the L2 address was invalid, then the current
rt_mtx lock is released, and the RTM_RESOLVE process was
repeated to reinitialize rt_llinfo.

Consequently, even though the L3 state of the rtentry

could be safely accessed with only a reference held, its rt_mtx
lock needed to be held to safely access the rt_llinfo L2 in-
formation. Although the rtentry itself can be cached by
reference counting to avoid subsequent lookups and lock ac-
quisitions, accessing the L2 information required the acqui-
sition of the rt_mtx lock and possibly incurred additional
lookup cost.

The legacy design reduced parallelism on SMP and paral-
lel architectures. As a result of the dependency between L2
and L3, the processing through these two layers was single
threaded. A common parallel TCP/IP protocol stack design
is to allow L2 and higher layer processing to run indepen-
dendently of each other, having each processor managing
different protocols. The aforementioned locking contention
increased processor stalling and prevented one from benefit-
ting from more advanced hardware platforms.

This processor stalling effect was especially apparent when
the majority of the connections were going through the de-
fault router and the cloned rtentry held the L2 address
of the default gateway. Cache invalidation increases with
higher frequency of lock acquisitions and lock releases.

The cross layering data dependency also prevented full uti-
lization of the underlying capability in advanced platforms
where L2 processing is offloaded to hardware. The FreeBSD
networking kernel has been ported to run on custom hard-
ware platforms where the L2 engine has the ability to man-
age ARP table in ASICs. Again, the existing design com-
plicates any solution aimed at achieving good parallelism.

Hardware vendors such as Cavium NetworksR© understand
the synchronization issues related to the ARP table and
route table management in the legacy system. As such
these vendors provide customized implementation for their
specialized core to solve some of these scalability problems.
However, these custom solutions are only available commer-
cially.

2. OVERVIEW OF THE NEW SPLIT
ROUTING DESIGN

In the legacy unified design the L2 rtentrys were created
out of the prefix route rtentrys. The only difference be-
tween a prefix route rtentry and a cloned L2 route rtentry
was that a L2 route rtentry held a reference to the link-layer
address. The link-layer address was not accessed by L3 but
was copied into the packet header as the source MAC ad-

bit 32
onoff

bit 33bit 33 onoff

end

0.0.0.0

default

0x00000000

onoff

128.0.0.0
0xff000000

64.0.0.0
0xff000000

bit 41
off on

bit 45off on

192.103.33.0
0xffffff00

192.39.33.0
0xffffff00

bit 52off on

192.35.54.0
0xffffff00

192.35.62.0
0xffffff00

Interface object

L3

L2

ARP/ND6 table

Figure 5: split L3 and L2 tables

dress inside L2. In contrast to route cloning, with the split
design, the IP destination (that is either the first-hop router
or the final packet destination) can be given to L2 along
with the output packet. L2 can determine if address res-
olution is necessary for the given IP destination, and if so
performs that task. The result is then maintained inside L2
rather than L3. The L3 routing table is now dedicated to
prefix routes, default routes, and indirect routes (for off-link
nodes).

Figure 5 illustrates the structures of the new routing and
L2 tables, and the relationship between the two tables. In
the split design, when communicating with on-link nodes,
only the prefix route rtentry is retrieved from the routing
table to obtain the interface information. Then the destina-
tion IP is passed to L2.

In the legacy design, communicating with an off-link node
required manipulating two rtentrys. In the new design only
one rtentry is examined. This comes at the expense of an
additional search in the L2 table of the selected interface.
We demonstrate in Section 3 that this extra search adds no
measurable overhead. Furthermore, in Section 4, we demon-
strate that the separate reference counting of L2 information
can provide remarkable scalability benefits.

As shown in Figure 5, instead of being centralized in the
routing table, each interface maintains an ARP table if the
IP protocol is registered on the interface. Similarly, each
interface maintains an ND6 table if the IPv6 protocol is reg-
istered on the interface. Each L2 table contains L2 entries
for those nodes that are directly reachable over that inter-
face. The per-interface L2 table is currently implemented
as a hash table. Other protocols can register their own L2
tables with the interface.

Comparing Figure 1 and Figure 5, one can see the new
routing table is much smaller than the legacy routing table.
The reduction in routing table size means fewer radix nodes
are traversed during a search, which can result in fewer data
cache invalidations.

By eliminating the routing table dependency between L2
and L3, the routing table lock hold time is reduced, which
also reduces lock contention. Once a packet is transferred
from L3 to L2, L3 can continue to process additional packets

39



ARP 
entry

IPv4

ARP table
ARP 
entry

ARP 
entry

ARP 
entry

ND6 
entry

IPv6

ND6 table

ND6 
entry

ND6 
entry

ND6 
entry

ND6 
entry

interface object
ifnet

if_afdata[ ]
AF_INET

AF_INET6

lle_refcnt
lle_lock

Figure 6: new L2 table structure

without having to wait for L2 completion. L2 packet pro-
cessing is independent of L3 activities thus increasing the
parallelism in packet processing.

2.1 Reducing Locking Complexity
Since the L2 tables are now maintained in the per in-

terface ifnet object, fine grained locking can be used to
serialize access to the L2 tables. As shown in Figure 6, the
IPv4 ARP and IPv6 ND6 tables are maintained in the per
address family if_afdata[] array. Access to either table is
synchronized with the if_afdata_lock read-write lock.

Another serious problem with the legacy unified design
was that the L2 layer could update a rtentry without L3
involvement. This causes the cache line holding the rtentry
to be marked dirty causing coherency overhead for both the
lock and the rt_llinfo field.

In the new architecture each link-layer entry (LLE) is pro-
tected by a reference count lle_refcnt and a read-write lock
lle_lock. The L2 LLE object is maintained and managed
by L2 only. L3 can cache a L2 LLE reference, and any change
to the LLE object can be detected without locking by L3 the
next time the object is referenced.

2.2 Code Reduction
Another notable benefit of the new routing design was a

30% code reduction in both the L2 and the L3 modules.
All of the logic related to route cloning was completely

removed. For example, it is no longer necessary to issue
the RTM_RESOLVE call between L2 and L3. Since L2 no
longer references L3 rtentrys, the rtentry validation rou-
tine, rt_check() was made obsolete.

The routing infrastructure code is much easier to under-
stand in the new design. Consequently, the reduction in
complexity makes the code less prone to programming er-
rors.

2.3 APIs and Compatibility
The FreeBSD OS comes with thousands of ported appli-

cations. There were a number of userland applications that
were affected by the redesign in the kernel routing infrastruc-
ture. Currently these applications interact with the kernel
routing infrastructure through the socket interface by means

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  1  2  3  4  5  6  7  8

kp
p

s

# of ’pps’ threads

kpps as a function of ’pps’ threads

legacy unified L2/L3
split L2/L3

Figure 7: Throughput Comparison for Split L2/L3

of routing socket messages. In the legacy unified routing ta-
ble cloned rtentrys holding an L2 address were marked with
the RTF_LLINFO flag. Applications such as netstat that dis-
play the routing tables issue a single command to retrieve
an entire table. These applications assume the routing ta-
ble contains both L3 and L2 information, therefore they have
built-in filter code that looks for the RTF_LLINFO flag to re-
move ARP entries, and display only L3 information. This
filter code is now redundant, but the existence of such code
has no effect on the actual operation.

Applications such as arp and ndp that interact with the L2
tables, for example, adding or deleting ARP or ND6 entries,
also specify the RTF_LLINFO flag inside the routing socket
message. Although the route cloning concept is obsolete, the
kernel continues to process this type of message to ensure
application binary compatibility.

Applications such as net-snmp may monitor routing table
update messages. In principle net-snmp may also be setup
to monitor L2 table update messages. When a change takes
place in either the ARP or NDP table, the kernel will gener-
ate an update notification to the listening applications with
a L2 route entry marked with the RTF_LLINFO flag.

3. PERFORMANCE COMPARISON
For our performance testing we used a system containing

two IntelR© XeonR© L5420 CPUs running at 2.50GHz for a
total of eight cores. To measure packet throughput we used
a simple custom benchmark, pps, that sends UDP packets
as quickly as the interface will allow. We took measurements
for one to eight sending threads, the average of five fifteen
second samples was used for each data point.

Figure 7 contrasts legacy and split L2/L3 packet sending
performance. The added lookup in the interface’s L2 table is
masked by the overhead of rtentry locking for rt_refcount
changes in the IP packet output processing function ip_output().
One can see that throughput does not increase as the num-
ber of sending threads increases.

Although disappointing at first glance, the main bottle-
neck of the locking protecting reference count changes to
rtentrys in function ip_output() still exists and needs to
be addressed separately.

40



< src IP, src port, dst IP, dst port >

CPU 1

CPU N

CPU Table

collision chain
flow table entry

f_uptime
f_proto

f_rt

f_lle

route 
entry

LLE ARP 
entry

f_next

flow table entry

flow table entry

flow table entry

Per CPU Flow Table

Figure 8: Flow Table Structure

4. SPLIT L2/L3 DESIGN AS A FOUNDATION
FOR OTHER FUNCTIONALITY

In April 2008, equal-cost multi-path (ECMP) support
was integrated into FreeBSD. ECMP allows multiple routes
to have the same destination prefix but different first-hop
gateways. This enables FreeBSD to uniformly distribute
connections matching the same destination prefix across mul-
tiple routes.

In the initial implementation, a first-hop rtentry was cho-
sen by using the result of the bitwise XOR of the source
and the destination IP addresses for a packet modulo the
number of next-hop rtentrys as an index into the prefix
route’s rtentry list. Although this works well for the general
forwarding case, its statelesseness proves to be problematic
when connections terminate at the next hop, as is the case
with Server Load Balancing (SLB) [1]. When additional
servers are added to, or removed from, the prefix list, the
modulus used to calculate the rtentry chosen will change
and all packets for a given source/destination pair will be
directed to a different server. The new server will have no
knowledge of these connections and will send a TCP RST

packet to the client, telling it to terminate the connection.

4.1 Flow Table for Stateful Forwarding
In order for FreeBSD to be used for SLB with long-lived

TCP connections, forwarding information must be state-
ful. To this end, a flow table was added. In essence, the
flow table hashes the connection information to a flow en-
try, flentry, which contains a reference to a rtentry and a
LLE.

Prior to the implementation of the split L2/L3 design, it
was not possible to efficiently implement a flow table. The
flow table has two modes, hashing the 4-tuple and protocol
value and hashing just the destination address. A flentry

is retained until it has not been used for more than a con-
figurable timeout number of seconds, by default 30. This is
tracked by a field in the entry that is updated each time it is
accessed with the kernel’s system uptime. The flow table is
managed on a per-CPU basis, avoiding any lock contention
and cache coherency overhead after the initial lookup.

Figure 8 shows the flow table structure. For more efficient

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  1  2  3  4  5  6  7  8

kp
p

s

# of ’pps’ threads

kpps as a function of ’pps’ threads

legacy unified L2/L3
split L2/L3 + flowtable

Figure 9: Throughput Comparison for Added Flow
Table

garbage collection of stale flentrys a bitmap of used entries
is also kept per-cpu. A hash table entry contains at least one
flow table entry if its bit field is set. This greatly reduces
the number of buckets that need to be checked in the sparse
hash table case.

4.2 Flow Table Performance
Although the primary purpose of the flow table is to pro-

vide stateful forwarding for multipath use in load balancing,
it can also serve to bypass L3 and L2 lookups for recently
seen destinations in general. A call to flowtable_lookup()

was added to ip_output(), this uses the flow table in the
non-load-balancing mode, hashing the destination IP. The
cached L3 entry supplies the output interface and the cached
L2 entry supplies the destination MAC address.

To measure the performance benefits of the flow table we
ran the same pps benchmark with the flow table enabled.
Figure 9 shows the results. After adding caching of the L2
and L3 entries using the flow table the system spends less
than 10% of system cpu time on locking operations with 8
sending threads. Greater than 30% of system cpu time is
spent in the em IntelR© gigabit ethernet device driver. This
leads us to conclude that scaling is limited by the em device
driver and not by the network stack.

We also measure the locking overhead of the unified de-
sign as compared with the flow table. The locking overhead
measurements were done by sampling the unhalted core cy-
cles for thirty seconds using FreeBSD’s pmc performance
counters tools. The percentage time taken by all locking op-
erations consuming more than 1% of cpu time were added
to calculate the total locking overhead. Figure 10 shows the
results of measuring the locking overhead. The ’0’ measure-
ment was taken by sampling time spent in locking operations
on an otherwise idle system in multi-user mode.

In the legacy unified L2/L3 design contention on locks was
inevitably a major portion of cpu time, reaching as high
as 47% with 8 transmitting threads. With the new split
L2/L3 design the L2 and L3 references can be cached in
the protocol control block for connected sockets or in a flow
table for unconnected sockets and forwarding. Thus we see
that very little of the cpu time is now spent in the locking
primitives even when there are 8 transmitting threads.

41



 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7  8

%
 s

ys
te

m
 t

im
e

 s
p

e
n

t 
in

 lo
ck

in
g

 f
u

n
ct

io
n

s

# of ’pps’ threads

% system time as a function of ’pps’ threads

legacy unified L2/L3
split L2/L3 + flowtable

Figure 10: Locking Overhead Comparison

There are clear limitations to the flow table approach to
bypassing locking in some environments. When doing for-
warding to more than a million unique destination IPs, the
actively referenced flentrys will no longer fit in the system’s
L2 cache. This would have the effect of requiring at least
one un-prefetchable memory access per packet. We briefly
discuss how to address this issue in the next section.

5. FUTURE WORK
With the advent of the split L2/L3 design there is the

potential for future further improvements to the routing ta-
ble to change lookup semantics to eliminate the need for
reference counting rtentrys. Upon a successful lookup of
an rtentry, its contents could be copied instead of locking
the rt_mtx, incrementing rt_refcount, and then return-
ing a pointer to the rtentry. This would make possible
higher performance forwarding by allowing the members of
the routing table to sit in L2 cache in a shared state be-
cause there would be no need for rt_refcount or rt_mtx,
the update and acquisition of which require cache lines to
be evicted. This would require changes to the flow table to
regularly validate cached rtentrys but this would be largely
offset by eliminating the overhead of serializing rtentry ref-
erence count manipulation.

The flow table currently only supports IPv4 and is stati-
cally sized at boot time. In the future we will extend it to
add IPv6 and be dynamically re-sizable at run-time. An-
other interesting extension to ECMP and the flow table
would be to support per-packet load balancing to increase
the amount of bandwidth available to individual connec-
tions. Load balancer failover support could be made pos-
sible by adding an interface to export and import the flow
table state to and from user processes to allow the table to
be mirrored between multiple systems.

6. CONCLUSIONS
In this paper we have described in detail both the uni-

fied L2/L3 routing infrastructure and the new split L2/L3
architecture that we have implemented in the FreeBSD 8.0
kernel. We have shown the new design provides the follow-
ing benefits: simplified locking and reduced lock contention;
elimination of data dependence between L2 and L3 - facil-
itating SMP [5] and parallel design; improved data cache
utilization and the possibility of L2 hardware offload. As
a use case we showed that by adding a flow table we could
provide stateful forwarding to ECMP and bypass rtentry

and LLE locking in the packet output path when processing
established flows.

7. REFERENCES
[1] K. Chandra. Load Balancing, Servers, Firewalls, and

Caches. John Wiley & Sons, Inc., 2002.

[2] S. K. Li Q., Jinmei T. IPv6 Core Protocols
Implementation. Morgan Kaufmann, 2006.

[3] N. N. G. McKusick M. The Design and Implementation
of the FreeBSD Operating System. Addison Wesley
Longman, 2004.

[4] S. R. W. Wright Gary R. TCP/IP Illustrated, Volume
2, The Implementation. Addison Wesley Longman,
1995.

[5] R. N. M. Watson. Introduction to multithreading and
multiprocessing in the freebsd smpng network stack. In
Proceedings of EuroBSDCon 2005, November 2005.

8. ACKNOWLEDGMENTS
Qing Li would like to thank Blue Coat Systems for spon-

soring the implementation work, and for granting him the
publication rights. Kip Macy would like to thank BitGrav-
ity for supporting the development of the flow table and
for providing the resources for doing the performance test-
ing. We would like to thank the various FreeBSD developers
who have contributed to the new routing design, Sam Leffler,
Andre Oppermann, and Luigi Rizzo.

42



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


