A Model of Configuration Languages for Routing Protocols

Philip J. Taylor
Computer Laboratory
University of Cambridge
Cambridge, UK

philip.taylor@cl.cam.ac.uk

ABSTRACT

The emergence of programmable routers brings opportunities to de-
sign and implement new routing protocols with expressive policy,
that better meet the needs of network operators than the current
range of protocols. This also introduces significant challenges in
designing and understanding protocols. Algebraic routing provides
a useful but highly abstract model of networks as weighted graphs,
ignoring the complex distributed configuration and computation as-
pects of practical routing protocols. We present an algebraic model
of router configuration languages, reducing the gap between the
routing theory and real implementations, as the basis for a language
that can be used to specify the operation of routing protocols.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols—routing protocols; G.2.2 [Discrete Mathematics]: Graph
Theory

General Terms

Languages, Theory, Verification

Keywords
Routing Protocol Configuration, Routing Algebra

1. INTRODUCTION

Programmable routers provide an opportunity for customisation
of control-plane routing functionality, supporting research into in-
novative new routing protocols and rapid development of improve-
ments to currently-deployed protocols. But this flexibility comes
with significant challenges in designing protocols: the difficulty of
ensuring the distributed algorithms will actually compute a correct
set of routes without subtle unexpected errors, and the sheer effort
needed to specify and implement new protocols.

We believe these issues can be addressed by adding a level of
abstraction separating the high-level decisions of what a routing
protocol should compute, and how it should be configured, from the
low-level implementation details of how it performs the necessary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PRESTO’09, August 21, 2009, Barcelona, Spain.

Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$5.00.

55

Timothy G. Griffin
Computer Laboratory
University of Cambridge
Cambridge, UK

timothy.griffin@cl.cam.ac.uk

G Arclabel: [€ L Q
d N>

Metrictod: s € S Metric to d: (I > s)

(a) An algebraic, arc-oriented view.

node: ¢ node: j
D A e > ..
to j: I Network message: | from i: I;
(le>es)eWw
Metric for prefix p: Metric for prefix p:

ses (Lir(lg>es) €S

(b) A node-oriented view.

Figure 1: An illustration of the central problem.

computations. In particular, our goal is to develop a language that
can be used to write concise specifications of routing protocols and
can be automatically compiled into executable code, greatly easing
the process of developing and testing protocol modifications. It is
important that the language has a solid theoretical basis, so we can
easily model the operation of the resulting routing protocols and
guarantee they will converge to the correct routing solution.

We advocate an approach based on algebraic models of rout-
ing [6, 10, 11, 12], which enforce a clear distinction between what
problem is being solved and how solutions are computed. This al-
lows issues of correctness and design trade-offs to be addressed in
a more general and tractable manner than current practice. How-
ever, there are many ways in which the gap between the abstract
algebraic view and existing Internet routing protocols can seem so
wide as to be unbridgeable. We hope these difficulties can be over-
come without sacrificing correctness and without radically deviat-
ing from the way existing protocols work.

This paper addresses one aspect of this gap, illustrated in Fig-
ure 1. The algebraic model of routing is based on directed graphs,
and in Figure 1(a) we illustrate a single arc from node % to node j
in such a model with label (or weight) {. In this paper we will use
Sobrinho-like algebras [11, 12] of the form (S, L, <, >), where
S is a set of metrics (describing attributes of paths), < is an order
over S (for selecting the ‘best’ paths based on their metrics), L is a
set of arc labels, and 1> is a function that applies a label to a metric
to produce a new metric (i.e. > € L x S — S). If we imagine
a path from destination d to node ¢ that is associated with metric
s € S, as illustrated in Figure 1(a), and [€ L is the label associ-

Types
S = type of metrics
L = type of labels
Lr = type of export labels
L; = type of import labels
W = type of messages on the wire
Functions
> € LxS—S (policy application)
>r € LgxS— W (exportpolicy application)
>r € LrxW — .S (import policy application)
® € Ly xLg— L (policy reconstruction)

Consistency
(lI @lE) >s=I>r (lE >g S)

Figure 2: The components of a simple network configuration
language.

ated with the arc from ¢ to j, then the path that continues on to node
j will be associated with the metric [[> s (using infix notation).

The arc-oriented algebraic approach is very different from the
node-oriented manner in which current routing protocols are con-
figured, illustrated in Figure 1(b). Here, the arcs do not define the
network; instead they arise from the configured adjacencies im-
plied by each node’s configuration. In addition, there may not be
an obvious relationship between these configurations and some ab-
stract arc weight they might represent. This is especially true for
protocols as complex as BGP.

How might this gap be bridged? We make the simplifying as-
sumption that from a complex router configuration file we can ex-
tract an export label (g € LEg) on the i-end of the arc and an im-
portlabel (Ir € L) on the j-end of the arc. (This ignores complex-
ities associated with route maps, which we discuss in Section 4.)
Figure 2 presents our approach, which we will call a configuration
language — an algebraic language that can represent the configura-
tion of a network, along with defining the computations performed
on the network’s configuration data by the routing protocol. Two
distinct functions, > and >, are used to represent the computa-
tion that occurs in a BGP-like vectoring protocol with the export
and import of a metric in a route advertisement.

This gives us a model that is closer to the node-oriented view of
routing, and we can now build a bridge back to the original alge-
braic model: a configuration language includes a routing algebra
(S, L, <,), and we want the node-oriented protocol to compute
the same solution as this arc-oriented algebra. We therefore have
an operation ® that can reconstruct a label from adjacent configu-
rations, and we insist on consistency: the equation

(lrolg)>s=l>r (le>ES)

must be valid for all label and metric values. In other words, we
can reconstruct a label [= I; ® [from bits of configuration data
at each end of a link, and the metric s’ = [1> s will always be the
same as first computing w = g > s and then s’ = I >; w. The
type of w is W, which corresponds to the data type that is shared
over the wire by the vectoring protocol; this may not be equal to
the algebra’s metric type S.

In this paper we will not concern ourselves with algebraic prop-
erties of routing algebras that are associated with correct usage of
various algorithms. This topic is treated in the algebraic routing
literature cited above.

In this paper we propose a method of constructing configuration
languages. It is based on the metarouting approach to constructing
routing algebras [7]. Metarouting uses a language for describing

56

routing algebras from which code can be extracted and automat-
ically checked for correctness. A short review of metarouting is
provided in Section 2. In Section 3 we extend the metarouting
grammar with simple constructs that place sub-configurations at
one or the other side of an adjacency. We are then able to extend
the semantics of the language so that the types and functions of
Figure 2 can be automatically constructed together with a proof of
consistency. In Section 4 we discuss related work and directions
for further research.

2. METAROUTING

This section introduces a concrete syntax for writing routing al-
gebras in the arc-oriented model of Figure 1(a), along with its al-
gebraic semantics. Since this is a language used for writing routing
languages (or routing algebras), we call it a metalanguage. The
metalanguage presented here is a small fragment of the language
we are currently implementing [2], chosen to illustrate the main
features of our approach.

2.1 Routing Algebras

As described in Section 1, in this paper routing algebras have the
form (S, L, <,). For example, the basic integer shortest-paths
routing algebra has the form (N*°, N*°, </ +). Each route has a
metric that is of type N°°, either a positive integer or infinity. This
oo metric indicates no data can be forwarded along the path, and is
a way of modelling routes that have been filtered out. Metrics are
compared using the standard integer < operator. Each arc weight
is similarly a positive integer or infinity, and a route’s metric is
combined with the arc weight using integer addition.

Some algebras can be expressed by a finite table. The customer—
provider—peer relationships and constraints described in [5] can be
modelled algebraically [7, 11] with

({C7 R7 P7 00}7 {c7 r’ p}? j7 l>cpp)7

where = is defined by the order C' < R < P < 00, and D> ¢pp is
defined by the table

[>cpp | C R P o0
c C o 00 oo
r R o oo o
P P P P

For example, a route received from a peer has metric R. An arc
from a customer (to a provider) has label c. Since ¢ I>¢p, R = o0,
the route will be filtered out. It also gives p >¢pp R = P, so
the same route sent across an arc from provider to customer will
be accepted and given new metric P to indicate it came from a
provider.

We can also represent the path component of a path-vector rout-
ing protocol as a routing algebra. The metrics are either lists of
router identifiers with no repeated values, or are infinity. These
identifiers are likely to be implemented as integers, but they can
be any arbitrary data type as far as our language definition is con-
cerned — we will refer to them as the type ‘id’. Shorter lists are
preferred over longer lists. The arc from node ¢ to node j is la-
belled with a pair of node identifiers, (¢, 7). We define > pquns as

ifjil
otherwise

i
%)

(iv .]) l>path.s l= {

where :: means list prepending. In this definition, ¢ is prepended to
the path when it sends the route to j; but if j is already in this list,
the route is filtered out (its metric is set to co) because this indicates
a loop. This models the behaviour of BGP’s AS_PATH attribute.

The lexicographic product constructor combines two routing al-
gebras. For example, the lexicographic product of two integer-
shortest-paths algebras is an algebra whose metrics and arc labels
are pairs of integers. Given A = (Sa, La, =a, >a)and B =
(SB, Lp, =B, >5), wedefine A X B = (S, L, <, >>) where

S = (Sa—{oo}) x (Sp — {oo}) U {oo}
L = LaxLp

< = =4 X =p (lexicographic order)
> = DaXDB

As a technicality, the operation >4 X >p is defined so that the
infinity metrics are removed from the component algebras, a single
infinity is added to the combined type, and [> is defined so that
an infinity in a single component propagates outwards to make the
whole product become infinity:

(la, lg) >ax>p (sa, sB)

ifla>as4 =00
iflg>B sp = o0
otherwise

00
= 00
(la>asa, lp>Bsp)

The lexicographic order defined by X means that metrics are
compared by examining the first component first, using the sec-
ond component to tie-break if the first components are equal. The
route selection process in BGP, ignoring MEDs, can be viewed as
implementing a lexicographic choice function.

The function union constructor provides a way to combine dif-
ferent kinds of arc into a single routing algebra. The metric type
and comparison operator must be the same in both of the compo-
nent algebras A and B, and are not changed. Given the algebras
A= (S, La, X, >a)and B = (S, Lp, =, >p), we construct
AW B = (S, LaW Lp, <X, >a WDp), where the labels are a
disjoint union of L 4 and Lp :

LawLp = {inl(l) |l € La}u{inr(l) |l € Lp}.

We use the tags inl and inr to distinguish elements in the ‘left” and
‘right” components of the disjoint union. The operation >4 W [>p
performs a case split on the label to determine which of the original
algebras’ operations to apply, >4 or >p :

inl(l) >paW>E s =
inr(l) DadWD>p s =

I>a s,
I>Bs.

We now define two constructors that take only a single compo-
nent routing algebra, and then modify its behaviour. First, the func-
tions right and left are defined as

l right s = s,
l left s l.

We can [ift these operations to routing algebras (parameterised on
a component algebra) as follows.

right(S, L, X, >) =
left(S, L, <, >) =

(S, 1, =, right),
(S, S, =, left).

Here 1 is the unit set containing only a single element, 1 = {L}.
In right this is used because there is no choice of label on an arc;
the label is ignored entirely and the metric never changes. The
metric is therefore controlled entirely by the origination point of
the route. The metric type and order are copied unchanged from
the component algebra. left also copies the metric type and order,
but arcs are labelled with the metric type .S. When a route is sent
across an arc, its metric is entirely forgotten and replaced with the
label value. This implements a ‘local preference’ policy.

57

s mm e mm o — = - o pm e m m m— —— - — o

Region m Region n |
|
O
|
|
|

|
Internal link:
inl(L, L, v, (i,)

External link:

!

!

|

|

|

|

1 i
|

: inr(z, (m, n), v, 1)
{

Figure 3: A network with link weights from the scoped product
algebra.

2.2 A Mini-Metalanguage

The syntax for our small metalanguage is as follows:

base := sp
| cpp
| paths
exp base

lex_product <name:exp, name:exp>
function_union <name:exp, name:exp>
right exp

left exp

We now need to define the semantics of the metalanguage. This
is a mapping from the syntax onto our mathematical model of a
routing algebra. First, we say

[spl = (N*, N, <, +)

to declare that the semantics of sp is the shortest-paths routing
algebra described earlier. Similarly, [cpp] and [paths] are the
other two basic routing algebras described.

We define the semantics of expressions in a recursive way, mak-
ing use of the semantics of their subexpressions.

[e1] X [ez2]
fe:] W [e2]
right([e])
left([e])

[lex_product <n:ej, m:e; >] =
[[function_union <n:eq,m:ey >]] =
[right e] =

[Lefte] =

Note that the names present in the syntax are discarded in the se-
mantics — they help us talk about components of a routing algebra,
but have no effect on the algebraic semantics. (We intend to incor-
porate names into the semantics in future work.)

2.3 Scoped product example

To illustrate the utility of this mini-metalanguage we introduce a
scoped product [8] example. The defined routing algebra models a
single-level region system, conceptually similar to BGP ASes. The
metric is split into two parts: the first is used for external (inter-
region) routing, and the second is used for internal (intra-region)
routing. All arcs in the network are labelled as either internal or
external. Figure 3 shows a simple network separated into regions
with internal and external links (the labels will be explained below).

This routing algebra would be compiled to produce a single rout-
ing protocol; but comparing to existing standard routing protocols,
it will give similar functionality to a combination of an EGP (such
as BGP, for the inter-region component) and an IGP (such as RIP,
for the intra-region component).

The example can be written in our syntax as:

function_union

<
internal:
lex_product
<
ecomm: right cpp,
epath: right paths,
idist: sp,
ipath: paths
>l
external:
lex_product
<
ecomm: cpp,
epath: paths,
idist: left sp,
ipath: left paths
>
>

In this example we use n-ary lex_product as shorthand for
nested binary products. First we will consider the component named
internal in the function_union. This is a lexicographic
product of four components. The first two components are of the
form right e, and referring back to our definition of [right e]
we see the metric type is the same as [e]’s metric; but the label type
is the unit set, and the new > ignores the label and passes the metric
through unchanged. We use this for the external components of the
metric, so that they pass through the interior of a region (i.e. across
internal arcs) unchanged, and can be used for inter-region rout-
ing once they come out of the region again.

Ignoring the right constructors for the moment, the first of
these external components, ecomm, is used to implement the inter-
region commercial customer—provider—peer relationships with cpp.
Since it is the first component in the lexicographic product, it is the
first to be compared when selecting between multiple routes, and
will therefore enforce the constraint that customer routes are pre-
ferred over any other routes.

This is followed by a paths component, to record the identi-
fiers of the regions the route passes through. paths was defined
with shorter lists being preferred over longer lists, meaning that this
routing algebra will prefer routes that have passed through fewer re-
gions. Since duplicate list entries are disallowed, this also prevents
routing loops from one region back into itself.

The next two components of the lexicographic product are pro-
viding the internal, intra-region part of the metric. We use sp for
a simple integer distance measure, similar to RIP. To avoid the
counting-to-infinity problems of distance vector protocols, with-
out imposing a small maximum value on distances, we add another
paths component (ipath) to keep track of the router identifiers
used by the path inside the current region.

The external part of the function_union has exactly the
same metric type as the internal part, which is an important
aspect of our model: routes are not tagged as external or internal,
only arcs are. Unlike internal, it doesn’t use right for the
external components ecomm and epath, so their original label
types and > functions will be used. However, it uses 1eft for the
internal components, which means their values will be forgotten
and replaced when routes cross over external arcs between regions;
internal routing information never leaks outside a region.

Given these definitions, we can derive the semantics of this ex-
ample routing algebra by applying the rules to its syntax. The met-
ric type S is the product

({C, R, P} x lists x N x lists) U {o0}.

The order < is the lexicographic order on the metric components.

58

The label type is a disjoint union, being either a value

inl(1 x 1 x N* x (id x id)), or
inr({C, R, P, oo} x (id x id) x N* x (id x id))

where id is the router or region identifier type.

Finally, the &> function “extracted” by the semantics is presented
in Figure 4(a). Line (1) corresponds to labels on internal links in
Figure 3, while line (2) deals with labels on inter-region arcs.

The rules are sufficiently precise that we can implement a com-
piler for this metalanguage [2], taking the syntax as input and auto-
matically generating optimised code that implements the algebra’s
types and functions. This code can be linked into a generic routing
protocol implementation, resulting in a new routing protocol based
on the algebra specified in the metalanguage.

However, some generic routing protocol implementations (for
example a modified version of BGP where the route attributes have
been replaced with hooks for a routing algebra) are much closer
to the node-oriented view of figure 1 than the algebraic view. As
well as the conceptual gap between these two views, there is this
implementation gap that also needs to be bridged. The next section
extends the metalanguage so that an implementation in the node-
oriented view can be extracted automatically.

3. THE EXTENSION

We now extend the mini-metalanguage so that we can extract
consistent configuration languages as described in Figure 2. We
add only two new constructors to the language, but we substantially
modify the semantic function [...]. An expression e will now map
to a pair, [e]° = (A, C), where A = (S, L, =<,) is the routing
algebra as before, and C'isatuple (L7, Lg, W, >1, >E, ©®) cap-
turing the other components of a configuration language described
in Figure 2.

We want to guarantee consistency by construction. That is, we
want the following theorem to hold:

THEOREM 1. If e is an expression in the extended metalan-

guage and [e]° = (A, C) with
A - (57 L7 j7 I>)7
C = (L1, Lg, W, >, >E, 0),

then the consistency condition holds. That is for every l; € Ly,

lg € Lg and s € S we have
(l] @lE) >s=I;>; (ZE >E S)

In the definition of [e]° we need a default configuration be-
haviour for any expression that does not use the new constructors.
We choose, somewhat arbitrarily, to put configuration and compu-
tation on the “importing side” of an arc. If e does not use any new
constructors, then we want the semantic function to return

ﬂeﬂo = ([[e]], Cimportionly(‘SE L7 I>))’
where [e] = (S, L, <,) and
Cimport_onty (S, L, >) = (L, 1, S, 1>, right, left).

To see that Cimport_only (S, L, I>) is consistent with (S, L, <

, I>) suppose that [; = landlp = L. Then (I; © lg)> s =

(lleft LY > s=11> s=1> (Lrights) =1; >1r (lg >E s).
The following tuples are also used in our semantics.

C | Ly Lg W g >E ©
Cexport(S, L, >) | 1 L S right > right
Cexpott 1mp01t(5 ®) S S S ® ® ®
Crignt(S) | 1 1 S right right right
Cett(S) | S 1 1 left left left

(1) inl(L, L, v, (i, 5) ©> (ec, ep, d, ip) = (ec, ep, v+d, (i, J) >patns)
(2) inr(z, (m, n), v,l) ©> (ec, ep, d, ip) = (T Depp €c, (M, N) B> patns €p, v, 1)
(a) The arc-oriented operation > for the scoped-product example.

(3) inl(L, L, v, 1)) >g (e, ep, d, ip) = inl(ec, ep, v+ d, ip) export on internal
(4) inr(z, (m, n), L, L) e (zDopec ep, d, ip) = inr(xz>ec, (M, n) >pans €p, L, L) export on external
(5) inl(L, L, v, (4, 5)) o1 inl(ec, ep, d, ip) = (ec, ep, v+d, (i, J) > paths ID) import on internal
(6) inr(L, 1, v,1) > inr(ec ep, 1, 1) = (ec, ep, v, 1) import on external
(7) inl(L, L, v, (4, 7)) ©1 inr(ec, ep, J_, 1) = o mismatched labels
(8) inr(L, L, v, 1) ©r inl(ec, ep, d, ip) = oo mismatched labels

(b) The node-oriented operations for the scoped-product example.

Figure 4: Functions extracted from the scoped-product examples. Note that the | -values could easily be optimized away when

implementing these types.

‘We can then show that

Cexport (S, L, >>) is consistent with (S, L, <, >)
Cloxport_import (S, ®) is consistent with (S, S, <X, ®)
Chight (S) 1s consistent with (S, 1, =<, right)
Clest(S) is consistent with (S, S, =, left)

The operations of Cexport (S, L, >) shift computation to the “ex
port side” of an arc. The operations of Cexport_import (S, ®) allow
both import and export computations, as long as the corresponding
operation ® is associative. The operations of Chight(S) cause a
metric s to be copied over an arc, while the operations of Clegt (.S)
cause the origination of a new value s on import.

For the semantics of lexicographic product and function union,
we need to compose tuples of configuration operations,

Cl = (L}7 L1E7 Wl: l>}a l>1Ev ®1)7
Co = (L3, Ly, W2, 7, %, ©°).
This is accomplished by defining C; x C2 and C; W C as follows.
C1 x Cy C1 W Cy
L; | LI xL? LiwL?
Lp | Ly x1%3 LLwl?
W W xWw? Wlyw?
Dr | DI XD D] Ao D
e | DEXDE DpUbDh
O 0'xe? O'+u®®
The operator + is defined as
inl(a) f+e g inl(b) = f(a, b),
inr(a) f+e g inr(b) = g(a, b),
inl(a) f+o g inr(b) = oo,
inr(a) f+o g inl(b) = oo.

It is not too hard to show that if C is consistent with A; and C>
is consistent with Ao, then

Cy x Cy
C1 ¥y Cy

is consistent with A; X As,
is consistent with A; W As.

The extended grammar for the metalanguage is as follows.

base

lex_product <name:exp,
function_union <name:exp,
right exp

left exp

export exp

export_import exp

exp
name : exp>
name : exp>

59

= (A; X As,C1 x Co)
(A1, Ch)
(A2, Cs)

[Lex_product <n:e;, m:e; >]°

where { %eﬁ

[function_union < mn:ei, m: e >]° = (41 WAz, C1 W (o)
[es]° = (A, Cl)
where { [e ﬂo — (Ao, Cs)
[right e]° = (right(A), Chight(S))
[e]° = (A4, C)
where A = (S, L, <,)
[1eft e]° = (left(A), Cierc(S))
[e]l° = (4, 0)
where A = (S L <)
[[export eﬂo = ((S7 L, =,)7 Clex Ot(S L, ‘>))
[e]° = (4, 0)
where A = (S L <,)
[export_import e]° = (A, Cexport nnport(S ®))
[l° = (4, C)
where A = (5,8, %, @)

Figure 5: Semantics of extended mini-metalanguage.

The intended meaning of the expression export e is to override
the default behavior and shift all computation to the “export side” of
an arc. The intended meaning of the expression export_import
e is to allow policy to be applied at both sides of an arc. This
requires that e is associated with a routing algebra of the form
(S, S, =, ®), where ® is an associative operation. If this is not
the case then our semantics will return an error (error handling is
not explicitly defined here).

The extended semantic function is then defined in Figure 5. The
proof of Theorem 1 now follows by a straightforward structural
induction of the expression e.

Note that some operations throw away the C' component associ-
ated with a sub-expression. In these cases we would expect that C
is nothing more than the default behavior.

3.1 Example revisited

We now return to the scoped product example of the previous
section. We want to split the computation associated with external
links in a BGP-like manner. The ecomm and epath attributes should
be computed on export, while the idist and ipath should originate

new values on import into a region.
We accomplish this by using the new operations of the language
(in bold):

function_union

<
internal:
lex_product
<
ecomm: right cpp,
epath: right paths,
idist: export_import sp,
ipath: paths
>l
external:
lex_product
<
ecomm: export cpp,
epath: export paths,
idist: left sp,
ipath: left paths
>
>

Figure 4 presents the configuration functions “extracted” from
this expression by the semantic function. Line (3) corresponds to
applying export policy on internal links, line (4) to export policy on
external links, line (5) to import policy on internal links, and line
(6) to import policy on external links. Lines (7) and (8) deal with
configuration errors involving mismatched labels (we will address
the problem of generating code to check this at adjacency set-up
time in future work).

4. DISCUSSION

Most work in this area has focused on raising the level of ab-
straction of network configuration by various means of generating
routing configuration files [1], checking correctness of such config-
urations [4], or centralising the computation of routes [3].

In contrast, we are attempting to integrate the design of a config-
uration language with an underlying algebraic semantics. We are
currently implementing the scheme described here in the Metarout-
ing toolkit [2]. This system includes a compiler that translates
metalanguage expressions into into C++ code, guided by seman-
tic functions of the kind described in this paper. The goal is to al-
low routing implementations to be automatically generated from a
high-level specification and to automate the tedious theorem prov-
ing associated with the correctness of routing protocols.

Other approaches to the design of configuration languages in-
clude Nettle [13] and Declarative Routing [9]. Nettle suggests the
use of the strongly-typed functional programming language Haskell
for specifying routing configurations, while Declarative Routing
uses a declarative database query language to express both policy
application and routing algorithms.

Router vendors support route maps as an important mechanism
for encoding policy. In Cisco IOS these consist of sequences of
match and set commands, and can be applied to import and export
sides of links. In BGP they can match on the route’s med value, on
its AS path (matching with a regular expression), on its communi-
ties, and on its prefix; and they can set the matching route’s local
preference and med attributes, set or add to its communities list,
and prepend arbitrary lists to its AS path.

How might we model a route map over an algebra? If we start
with the arc-oriented model (Figure 1(a)), we could imagine asso-
ciating a function of type h € S — L with a link. We could then
define h > s = h(s) > s. That is, the route map determines which
label to apply to s by some kind of inspection of s itself. (An imple-
mentation of our model could use a language like Haskell to define
the route map functions directly, as suggested by Nettle [13].)

Do route maps belong in the configuration language or in the
routing algebra itself? The original metarouting paper [7] placed

60

such functions in the algebra. An argument could be made that
they belong in the configuration language. The difficulty hinges
on which algebraic properties are important for correctness. If we
need only the increasing property,

Vse S, leLl : s#0 = s<1D> s,

then the introduction of route maps will not impact correctness.
This is because we will have

VseS, heS—L:s#oo0 = s<hls.
However, if we need the monotonicity property,
Vs1, s2€ S, 1 €L : s1 282 = | > 851 <1 > 82,

then the introduction of route maps may well impact correctness.
This is because it may be very hard to enforce the condition

Vs1, 50 €8, heS —L : s <8y = hi>s1 < hD> so.

For example, it may be that h(s1) = w, where w > s1 = 00, SO
that h > 51 = oo, but that b 1> s2 # oo.

Acknowledgements

We would like to thank the Engineering and Physical Sciences Re-
search Council (EPSRC) for support (Grant EP/F002718/1). Thanks
also to the metarouting group for helpful feedback — Abdul Alim,
Arthur Amorim, John Billings, Alexander Gurney, Vilius Naudziu-
nas, and Balraj Singh.

S. REFERENCES

[1] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens,

D. Meyer, T. Bates, D. Karrenberg, and M. Terpstra. Routing
policy specification language (RPSL), 1999.

[2] J. N. Billings, P. J. Taylor, M. A. Alim, and T. G. Griffin.

Equid: A metarouting toolkit. Draft.

M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,

and J. van der Merwe. Design and implementation of a

routing control platform. In NSDI, 2005.

N. Feamster and H. Balakrishnan. Detecting BGP

configuration faults with static analysis. In NSDI, 2005.

L. Gao and J. Rexford. Stable internet routing without global

coordination. IEEE/ACM Transactions on Networking, pages

681-692, December 2001.

[6] M. Gondran and M. Minoux. Graphs, Dioids, and Semirings.
New Models and Algorithms. Springer, 2008.

[7]1 T. G. Griffin and J. L. Sobrinho. Metarouting. In Proc. ACM
SIGCOMM, August 2005.

[8] A. Gurney and T. G. Griffin. Lexicographic products in
metarouting. In /CNP, October 2007.

[9] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative routing: extensible routing with declarative
queries. In Proc. ACM SIGCOMM, 2005.

[10] J. L. Sobrinho. Algebra and algorithms for QoS path
computation and hop-by-hop. IEEE/ACM Transactions on
Networking, 10(4):541-550, August 2002.

[11] J. L. Sobrinho. Network routing with path vector protocols:
Theory and applications. In Proc. ACM SIGCOMM,
September 2003.

[12] J. L. Sobrinho. An algebraic theory of dynamic network
routing. IEEE/ACM Transactions on Networking,
13(5):1160-1173, October 2005.

[13] A. Voellmy and P. Hudak. Nettle: A language for configuring
routing networks. Draft.

(3]

(4]

(5]

