Mobitopolo: A Portable Infrastructure to Facilitate Flexible
Deployment and Migration of Distributed Applications with
Virtual Topologies

Richard Potter
NICT, Tokyo, Japan
potter@nict.go.jp

ABSTRACT

Hosting network services on virtual machines has become
appealing for provisioning resources, saving power and en-
abling migration in case of service disruption, especially in
data centers. Network services implemented widely over the
Internet may enjoy similar benefits, because general-purpose
hosting infrastructures such as PlanetLab and Amazon EC2
are available to host them. However, such infrastructures
are piecemeal and heterogeneous in terms of virtualization
technologies, which makes it hard to use them all together to
their full potential. To ease this challenge, we implemented
Mobitopolo, a portable infrastructure service to deploy and
migrate distributed network services spanning over hetero-
geneous hosting infrastructures while preserving the logical
connections between the service components. To the best
of our knowledge, Mobitopolo is the first virtualized execu-
tion environment to integrate all these attributes into one
system.

Categories and Subject Descriptors

C.2.6 [Computer Communication Networks|: Internet-
working; C.2.1 [Computer Communication Networks]:
Network Architecture and Design

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Virtualization, Internet

1. INTRODUCTION

Virtualization has become a viable technology for provi-
sioning resources, reducing power consumption, and migrat-
ing applications in case of service disruption, in data centers
where a large number of network services are hosted on top
of a multitude of servers. Network services such as web prox-
ies and caches distributed across the Internet may also enjoy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

VISA’09, August 17, 2009, Barcelona, Spain.

Copyright 2009 ACM 978-1-60558-595-6/09/08 ...$10.00.

19

Akihiro Nakao
University of Tokyo & NICT, Tokyo, Japan
nakao@iii.u-tokyo.ac.jp

Figure 1: To software inside, Mobitopolo is simply a
set of standard Linux environments linked by point-
to-point Ethernet connections.

similar benefits such as resource provisioning and live migra-
tion of network services if deployed on top of distributed vir-
tualized execution environments, now that general-purpose
hosting infrastructures such as PlanetLab [3] and Amazon
EC2 [1] have become available to host them.

However, such infrastructures are piecemeal and hetero-
geneous in terms of virtualization technologies, which makes
it hard for application developers to use them all together
to their full potential, since they have to reconfigure their
applications for individual infrastructures.

In this paper, we propose Mobitopolo, another layer of
infrastructure on top of multiple heterogeneous infrastruc-
tures to deploy and migrate network services over the In-
ternet. Mobitopolo is innovative compared to other virtual
execution environments in that it is a portable infrastruc-
ture service to facilitate deployment and migration of dis-
tributed network services spanning over heterogeneous host-
ing infrastructures while preserving the logical connections
between the service components. To the best of our knowl-
edge, Mobitopolo is the first virtualized execution environ-
ment to integrate all these features into one system.

To increase portability, Mobitopolo is implemented com-
pletely in user-mode on Linux, which most hosting infras-
tructures support. In more detail, Mobitopolo is built on
top of SBUML [11, 12, 13], a Linux on Linux virtualization
container based on User-Mode Linux [5]. Because SBUML
runs strictly on top of normal Linux system calls, it can run
inside of almost any Linux host, even if that host Linux is

itself some type of virtual machine. The portability of Mo-
bitopolo enables snapshot-based deployment and live migra-
tion of Linux-based network services across heterogeneous
hosting infrastructures.

Mobitopolo keeps the logical connections intact between
the service components so that the applications on top of it
can use a virtual network topology that stays static, even
as services are moved among heterogeneous environments
across the world. This feature enables the service compo-
nents to be migrated inside virtual containers such that con-
nections between them can appear unchanged to the ser-
vice components. To achieve this feature, point-to-point
Ethernet-over-UDP tunnels are implemented in SBUML.
The network configuration necessary to connect and recon-
nect the tunnels is performed outside the virtualization con-
tainers of SBUML so that changes are invisible to software
running inside, as illustrated in Figure 1.

A key benefit introduced by virtualization technology is
that it provides a container complete enough to migrate mul-
tiple complex software pieces to another physical machine
without breaking internal connections. In a nutshell, Mo-
bitopolo extends this container to comprise multiple Linux
machines in different geographical locations that hold con-
nected components of distributed applications. It also makes
the components almost free of physical host details, a prop-
erty that not only enables migration, but also enables many
other benefits that apply particularly well to the develop-
ment and deployment of distributed systems.

The rest of the paper is organized as follows. Section 2
describes the prototype implementation of Mobitopolo. Sec-
tion 3 explores the benefits a system with Mobitopolo’s fea-
tures can provide using a simple but interesting example.
Section 4 discusses performance aspects of the system. Fi-
nally, sections for related research and conclusions follow.

2. IMPLEMENTATION

SBUML provides much of Mobitopolo’s functionality with
its Linux execution environment and snapshot features. The
following sections explain the additional implementation ef-
fort.

2.1 UDP-Tunnel Extension

SBUML inherits from UML a number of networking in-
terfaces. For our goals, the two with the most potential are
slirp and TUN/TAP. TUN/TAP networking sets up a point-
to-point Ethernet tunnel between a UML virtual machine’s
network device and a TAP device on the host. Routing can
be set up on the host to send the VM’s packets to and from
the TAP device. TUN/TAP is the preferred way to provide
general network connectivity because of speed. However, for
us it is too restrictive because it requires host support for
TAP devices and root privileges to set up routing. VServer-
based systems such as PlanetLab do not provide such sup-
port.

In contrast, UML’s slirp interface can be used without
root privileges. It gives each VM its own private network
and provides NAT functionality to route packets to and from
the host’s network. Unfortunately, its performance is sub-
optimal.

With both slirp and TUN/TAP, outside connections are
broken when VMs migrate to different subnets. It is possi-
ble to use private networks from inside the VMs, however
changes to physical topology are no longer transparent to

20

software inside the VMs, which must adjust private network
configuration to changes in physical topology. Also, the ex-
tra layer slows down performance.

These problems motivated us to make a new UML network
device explicitly designed for making private networks based
on the existing TUN/TAP driver code. Its device driver
code for creating and opening TAP devices was replaced
with code for opening UDP socket connections. Once open,
TAP devices and socket connections are both represented
as file descriptors on the host. Datagrams can be written
to and read from these file descriptors in the same way, so
little else in the rather complicated TUN/TAP driver code
needed to be changed.

2.2 Live Migration Extension

SBUML supports virtual machine snapshots, so it can per-
form migration by freezing the machine, saving a snapshot,
removing the virtual machine, copying the snapshot to an-
other host, and then restoring the snapshot. For this so-
lution, the virtual machine is down for the many minutes
necessary to do all five steps. Many virtual machine im-
plementations have live migration features to minimize the
downtime by iteratively precopying the virtual machine im-
age while the machine is still running. This is a tricky tech-
nique because a running VM causes the destination image to
contain inconsistent, old data. Nevertheless, some or most
of the destination VM image is correct, so subsequent copy
operations can copy less and be faster. During the last iter-
ation, the machine only needs to be frozen for a short time
while a much smaller portion is transferred. With identical
source and destination images, the source machine can be
removed and the destination machine started up.

The amount of downtime is determined in part by the
speed to compute virtual machine image changes. The tech-
nique we chose for SBUML is to modify the tar utility to
produce archives that contain only block level differences
between two directories. This works well because all of a
running SBUML VM’s state is contained in a single direc-
tory on the host machine. It can be done quickly because
the sizes of these directories are typically much smaller than
that of host main memory. Therefore after one or two pre-
copy iterations, all of the VM is cached in host memory
and the final comparison of the few hundred megabytes in
main memory can be done in less than half a second. For
VMs that are not aggressively changing state during WAN
migration, downtime is about one or two seconds. If state
is changing during migration, the downtime is determined
by how much state is changing and the bandwidth between
source and destination hosts.

Most VM migration solutions are for LAN environments
where it is not necessary to move the VM’s disk state, be-
cause the VM can use the same network mounted disk before
and after migration [4]. Therefore, fast migration in LAN
environments can exclusively focus on how to quickly com-
pute RAM changes and can use very quick techniques that
use memory management hardware. In contrast, the special
tar archive solution used by SBUML is slower but general-
izes to 100% of the machine state, including the disk data
necessary for WAN migration.

2.3 Central Management

Although SBUML had existing features to download and
demand fetch virtual machines over HTTP, it did not have

features to control running virtual machines remotely. For
Mobitopolo, these were added in a layered way.

2.3.1 Remote Host Commands

The lowest layer of Mobitopolo’s central management is a
command (sbuml-remotecmd) to execute a shell command
inside an SBUML environment on a remote machine. For
parameters, sbuml-remotecmd is given an ssh command that
can connect to the remote user account and the directory
path to the SBUML installation. To make it comfortable to
use this command interactively, the ssh and path informa-
tion can be saved into an alias file. Negotiating secure con-
nections for each command can take significant time. For-
tunately, ssh has a feature to open permanent secure con-
nections that can be used to send future commands more
quickly. Sbuml-remotecmd is responsible for automatically
opening and reusing these connections.

2.3.2 Remote Guest Commands

Another command (sbumlguestezec) executes shell com-
mands inside a virtual machine. Because these shell com-
mands are used to set up networking, it is important that
sbumlguestexec itself not rely on networking. Therefore it is
implemented by using UML’s hostfs feature to poll special
files on the host for new shell commands to execute. For re-
mote virtual machines, this command is used in combination
with sbuml-remotecmd.

2.3.3 Objects as Proxy Representations

The top layer is a centralized data structure for holding
the status of the globally distributed machines and tunnels.
We call it the “control tree” because it is implemented as a
normal UNIX file directory tree. The top level includes di-
rectories for nodes, vms, udp-tunnels, and udp-halfs. In-
side each of these directories is another directory for each
object of that type that is part of the distributed system.

Inside each object directory is a collection of files that
store information about the remote object that the directory
represents. Relationships between objects are represented as
soft file links. For example, nodes/princeton/ might repre-
sent a user account on a PlanetLab server at Princeton, and
vms/testvm/ might represent a virtual machine on Prince-
ton’s server. In that case, vms/testvm/atnode/ will be a soft
link to the nodes/princeton/ directory. Each udp-tunnel
object points to the two udp-half objects that implement
each end of the tunnel, and these in turn point to the vir-
tual machines that host them.

All objects have a soft link called methods that points
to a directory of scripts for manipulating that object.
This allows the control tree to behave as a simple ob-
ject oriented language with object persistence. For
example, vms/testvm/methods/do-summary will give the
current status of the virtual machine called testvm.
vms/testvm/atnode/methods/do-summary will give the sta-
tus of whatever node it on. The SBUML commands sbuml—
remotecmd and sbumlguestexec can recognize control tree
objects and use them as shortcut aliases for remote com-
mand targets.

The main methods for each object are do-bringup and
do-takedown, which instantiate and destroy the actual re-
mote object. Each do-bringup method has the same basic
structure for its implementation:

21

- lock object
- check status of the object with do-summary
- if "object is not up" then
- bring up all objects it depends on
(e.g. bring up VM before any tunnels)
- take down any part of the object still existing
- make a fresh attempt to bring up the object
- recheck status of the object with do-summary
- release lock

When deploying complex distributed systems, networks
and remote hosts outside of the user’s control often cause
partial failure. The structure of the do-bringup method
has proved to be effective for gracefully allowing successful
parts of the system to keep running while making attempts
to fix problematic parts. The locks allow the system to bring
objects up in parallel as much as possible.

As an optimization, if the do-summary method determines
an object is up, further calls within the following 120 sec-
onds will assume the object is still up, which saves the time
necessary to do the checks. The actual steps to bring up
an object varies according to the type of object and usu-
ally requires a number of remote commands. The objects
for nodes know about some types of hosts, such as Planet-
Lab nodes, and will take steps to ensure that the required
software, including SBUML itself, is installed.

3. AN EXAMPLE DISTRIBUTED SYSTEM

Being able to separate physical host details from the im-
plementation of a distributed application leads to a number
of interrelated benefits during both development and use.
Mobitopolo allows us to experience these with real systems
today. For a simple but sufficiently-complex example ap-
plication, consider a hypothetical administrator who wishes
to to explore the merits of splitting a file server into glob-
ally distributed components. The problem the administra-
tor wants to solve is that the file server was not designed for
connections with high latency. (For a plausible story line, as-
sume the administrator must appease a stubborn supervisor
who is traveling internationally, yet wants file server access
to be the same as when working at the home office.) The
administrator believes that virtualized infrastructure might
offer a solution.

High international latency is caused by distance, so at
first the only solution seems to be the use of virtual infras-
tructure to move the whole file server closer to the user.
However, for a server with large contents, this simple solu-
tion is likely to become too unwieldy or impractical. This
realization inspires another idea, which is to move only the
protocol part of the file server, leaving the server’s contents
mostly unmoved.

3.1 Design of Example System

Starting with this rough idea, the administrator’s next
task is to find a workable way to implement it. Because
Mobitopolo separates internal implementation issues from
most physical deployment issues, it enables effective divide
and conquer, which is one of the most time-tested strategies
for simplifying software development. The administrator
can temporarily ignore many issues about whatever phys-
ical machines will be used, such as performance, routing, IP
addresses, free ports, firewalls, location, ownership, kernel
features, account permissions, etc. The administrator task
is simplified to that of creating an implementation that will
work for locally connected Linux machines that can commu-

Single Machine File Server

(Contents and Protocol)

Disk Drive
Contents(Blocks)

Device Driver

Local File System
(EXT2)

Remote Protocol
(Samba)

WAVAVAVAS

High Latency Link

User

- Distributed File Server

(Contents)
Disk Drive NBD Sever
Contents(Blocks)
Device Driver

ur Aousie ybiH

Local File System

NBD Client

(EXT2)
Low Latency Link

AN

Remote Protocol User

(Samba)

Figure 2: Basic idea for splitting a file server to move the protocol component closer to the user.

nicate freely over Ethernet, though keeping in mind that the
connections will be slower and less reliable once the system
is deployed globally.

At a high-level, designing for Mobitopolo means splitting
the system into components that can function in separate
Linux containers. The key challenge here is how to separate
the protocol part of the file server from its contents. The top
of Figure 2 shows one depiction of how a normal one-machine
file server is set up with contents, device driver, local file
system, and remote file system protocol all running in one
machine. The three links between these components suggest
plausible places to implement the separation. The adminis-
trator has full root permissions in the Linux machines and
can therefore make use of any kernel functionality or install
any software that makes implementation easier.

The link between the device driver and the local file sys-
tem is particularly promising, because the Linux kernel pro-
vides a special "Network Block Device” (NBD) driver that
can access a block device on a different Linux machine.
Therefore, the administrator can achieve the key design goal
simply by using a block device in one VM to store the con-
tents and accessing them from a separate VM using NBD.
This solution is illustrated in the bottom of Figure 2. No
custom software needs to be written, and configuring NBD
and Samba is as simple as on a local network.

Figure 3 shows the administrator’s complete design at the
topology level, which includes the contents VM and the pro-
tocol VM shown as the larger icons. It also includes several
addition VMs that have been added to address design issues
affected by factors external to the distributed system. The
first issue is the reliability of Internet connections. Although

22

there is no 100% solution, the administrator decides that
some attempt should be made to make the NBD connection
more reliable, so a backup router has been added, which ap-
pears as the smaller icon closest to the bottom of the figure.
If this router can be placed carefully on the physical Inter-
net topology, the system can potentially route around major
Internet failures more quickly than the Internet’s internal
routing. XORP [6], an open source Linux-based routing so-
lution, can be installed inside the all the VMs as a standard
way to detect link failure and change routing.

A second issue is providing a way for users of the system to
connect to the private network. As explained in Section 2.1,
the preferred solution is to use a TAP device from the host.
Unfortunately, this solution puts extra restrictions on Mo-
bitopolo. The administrator does not want these restrictions
to affect placement of the protocol VM, and so decides to
allocate a separate VM for the TAP bridge and to duplicate
it for more flexibility and redundancy, and because users at
the home office will also want access to the system, adds a
third TAP VM for their use. These three TAP VMs ap-
pear in Figure 3 as medium sized icons. An extra backup
router VM appears in the design so that the remote TAP
VMs have a chance for more reliable Internet connectivity,
should a suitable location for it be found. The extra VMs
do not necessarily have to be deployed, so adding them to
the design incurs no cost.

3.2 Implementation of Example System

The first part of implementation is to create the VMs
and tunnels that make up the topology itself, which is done
through tools provided by Mobitopolo. The other part of

L E L e P PP TP T

Figure 3: The administrator’s final design with 7 virtual machines connected by 10 tunnels. Machines with
TAP devices must be placed on hosts that allow some root-level privileges.

implementation is to set up each VM, which is done using
familiar, standard Linux tools for installing and setting up
software.

When moving from design to implementation, the benefits
of divide and conquer still help simplify the focus to the
distributed system’s internal aspects. Because the physical
locations of the VMs do not matter at this point, they can
be placed on a normal local machine or wherever is most
convenient.

Topology creation and VM setup can be done incremen-
tally and interactively. Changes to the topology are fast
because only changes to data structures in the control tree
are needed. Actual instantiation of the VMs and tunnels
can wait until the administrator is ready to start internal
setup of some or all of the VMs. All necessary information
is stored in the control tree, so instantiation can proceed
automatically.

When virtual machines are added to the topology, an
SBUML snapshot must be chosen for initializing it. Snap-
shots provide easy reuse of VMs that have proven to work
on past implementations. For example, when preparing an
implementation for testing the design in Figure 3, we at first
specified that all VMs be initialized from a snapshot of a VM
we had been using to test XORP.

For adding the tunnels, the two VMs that mark its end-
points are specified. Tap devices are added by giving the
name of the VM that it will be attached to. After machines,
tunnels, and TAPs have been added, all can be brought up
and instantiated by issuing one Mobitopolo command.

Once all VMs are running, internal configuration of each
VM can begin. The contents and protocol VMs require
the most attention. Tools for NBD are copied to the con-
tents and protocol VMs. NBD server is started on the con-
tents VM, and the NBD client is is started on the protocol
VM. The file server is set up on the protocol VM, and the
NBD device is mounted to a directory exported by the file
server. Because configuration is for the virtual network, 1P
addresses are known and ports can be freely chosen.

23

For the other five VMs, no extra setup is required, because
they already have XORP installed, which enables automatic
discovery and setup of routing for all VMs.

Normal Linux tools and techniques can be used for test-
ing. Again, the focus can stay on internal aspects of the dis-
tributed system, such as whether NBD works as expected.
Once the system is judged to be correctly set up, a sin-
gle Mobitopolo save-vms command can save synchronized
snapshots of all seven VMs. The save-vms command also
updates each VM object in the control tree with the new
corresponding snapshot specification so that when the VMs
are taken down and brought up again (perhaps on different
infrastructure), all VMs will have software installed and be
preconfigured exactly as recorded by the snapshots.

3.3 Testing Performance on the Internet

Although the simple design, reuse of standard compo-
nents, and local testing make it likely the system will func-
tion correctly on the Internet, the performance is not easy
for the administrator to predict. On one hand, running the
file server’s protocol (SMB) over a lower latency link should
improve performance. On the other hand, running NBD’s
protocol over the higher latency link will decrease perfor-
mance. The hope is that overall performance will be better,
because the NBD protocol does not have to handle sharing
between multiple clients and can therefore be a less chatty
protocol. It should help that NBD will be under the control
of a file system that was designed to be efficient when faced
with the high latency of disk drives. But to really know and
generate convincing evidence for himself and others, the ad-
ministrator values the hard data that will come from actual
deployment.

Now that the topology has been specified with Mobitopolo
and all machine configuration has been saved into snapshots,
testing is easy. Deployment to remote hosts can be auto-
matic. Utilities exist to send commands to remote hosts
and VMs, so centralized automatic test scripts can be writ-
ten as easily as for VMs on local machines, which is valuable

r
'
'

#!/bin/bash
protocolNode="$1"

The script takes one parameter

oDir=./archive/current/ # The place in control tree for saving statistics

(1) Remove any running vms:
./ control /do—takedown vms/x*

(2) Backup control tree state:
./ control/control—tree—backup

(3) Move protocol vm to given target:

./ control/control—tree —move—vm ./vms/protocol ”$protocolNode”

(4) Bring up the two main tunnels, which will bring up the needed three VMs:
./ control/do—bringup —bp ./udp—tunnels/192.168.1.0/ ./udp—tunnels/192.168.5.0/

(5) Mount file share

inside backup router VM:

sbumlguestexec ./vms/backup—router —1 mkdir mntdir
sbumlguestexec ./vms/backup—router —1 mount —t smbfs —o \
username=sbuml , password=sbuml , uid=root //192.168.5.1/sbuml mntdir

(6) Record performance of tunnels:

./ control/control—tree—save—stats —tunnel—performance ./udp—tunnels/192.168.1.0/
./ control/control—tree—save—stats —tunnel—performance ./udp—tunnels/192.168.5.0/

(7) Time copying of 18MBytes of image files:

sbumlguestexec ./vms/backup—router —1 \

time mdbsum mntdir/mnt100m/photos/dandelion /x.jpg >$oDir/time—results.txt 2>&1

Listing 1: Script to deploy three virtual machines, varying the location of the protocol machine specified by
a parameter. Network and file server performance are measured.

when the tests are likely to be repeated. This is true for
the distributed file server example, because the goal is to
compare performance with multiple tests corresponding to
various physical deployments.

Assume the supervisor wants to access the file server from
Florida and that the home office is in Tokyo. Also assume
that PlanetLab provides the only nodes in Florida that the
administrator can access, which presents a problem because
they do not allow general purpose TAP devices to be in-
stalled. At this stage of testing, the administrator decides
it is acceptable to simulate client access inside the virtual
network using one of the backup router VMs. Having a full
Linux kernel, it has all the software needed to mount the
Samba share and do performance tests. So for an initial
test, only three VMs need to be deployed. The contents
VM needs to be deployed in Tokyo, the backup router VM
in Florida, and the protocol VM in various locations to test
the location’s affect on performance. Now to completely au-
tomate the test, all that needs to be written is a short script,
such as in Listing 1, to set the target node for the protocol
VM, bring up the three VMs, and bring up the two tunnels
connecting them. Then the remote commands facilities (de-
scribed in Section 2.3) can be used to send commands to
measure performance. Performance is checked by measur-
ing the time necessary for the backup router VM in Florida
to compute the md5sum of an 18MB set of files in the file
server, which forces the data to be copied across both the
NBD and SMB protocols. The output of md5sum is later
used to help confirm that the time results are valid.

The penultimate column of Table 1 shows the file copy-
ing throughput achieved when placing the protocol VM in
24 different locations. The top line shows that throughput
for Tokyo is about 120kbps. The next line shows the ideal
case of having the protocol VM on the same local network
as the client, which produced 790kbps. The next group of
lines are for locations in Eastern North America and average
about 400kbps. Locations in Western North America and
then Europe follow with throughputs of about 300kbps and

24

130kbps respectively. (Other table columns will be discussed
in Section 4.)

The administrator now has hard evidence that sometimes
it is possible for the location of the protocol VM to speed
throughput by a factor of six. With this, he can move on
to interpret the results in light of his overall goal and alter-
native solutions. If more tests are desired, the exact same
system can be redeployed as many times as necessary.

For example, if colleagues wonder what the packet counts
are on the links during file copy, the exact same experiment
can be run again with the additional data collection. A
quick rerun on a local machine shows that the protocol node
receives about the same number of packets from NBD as it
transmits to SMB (13222 vs. 13710). Going in the other
direction, the SMB link receives 9057 packets, which is much
more than the 2410 packets transmitted to the NBD link. In
one direction at least, NBD indeed seems to be a less chatty
protocol than SMB.

The copy operation took about 19 minutes when the pro-
tocol VM was in Tokyo versus about 3 minutes for the
Florida location. If each of the extra 6647 SMB packets re-
sulted in a separate round trip delay of about 200ms, up to
22 minutes of delay could result. Therefore the extra packets
give a plausible start towards explaining the 16 minute per-
formance difference. More investigation (and perhaps more
experiments) are necessary to know for certain.

3.4 Actual Use of Example System

After the distributed system has been tested in local and
remote deployments, it is also possible to use Mobitopolo
to deploy the exact same system for actual use. At this
point, however, the overhead of a user-mode solution like
UML/SBUML must be considered. For cases when the over-
head is judged to be too large, the system can be trans-
ferred to faster environments. Mobitopolo helps keep this
option open by supporting standard interfaces that also exist
on other virtualization solutions and non-virtualized Linux
hosts. Therefore rewriting of software would probably be

Table 1: Comparisons of various deployments.(Th=throughput, La=Latency, H=Host, VM=Virtual Machine)

connection to contents in Tokyo connection to client in Florida (cached)
H-Th [VM-Th H-La | VM-La Host of Protocol VM H-Th | VM-Th H-La | VM-La | File-Th | File-Th
(Mbps) (Mbps) (ms) (ms) (Mbps) (Mbps) (ms) (ms) (Mbps) (Mbps)
collocated with contents:
| 5791 [117.96 | .06 | .71 | nodel-net0.koganei.corelab.jp 2.29 | 2.13 | 203.00 | 204.00 | 12 | 12 |
collocated with client:
| 193] 1.18 | 203.00 | 204.00 planetlab2.acis.ufl.edu 6367 | 117.17 | 02 | 32 | 79 | 19.00 |
in Eastern North America:
2.71 1.91 | 177.00 | 178.00 planetlabb.csres.utexas.edu 8.55 7.90 28.70 29.00 .49 91
6.23 2.32 | 185.00 | 180.00 ec2-67...amazonaws.com 8.03 7.82 28.90 29.35 .43 .83
3.12 2.44 | 155.00 | 156.00 planetlab2.utdallas.edu 8.06 7.37 43.70 44.95 .36 .60
2.47 2.15 | 188.00 | 188.00 planetlab2.isi.jhu.edu 8.78 7.74 48.20 48.55 .32 .54
2.50 1.96 | 188.50 | 188.50 planetlab4.cnds.jhu.edu 8.55 7.26 48.40 49.10 .32 .53
2.38 1.63 | 188.00 [189.00 planetlab3.cnds.jhu.edu 8.71 7.48 49.30 49.55 31 .53
2.41 2.24 | 186.00 193.00 | planetl.pitts...intel-research.net 1.12 0.61 54.90 55.30 .30 .46
in Western North America:
4.21 3.81 | 116.00 185.50 planlab2.cs.caltech.edu 8.64 7.28 56.40 56.70 .33 48
4.08 2.83 | 120.00 121.00 planetlab-2.calpoly-netlab.net 7.34 6.21 60.30 60.65 .32 .45
3.40 3.16 | 140.00 | 141.00 planetlab7.flux.utah.edu 7.00 6.73 64.65 65.00 31 42
3.16 2.95 | 140.00 141.00 planetlab6.flux.utah.edu 6.67 5.99 64.70 65.05 27 .37
0.79 0.67 | 243.00 244.00 planetlab4.postel.org 5.48 5.12 83.40 83.80 21 .30
in Europe:
1.62 1.14 | 284.00 | 292.00 planetlab4.lublin.rd.tp.pl 3.07 2.55 | 155.00 | 156.00 .14 .16
1.63 1.03 | 289.00 [290.00 plebt2.essex.ac.uk 2.90 2.76 | 163.00 | 163.00 .14 .16
1.55 1.34 | 294.00 296.00 | planetlab-nodel.it-sudparis.eu 2.70 2.65 | 171.00 171.00 13 .15
1.50 1.41 | 297.00 | 298.00 nodelpl.p...telecom-lillel.eu 2.73 2.59 | 173.50 | 174.00 .13 .15
1.50 0.49 | 294.00 295.00 | plane-lab-pb2.uni-paderborn.de 2.66 2.34 | 176.00 177.00 .13 .15
1.40 1.31 | 309.00 [310.00 planetlab2.it.uc3m.es 2.45 0.99 | 191.50 | 192.00 12 .13
1.36 1.01 | 323.00 | 324.00 planetlab3.upc.es 2.27 2.15 | 205.00 | 206.00 11 .12
0.28 0.27 | 304.00 | 301.00 planetlabl.mwrl.net 0.24 0.29 | 135.00 | 136.50 .07 .08
elsewhere:

10.20 7.95 12 1.07 planetlabl.koganei.wide.ad.jp 2.09 2.15 | 203.00 | 203.00 12 .13
0.57 0.34 | 333.00 | 334.00 planetlabl.tau.ac.il 1.97 1.89 | 216.00 | 216.00 .10 11

unnecessary, although some reconfiguration and restarting
of software would be required.

For cases when performance is acceptable, the flexibility of
Mobitopolo offers many benefits. First, by divide and con-
quer, it is now possible to concentrate on just the remaining
deployment issues. Beyond divide and conquer, flexible de-
ployment can help in at least three other ways.

One is to make repeated deployments effortless so that
newly discovered and acquired virtual infrastructure can be
confirmed to perform as promised. A second way is to allow
deployment as late as possible. Everything internally has
been started up and debugged, so deployment only requires
copying VM images, starting the VMs, and configuring the
outside interfaces of the UDP tunnels, all of which can be
done automatically. When the cost of virtual infrastructure
is an issue, just-in-time deployment can save money. When
performance is an issue, just-in-time deployment can allow
time for more deployment options to be compared, from
which the best can be chosen at the last minute.

A third way that the flexibility can be used is for rede-
ployment in order to make a system better meet changing
user needs. A typical example common in data centers to-
day is to adjust trade-offs between energy consumption and

25

performance by using live migration to consolidate virtual
machines onto fewer physical servers when demand for the
system is low. Other researchers have proposed this idea for
routing components [14]. Mobitopolo generalizes this idea
to wide area live migration and to distributed systems with
legacy software that was not originally designed with this
capability in mind.

Changing user needs can go beyond the performance/en-
ergy trade-off. For our file server example, assume users
at the home office are upset that the sever will be moved
around the world and make their access slower. One com-
promise solution could be for the server to be in Tokyo dur-
ing Japan’s daylight hours and migrated to North America
after the home office closes each day. A test of this idea is
shown in Figure 4, which compares the file copy throughput
experienced by simulated users in Tokyo and North Amer-
ica as the protocol VM is first migrated from a CoreLab [10]
node in Tokyo, to an Amazon EC2 [1] node in Virginia, and
finally to a PlanetLab [3] node in Florida. Performance for
the Tokyo users drops from about 150Kbps to 3Kbps, so
such a transfer should wait until after users in Tokyo have
stopped working for the evening. The supervisor in Florida
enjoys an increase from 3Kbps to about 25Kbps.

1000 PRI NS S SN U S S SR S N SN SR ST S (NS SR SN NS S S S S

. Throughput of Traveling User (Florida)
é 100 1A/ Throughput of Home Office Users (Tokyo) ----—----- [
2) \1
= 3
2 10 4 | 1
= |
Y : TN
2 1 4 in KVM : in VServer 3
ﬁ (Tokyo)] (Florida)
0'1 T T T 1 T T T T T T T T T
o =) o =) =) o =) =) =) o = o o
@ 8§ 8 § 8 8§ § 8 § g i 8 8

Time (seconds)

Figure 4: Changes in file copy throughput as the protocol VM is migrated from Tokyo, to Virginia, and then
to Florida across three different virtualization technologies.

The graph represents a particularly challenging case of
migration, one with high simulated load from Tokyo users,
which kept dirtying the VM’s RAM and making precopying
ineffective. Therefore, the server ended up being down for
the 7.5 minutes required to copy the protocol VM’s 200MB
state over the Internet from Tokyo to Virginia. Remote
file copy operations experienced I/O errors during this time.
Throttling the Tokyo users’ bandwidth during migration
could lessen this problem. However, the protocol VM is
less busy in Virginia because of lower network bandwidth,
and so the migration to Florida happened with about 26
seconds of downtime, which is fast enough for the file opera-
tions to proceed without error. This gives our hypothetical
administrator hard evidence about what is demonstratively
possible, from which alternatives and trade-offs can be more
realistically judged.

4. DISCUSSION

In terms of ease of deployment, we believe Mobitopolo
has been a success. The most difficult part of implementing
and deploying a distributed system such as in the previ-
ous section is the effort of configuring software in each VM.
Fortunately, even with many deployments, the software con-
figuration only had to be done once.

Distribution to PlanetLab and CoreLab nodes is fully au-
tomatic, including requests to PlanetLab’s API to add nodes
to slices, wait the 20 or so minutes for them to appear,
and then install SBUML and supporting software. Once
the node is initialized, snapshots for the VM images can be
deployed quickly because their sizes are relatively small.

Each snapshot is of a VM with 150MB of memory and
a 16GB file system, of which 13GB is filled with software.
In the file system are directories with compilations of the
XORP and CLICK software suites, which together take up
more than 1.3GB of disk space. So many gigabytes of state
would make deployment across the Internet slow and would
possibly limit which physical infrastructure would be able
to host the machines. Fortunately, all that is necessary is
to clone the VM, and all the VM’s unused file system con-
tents can be left on standby on an HTTP server. Disk in-
formation is copied on reference, so it stays with the VM
once accessed. Therefore, by cloning and then exercising
the software, a good approximation of the system’s working
set of disk storage can be collected into the VM and its snap-

26

shots [12]. This reduces the backup router VMs and TAP
VMs to about 23MB. The protocol VM snapshot is 26 MB.
The contents VM, which will be deployed locally, is larger
(1.2GB) because it is loaded with test data. For the smaller
snapshots, going from 13GB to 26MB or less reduces the
state that must travel over the Internet by a factor greater
than 500.

Deployment of the 26MB protocol VM to a PlanetLab
node 25km away from our Tokyo lab takes about 52 sec-
onds. Once the snapshot has been distributed, the machine
can be brought up again in 30 seconds. The same VM can
be deployed freshly to Florida in 125 seconds, and once there
brought up again in 20 seconds. After the three VMs used
to create the table in Table 1 are brought up, the two tun-
nels can be brought up in about 16 seconds. We have some
optimizations planned to make these times faster, however
so far these deployment times have been satisfactory for our
current use.

Downtime for migration, however, is more critical. For
that we implemented a special case tunnel configuration
optimization that skips some time consuming tests, which
makes it possible, when enough bandwidth exists between
source and destination, to do migration and keep network
downtime under 10 seconds. Reducing this time further and
finding graceful ways to deal with difficult cases such as il-
lustrated in Figure 4 is a priority for our research.

The new UDP tunnel device for SBUML was successful
in making changes in physical deployment transparent to
software inside. Active TCP connections are able to survive
saving to snapshots and redeployment as well as migrations.
Performance can be seen in the “Th” and “La” columns of Ta-
ble 1. The tunnel added about .35ms of the latency of the
host. For Internet connections, the tunnel delivered mea-
sured throughput between 33% to approximately 100% of
measured host throughput. Over half of these tunnel con-
nections delivered greater than 85% of host throughput.

For connections between virtual machines on the same
host, throughput maxed out at about 117Mbps, so the cur-
rent solution clearly has significant overhead. To make the
system more useful for experiments on fast local networks,
we plan to explore how much of this overhead can be re-
moved. Previous research [9] has demonstrated techniques
that improve UML’s throughput by a factor of three, and we
expect some of these techniques will improve Mobitopolo.

S. RELATED WORK

Other projects have taken advantage of UML’s user-mode
characteristics for networking research. The VINI research
project [2] used UML to host XORP routing software in-
side PlanetLab. It used another of UML’s many networking
interfaces called uml switch to create a number of Ether-
net devices. Uml switch was integrated with Click network
forwarding software to provide a data plane that could do
forwarding independently of UML. Although this architec-
ture is probably faster for network forwarding applications,
it is probably slower for connections to software hosted in-
side UML, because of extra hops through the Click and
uml switch processes. VIOLIN [7] also connects UML vir-
tual machines hosted on PlanetLab with UDP tunnels. How-
ever it uses intermediary virtual switches and virtual router
components between the virtual machines rather than the
direct connections used in Mobitopolo. Another distinc-
tion between Mobitopolo and these two systems is that Mo-
bitopolo uses SBUML’s snapshot extensions to UML and
can therefore distribute small cloned prebooted VMs, as well
as support migration. A later version of VIOLIN [8] inte-
grates snapshots, however the virtualization was changed to
Xen, and thus lost the portability of UML-based solutions.

6. FUTURE WORK AND CONCLUSIONS

In Mobitopolo, we provide standard Linux functionality
and networking interfaces for the construction of networking
experiments and general purpose distributed applications.
We make it possible for these to run as user-mode software
on standard Linux hosts, and therefore users can take advan-
tage of the unstandardized mix of commercial and research
oriented virtualized infrastructure becoming available glob-
ally on the public Internet and private research networks.
Physical topology is transparent to software running inside
Mobitopolo, which makes it easier to change physical de-
ployment or deploy multiple times, because no changes or
reconfiguration of the software is necessary. This makes its
snapshot functionality more powerful, because all configu-
ration can be done in advance and saved into snapshots,
even if physical deployment details are yet unknown. Live
migration across WAN is supported, so that components
of distributed systems can be moved about the world with
minimal disruption to the systems’ continuous operations.
We know of no other user-mode system that offers com-
pletely automatic deployment of preconfigured distributed
Linux topologies and live migration of components across
wide-area Internet connections, all transparent to software
running inside the Linux components.

7. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
thoughtful suggestions that improved the paper and to ac-
knowledge the role of the Japan Science and Technology
Agency (JST) and the Information-Technology Promotion
Agency (IPA) in providing funding for development of the
legacy SBUML features used in this work.

27

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

REFERENCES

Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2.

A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In VINI veritas: realistic and controlled
network experimentation. In In Proc. of SIGCOMM,
pages 3—-14, 2006.

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an
overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3-12, 2003.
C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proc. 2nd USENIX/ACM
Symposium on Networked Systems Design and
Implementation (NSDI 2005), 2005.

J. Dike. User Mode Linux. Prentice Hall Ptr, 1st
edition, April 2006.

M. Handley, E. Kohler, A. Ghosh, O. Hodson, and

P. Radoslavov. Designing extensible IP router
software. In NSDI’05: Proceedings of the 2nd
conference on Symposium on Networked Systems
Design & Implementation, pages 189-202, Berkeley,
CA, USA, 2005. USENIX Association.

X. Jiang and D. Xu. Violin: Virtual internetworking
on overlay infrastructure. In Proc. of the 2nd Intl.
Symp. on Parallel and Distributed Processing and
Applications. Springer, 2004.

A. Kangarlou, D. Xu, P. Ruth, and P. Eugster. Taking
snapshots of virtual networked environments. In
Proceedings of the 3rd international workshop on
Virtualization technology in distributed computing.
ACM New York, NY, USA, 2007.

Y. Koh, C. Pu, S. Bhatia, and C. Consel. Efficient
packet processing in user-level OSes: A study of UML.
Local Computer Networks, Annual IEEE Conference
on, 0:63-70, 2006.

A. Nakao, R. Ozaki, and Y. Nishida. CoreLab: An
emerging network testbed employing hosted virtual
machine monitor. In Proc. of ROADS’08, 2008.

R. Potter. One-click distribution of preconfigured
Linux runtime state. In Virtual Machine Research and
Technology Symposium, 2004.

R. Potter and K. Kato. SBUML: Multiple snapshots
of Linux runtime state. JSSST Computer Software (to
appear), 2009.

O. Sato, R. Potter, M. Yamamoto, and M. Hagiya.
UML scrapbook and realization of snapshot
programming environment. In K. Futatsugi,

F. Mizoguchi, and N. Yonezaki, editors, ISSS, volume
3233 of Lecture Notes in Computer Science, pages
281-295. Springer, 2003.

Y. Wang, E. Keller, B. Biskeborn, J. E. van der
Merwe, and J. Rexford. Virtual routers on the move:
live router migration as a network-management
primitive. In SIGCOMM, pages 231-242. ACM, 2008.

