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ABSTRACT

The tussle between reliability and functionality of the Internet is
firmly biased on the side of reliability. New enabling technologies
fail to achieve traction across the majority of ISPs. We believe that
the greatest challenge is not in finding solutions and improvements
to the Internet’s many problems, but in how to actually deploy those
solutions and re-balance the tussle between reliability and func-
tionality. Network virtualization provides a promising approach to
enable the co-existence of innovation and reliability. We describe
a network virtualization architecture as a technology for enabling
Internet innovation. This architecture is motivated from both busi-
ness and technical perspectives and comprises four main players.
In order to gain insight about its viability, we also evaluate some
of its components based on experimental results from a prototype
implementation.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: [Network Archi-
tecture and Design]
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1. INTRODUCTION
The Internet has been playing a central and crucial role in our

society. Indeed, as the main enabler of our communications and
information era, it plays a critical role in the work and business,
the education, entertainment, and even the social life of many peo-
ple. However, the Internet is also a victim of its own success as its
size and scope render the introduction and deployment of new net-
work technologies and services very difficult. In fact, the Internet
can be considered to be suffering from “ossification” [11], a con-
dition where technical and technological innovation meets natural
resistance, as exemplified by the lack of wide deployment of inter-
domain multicast or IPv6 in the public Internet. More precisely,
while the network itself has indeed evolved tremendously in terms
of size, speed, new sub-IP link technologies, and new applications,
it is the architecture of the public Internet that has mostly remained
the same and is difficult to change, because of the sheer size of the
system.

The Internet, which aptly fulfills its current mission as a packet
network delivering connectivity service, was also designed with as-
sumptions that no longer describe future communications needs.
Stronger security, better mobility support, more flexible routing,
enhanced reliability, and robust service guarantees are only exam-
ples of areas where innovation is needed [15].
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Figure 1: VNet Management and Business Roles

A promising approach to enable innovation is network virtualiza-
tion, whereby several network instances can co-exist on a common
physical network infrastructure. The type of network virtualiza-
tion needed is not to be confused with current technologies such
as Virtual Private Networks (VPNs), which merely provide traffic
isolation: full administrative control, as well as potentially full cus-
tomization of the virtual networks (VNets) are required. This also
means that non-IP networks could then run alongside the current
Internet realized as one future virtual network. The point is that
each of these virtual networks can be built according to different
design criteria and operated as service-tailored networks.

In this paper, we present a network virtualization architecture for
a Future Internet, which we motivate by analyzing business roles.
In contrast to the GENI initiative [16], our goal is not to provide an
experimental infrastructure but to see which players are necessary
to offer virtual network based services to everyone. We identify
four main players/roles, namely the Physical Infrastructure Provi-
ders (PIPs), Virtual Network Providers (VNPs), Virtual Network
Operators (VNOs) and Service Providers (SPs). This re-enforces
and further develops the separation of infrastructure provider and
Internet service provider advocated in [14, 20]. Indeed, we will
show that the architecture encompasses other proposed network
virtualization architectures.

This virtual network architecture is specifically designed to en-
able resource sharing among the various stakeholders, thereby in-
creasing its adoptability. Indeed, in today’s Internet, ISPs as well as
service providers (e.g., Google) are continuously searching for op-
portunities to either increase revenue or to reduce costs by launch-
ing new services, investing in new technology (CAPEX) or by de-
creasing operational costs (OPEX). To understand the order of mag-
nitude of the investment cost, consider that AT&T plans to invest
17–18 Bn $ in 2009 [2] compared to a revenue of 124 Bn $ in
2008 [3] and Deutsche Telekom invested 8.7 Bn e compared to
revenues of 62 Bn e in 2008 [1]. Thanks to increased resource
sharing, even a modest reduction in the investments of, say, 1% can
result in several millions of savings per year.

The analysis of business roles is presented in Section 2. Sec-
tion 3 provides details of the virtual network architecture, while a
description of a prototype implementation is given in Section 4. In
Section 5 we discuss our experimental results, while Section 6 pro-
vides an overview of related work. Finally, we conclude with an
outlook in Section 7.

2. VIRTUALIZATION BUSINESS ROLES
The major actors in current Internet are service providers (e.g.,

Google) and Internet Service Providers (ISPs). Hereby, an ISP of-
fers customers access to the Internet by relying on its own infras-
tructure, by renting infrastructure from someone, or by any combi-
nation of the two. Service providers offer services on the Internet.

In essence, ISPs provide a connectivity service, very often on their
own infrastructure, even if they also lease part of that infrastruc-
ture to other ISPs. For example, AT&T and Deutsche Telekom are
mainly ISPs while Google and Blizzard are SPs.

Despite this “dual-actor landscape” [14, 20], there are already
three main business roles at play in the current Internet: The (Phys-
ical) Infrastructure Provider (PIP), which owns and manages an un-
derlaying physical infrastructure (called “substrate”); the connec-
tivity provider, which provides bit-pipes and end-to-end connectiv-
ity to end-users; and the service provider, which offers application,
data and content services to end-users.

However, the distinction between these roles has often been hid-
den inside a single company. For example, the division inside an
ISP that is responsible for day-to-day operation of the network is
rarely the one that is planning and specifying the evolution of the
network.

By identifying these players, we can on the one hand identify
different business opportunities and on the other hand disentangle
the technical issues from the business decisions.

When considering the kind of network virtualization that enables
the concurrent existence of several, potentially service-tailored, net-
works, a new level of indirection and abstraction is introduced,
which leads to the re-definition of existing, and addition of new,
business roles:

• Physical Infrastructure Provider (PIP), which owns and man-
ages the physical infrastructure (the substrate), and provides
wholesale of raw bit and processing services (i.e., slices),
which support network virtualization.

• Virtual Network Provider (VNP), which is responsible for
assembling virtual resources from one or multiple PIPs into
a virtual topology.

• Virtual Network Operator (VNO), which is responsible for
the installation and operation of a VNet over the virtual topol-
ogy provided by the VNP according to the needs of the SP,
and thus realizes a tailored connectivity service.

• Service Provider (SP), which uses the virtual network to of-
fer his service. This can be a value-added service and then
the SP acts as a application service provider, or a transport
service with the SP acting as a network service provider.

These various business roles lead to the architectural entities and
organization depicted in Figure 1.

In principle, a single company can fill multiple roles at the same
time. For example it can be PIP and VNP, or VNP and VNO, or
even PIP, VNP, and VNO. However, we decided to separate the
roles as it requires different groups within the company. For exam-
ple running an infrastructure is fundamentally different from nego-
tiating contracts with PIPs about substrate slices. This in turn is
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fundamentally different from operating a specific network, e.g., an
IP network for a service provider, which is the task of the VNO.
As such splitting the roles increases our flexibility in terms of iden-
tifying the players, the corporate enterprises, that have that role.
Thereby, it keeps the economic tussles away from the technical do-
main.

Note that both, a PIP as well as the VNP, deliver a virtualized
network. Therefore, a VNP can act as a PIP to another VNP. How-
ever, one has to keep in mind that a VNP in contrast to a pure PIP
has the ability to negotiate contracts with other PIPs and to assem-
ble networks.

2.1 Business scenarios
Let us consider some of the new opportunities enabled by our

separation of business actors (Figure 1) both for existing business
entities and new players. For example, players A, B, and C may
position themselves anywhere between and PIP and SP, e.g., A can
operate only as a PIP. Then he acts as bit pipe ISP. On the other side
of the spectrum C may decide to focus on an application service and
outsource all other operational aspects. The business entity B may
offer such an outsourcing service to A that encompasses VNO and
VNP service buying its bit pipe from A.

Another possible position of A, B, and C along the possible spec-
trum is that A operates its own PIP and acts as VNP that assembles
a VNet consisting of parts of its own physical infrastructure and
from other PIPs. B may then offer the VNO service to the SP C.
Yet another option is that C acts as SP, VNO, and VNP, acquiring
resources from PIPs A and B.

Lets consider how the proposed GENI architecture [16] fits within
our framework. The GENI clearinghouse is a VNP. The experi-
menter is the VNO and if they desire the SP. As such GENI also
realizes the split between PIP and VNP. However, as GENI does
not yet consider federation it does not consider the implications of
having to handle multiple PIPs.

3. VNET CONTROL ARCHITECTURE
In this section, we introduce our VNet Control Plane Architec-

ture which provides the control and management functions for the
virtual network architecture to the various actors. The control plane
must perform a balancing act between the following tussles:

• Information disclosure against information hiding.

• Centralization of configuration and control against delega-
tion of configuration and control.

The information disclosure tussle is a subtle one and we will try to
illustrate this through a couple of scenarios. The first scenario is
accounting where each customer needs to be able to satisfy them-
selves that they are getting their contractual requirements without
the provider releasing sensitive information to them or others. For
example, a customer can request certain Quality of Service (QoS)
guarantees across the PIP’s network without any information on
the exact physical path. The second scenario, which is arguably the
most challenging is network debugging. It is a complex problem to
provide enough information to, for example, a VNO to enable them
to debug a problem with the physical path in PIP without providing
too much information.

Where configuration and control are undertaken is another tussle.
For example, the PIP should be able to render/delegate low level
management of the virtualized network components via the VNP
to a VNO, whilst hiding it from another VNO.

Figure 2: Interfaces between players

3.1 Control Interfaces
In the following we identify the control interfaces (see Figure 2)

in our architecture by discussing how the various players interact
in order to setup a VNet.

To begin with, the SP hands the VNO his requirements. Then
the VNO needs to add his requirements and any constraints he im-
poses on the VNet. This description is subsequently provided (via
Interface 1) to the VNP of his choice, which is in charge of as-
sembling the VNet. The VNP may split the request among several
PIPs, e.g., by using knowledge about their geographic footprints,
and send parts of the overall description to the selected PIPs (via
Interface 2). This negotiation may require multiple steps. Finally,
the VNP decides which resources to use from which PIP and in-
structs the PIPs to set up their part, i.e., virtual nodes and virtual
links, of the VNet (Interface 3). Now, all parts of the VNet are
instantiated within each PIP but they may still have to be intercon-
nected (Interface 4). The setup of virtual links between PIPs—in
contrast to Interface 3—needs to be standardized in order to allow
for interoperability across PIP domains. Once the whole VNet has
been assembled, the VNO is given access to it (Interface 5). This
interface is also called “Out-of-VNet” access and is necessary as,
at this point in time, the virtual network itself is not yet in opera-
tion. Thus, a management interface outside of the virtual network
is needed. Once the virtual network has been fully configured by
the VNO and the service is running, end-users can connect to the
virtual network (Interface 6).

We now discuss how each player benefits from this virtualization
architecture: PIPs can better account for the constraints imposed by
the VNets. For example, before scheduling maintenance work or
for traffic engineering purposes, they might migrate some virtual
nodes to minimize downtime or to optimize their traffic flow. This
is possible as long as the the new location is embedding-equivalent,
i.e., satisfies all of the requirements and imposed constraints, and
enabled by the level of indirection introduced by our architecture
and the use of modern migration mechanisms[18, 10]. For VNPs,
migration between PIPs offers a mechanism to optimize their rev-
enue by choosing competitive and reliable PIPs. As pointed out by
[20], the removal of the requirement for individual negotiations be-
tween VNOs and all participating PIPs facilitates the entry of new
players into the market. Furthermore, SPs may outsource non ser-
vice specific network operation tasks to other entities and thereby
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Figure 3: VNet provisioning (a) and console architecture (b).

concentrate on their core interests relating to their respective busi-
ness model. Migration processes are transparent to the VNOs. Note
that they cannot trigger migration directly; however, by altering
their requirements, VNOs may indirectly initiate resource migra-
tion.

3.2 VNet Instantiation
Setting up a VNet, see Figure 3 (a), starts from a VNet specifi-

cation. For this we need resource description languages for both
the VNet topology, including link/node properties, as well as ser-
vice level requirements. These description languages should nei-
ther be too constrained – to allow the VNP and the PIPs freedom
for optimizations – nor too vague – to enable a precise specifica-
tion. Therefore it is out of scope for this paper.

To setup the VNet each player, for its domain, has to: formulate
resource requirements, discover potential resources and partners,
negotiate with this partners based on VNet resource description,
and construct the topology.

SP: The SP specifies his service specific requirements which might
include a VNet topology. In addition, he may specify the
kind of interface it needs for service deployment and mainte-
nance, e.g., what level of console access. He then delegates
the instantiation to the VNO of its choice. Once the VNet
is instantiated the SP deploys his service using the interface
provided by the VNO.

VNO: The VNO uses the specification it receives from the SP and
generates a VNet specification. It then negotiates with var-
ious VNPs on the basis of the VNet specification. Once a
VNP is selected the VNO has to wait for the VNP to assem-
ble the VNet. When it has access to the VNet which consists
of a data and a control network it can use the control net-
work, also referred to as the management console interface
or out-of-VNet access, see Section 3.3, to instantiate the net-
work service. Finally, it may instantiate the control interface
needed by the SP.

VNP: Upon receiving the VNet resource description, the VNP

identifies candidate PIPs and splits the VNet resource de-
scription into multiple subsets. It then negotiates with the
candidate PIPs regarding the necessary substrate resources.
Once the PIPs have assembled the pieces of the VNet it com-
pletes it. Finally, it provides a management console access
for the whole VNet by relying on the management interfaces
of the PIPs. Note, that a VNP may aggregate requests for
multiple VNets. It may also request additional resources
from the PIPs to satisfy future requests. In this sense a VNP
can act as any reseller would.

PIP: Based on the VNet topology descriptions a PIP receives it
identifies the appropriate substrate resources and allocates
them. The PIP has the ability to migrate other VNets in or-
der to free resources for new requests. After setting up the
VNet on its substrate he returns both the data and the con-
trol part of the VNet. The control part includes the PIP level
management consoles to allow the configuration of the vir-
tual nodes. Since VNets may span across multiple PIPs some
virtual links may have to be setup across PIPs.

3.3 Out-of-VNet Access
Each VNet consists of two planes: a data plane and a control

plane. The data plane is what one commonly refers to in the context
of virtual networks. But, per default, any VNet after instantiation
is just an empty set of resources that have to be configured. More-
over, a control plane is necessary during VNet operation for specific
VNet management tasks. Such a management access architecture
is shown in Figure 3 (b). Every player maintains a control interface
hosted on dedicated management nodes for “out-of-VNet” access
to the VNet resources. This interface provides a console interface
as well as control options such as virtual resource power cycling.
As there are multiple levels of indirection, it also stores the location
of the subsequent control interfaces. Control requests are thus re-
layed from player to player until they get to the appropriate virtual
substrate component. In addition, to enable migration both within
the PIP as well as across PIPs, consistent interface updates have to
be supported.
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Typical interfaces for out-of-VNet access are consoles, either
via tty or a graphical interface. Requests for such interactive and
maybe traffic intensive connections can be handled via proxy chains.
Such a proxy chain can be setup by relaying requests from one
player to another while instantiating appropriate connection prox-
ies and returning their access information. To render migration
seamless, connection ruptures should be hidden, e.g., by keeping
the reestablishment time of the proxy chain short.

3.4 End-user/End-system access to VNets
End-users/End-systems wishing to dynamically join a VNet need

to be authenticated at their physical attachment point in their local
PIP before being connected to the VNet. The authentication occurs
via an authentication channel, which may serve one or more virtual
networks, provided by their local PIP, see Figure 4. For this purpose
collaborating PIPs may participate in a provisioning and manage-
ment virtual network. The attachment process for an end-system
can then be summarized as follows.

• The end-system accesses the authentication channel via any
local access mechanisms imposed by the local PIP.

• The end-system requests access to the VNet via the local
authentication portal which validates the system locally or
relays the request across the Provisioning and Management
network to the corresponding VNO authentication portal.

• The authorized end-system is then connected to the requested
VNet and is able to configure its address, routing, and net-
work service inside the VNet.

4. PROTOTYPE IMPLEMENTATIONS
In this section, we briefly describe two aspects of our prototype

implementations for the VNet architecture.

4.1 Virtual Network Instantiation
Our prototype of network instantiation is realized in the context

of Heterogeneous Experimental Network1 (HEN) [4]. The proto-
type takes advantage of node and link virtualization technologies
to allow the instantiation of VNets on top of a shared substrate.
Specifically, we use Xen’s paravirtualization for hosting virtual ma-
chines on substrate nodes. The virtual machine monitor (also re-
ferred to as hypervisor) schedules CPU accesses to the separate
guest domains and provides an adequate level of isolation and high
performance [13].

We use a XML schema for the description of virtual resources
with separate specifications for nodes and links. The prototype cur-
rently considers a single PIP which controls a fixed number of HEN
physical nodes. The VNP directly communicates with the manage-
ment node of the PIP. This node is responsible for realizing all the
VNet requests to the PIP. After resource discovery, the PIP man-
agement node signals individual requests to the necessary substrate
nodes. Each substrate node handles the request within their man-
agement domain (Dom0) which then creates the necessary virtual
machines as guest domains (DomUs).

For the inter-connection of the virtual nodes, we currently use
IP-in-IP encapsulation tunnels. The topologies are built by VLAN
configuration on the HEN switch. This process is automated via
a switch-daemon which receives VLAN requests and configures
the switch accordingly. Virtual links are established by encapsu-
lating and demultiplexing packets, as shown in Figure 5. More
precisely, each virtual node uses its virtual interface to transmit pa-
ckets, which are captured by Click [17] for encapsulation, before
being injected to the tunnel. On the receiving host, Click demul-
tiplexes the incoming packets delivering them to the appropriate
virtual machine. For packet forwarding, we use Click SMP with
a polling driver. In all cases, Click runs in kernel space. Substrate

1HEN comprises over 110 computers connected together by a sin-
gle non-blocking, constant-latency Gigabit Ethernet switch.
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Figure 5: A virtual link on HEN prototype

Figure 6: Experimental topology.

nodes that route packets consolidate all forwarding paths in a single
domain (Dom0) preventing costly context switches; hence, packet
forwarding rates are very high [13].

4.2 Out-of-VNet Access
The prototype implementation of the management console has

been built using standard UNIX tools, with a database holding the
mappings from virtual resource identifiers to management and sub-
strate nodes along with user credentials. A simple proxy at the
management node facilitates the forwarding of graphical (VNC)
and textual (serial) consoles towards the corresponding target de-
vice identified through a database lookup once the connection re-
quest has been authorized. The connections are chained through the
chain of management nodes, for example, the VNP management
node relays request to PIP management node. The proxy connec-
tion is terminated by either a disconnection from either the client
or server. The prototype supports recursive extension of the man-
agement architecture at the VNP level. This allows both for VNPs
acting as PIPs and reselling their resources to other VNPs, as well
as internal structuring of an ISP.

The control interface provides virtual machine control enabling
the migration of virtual nodes between PIPs when instructed from
the VNP. The standard virtual machine controls of ’start’, ’stop’,
’reboot’, ’suspend’, and ’resume’ are supported from the VNO.

5. RESULTS AND DISCUSSION
In this section, we report on some early results from our pro-

totype implementation to support the feasibility of the proposed
virtual network architecture.

5.1 Virtual Network Instantiation
We use tests with our virtual network instantiation prototype to

show: (i) that VNet instantiation times within a PIP are reasonable,
and (ii) to explore the management overhead, in terms of CPU load
for the VNP and the substrate nodes.

Table 1: %CPU during VNet instantiation

min avg max stddev

VNO 10.0 12.5 14.7 1.6
VNP 20.4 23.5 25.5 1.5

Substrate Node 16.3 19.2 22.6 2.1

To test VNet instantiation times we use the VNet topology shown
in Figure 6. The experiments are conducted in the HEN testlab on
Dell PowerEdge 2950 servers, each with two 2.66 GHz quad-core
Intel X5355 and 8 Gigabit interfaces. The instantiation time in-
cludes the exchange of resource information, i.e., the VNet descrip-
tion, between VNO, VNP and the PIP, resource discovery within
the PIP, VNet creation and configuration of all virtual machines,
setup of the tunnels, and enabling management access to the vir-
tual nodes. With on-demand creation and booting of the virtual
machines, it takes 109.5 seconds on average across 20 tries with a
small standard deviation of 4.4 to instantiate the virtual network.
Alternatively, if the PIP can allocate physical resources to virtual
machines in advance (so that booting them is not required upon
receiving a VNet request), the instantiation time drops to 16.8 sec-
onds with a standard deviation of 0.4. As such our prototype is
able to quickly provision VNets that are ready to be operated and
managed by the VNO.

A time consuming step, besides virtual machine creation, is re-
source discovery within the PIP. Within the prototype implemen-
tation, it requires the exchange of available resources (per host)
among the PIP management node and each one of the substrate
nodes that meet the criteria defined with the VNet request (e.g., lo-
cation). Figure 7 shows how the average time for updating resource
information scales with the number of substrate nodes in HEN. It
scales linearly. As such one either has to increase the number of
management nodes as the PIP scales or establish a network-wide
authoritative configuration manager that then delegates the instan-
tiation of the individual nodes across multiple configurators.

We also used OProfile [5] to monitor the CPU utilization for all
participating nodes during VNet instantiation, which is shown in
Table 1. While these results are specific to our implementation
they show that VNet instantiation does not impose an unreasonable
overhead.

Even though we use a single PIP throughout our experiments,
we do not expect significant additional overheads when moving to
multiple PIPs as the resource discovery can proceed in parallel. In
the current setup using multiple PIPs should only slightly increased
the CPU load for the VNP. The only additional overhead is the
communication with multiple entities and the assembly of the VNet
from the participating PIPs.
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Figure 8: Console proxy measurement setup

Figure 7: Average time required to update resource informa-

tion for all substrate nodes.

5.2 Out-of-VNet Access
We use test with our Out-of-VNet access prototype to address

the question of scalability and the feasibility of migration of the
underlying nodes without breaking the management connection.

In principle, scalability concerns arise with regards to the num-
ber of managed virtual resource instances, the number of role in-
stances (PIPs, VNPs, VNOs), and the depth of the management
node structure. The performance of the first two is very implemen-
tation dependent. Therefore we decided against evaluating these.
The current implementation of our prototype is not optimized for
performance but for features. Nevertheless, we expect good scala-
bility as high-performance databases exist and load-balancing can
be used to distribute the proxy load across multiple physical servers.

However, we study the impact of the depth of the management
node structure on console connection establishment and migration
latencies. These latencies have two components: network commu-
nication and processing overhead at the management nodes (assum-
ing no request buffering). Given that the network communication
latency is unavoidable and dominated by the location of the man-
agement nodes and the customer/resource assignment strategies we
focus on the processing overhead. Based upon the assumption that
a deterministic overhead is introduced for each node type we mea-
sure the overhead on a per-management node type.

The chain length in the experiments is 4 rather than 3. We in-
cluded a VNP which acts as PIP, see Figure 8. A VNC client is
connected to a VNode then migrated between the two substrate no-

des (SNodes). A wrapper script requests a new console after every
migration and measures the time required until it receives the VNP
level proxy access information. Then it restarts the client. Every
node in the chain measures the execution time of the management
script (including all operations, lookups, and network communi-
cation) until its termination upon transmission of the proxy access
information. Durations are measured using the Unix ’time’ tool.
The resulting processing time (User+System) and elapsed real time
are shown in Figure 9.

The experimental setup consists of 5 machines: 1 dual Intel
Core2 Duo with 2GB RAM hosting 7 paravirtualized management
nodes, and 4 dual Dual-Core AMD Opteron machines with 2GB
RAM which act as substrate nodes. The machines are intercon-
nected via a Cisco C2960 switch.

Figure 9 shows that the CPU time required for script execution
does not exceed 0.1s for intermediate nodes and 0.2s for the SNode.
The added delay is about 0.02s per hop. This includes communi-
cation delay as well as the unaccounted delay due to inetd/telnetd
operations. For most experiments it is less than 0.6s in total. Al-
though measurement 14 shows a spike in real time delay at the
SNode this coincides with an overall low processing time on the
same node. We therefore assume that this spike is caused by OS
process scheduling overhead.

Considering the minimal delays of 0.2s for SNodes and 0.1s for
intermediate node our prototype easily scale to a depth of 8 without
exceeding 1s in delay for proxy setup.

6. RELATED WORK
Over the last years virtual network architectures have been an

area of active research. Some groups have focused on using net-
work virtualization to enable larger-scale and more flexible testbeds.
Other groups aim at virtualizing production networks or even the
Internet.

6.1 Architectures for testbeds
Virtualization plays a key role in creating flexible testbeds for

Future Internet research.

Planetlab family:

PlanetLab [7] is a highly successful example of a distributed,
large scale testbed. PlanetLab has a hierarchical model of trust
which is realized by Planet Lab Central (PLC). PLC is operated
by the PlanetLab organization and is the ultimately trusted entity
that authorizes access to the resources. Other actors are the infras-

tructure owners and the users that run their research experiments
on planet lab. For each experiment virtual machines on various
nodes are grouped to slices that can be managed and bootstrapped
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Figure 9: Console proxy setup time

together. As the deployed virtualization mechanism offer only con-
tainer based virtualization capabilities at the system level and do
not virtualize the network stack PlanetLab offers no network virtu-
alization as such.

VINI, as proposed by Bavier et al. [8], is a testbed platform that
extends the concept of virtualization to the network infrastructure.
In VINI routers are virtualized and interconnected by virtual links.
As such VINI allows researchers to deploy and evaluate new net-
work architectures with real routing software, traffic loads, and net-
work events. VINI supports simultaneous experiments with arbi-
trary network topologies on a shared physical infrastructure. VINI
builds on the architecture and management framework introduced
by PlanetLab by extending the management with interfaces to con-
figure virtual links. The first implementation based on User Mode

Linux [19] however offers only limited performance.
An updated VINI platform, Trellis [9], allows for higher for-

warding performance. It introduces a lower level system virtual-
ization architecture that uses container based virtualization tech-
niques for both system and network stack virtualization. There-
fore virtualization flexibility is limited to the user space. VINI
provides rudimentary concepts for end-user attachments [6] using
OpenVPN tunnels and a single central gateway. Obviously, this so-
lution would not scale to virtualization applied on an Internet wide
scale.

Downloadable distributions of the Planetlab control framework
and VINI are available as MyPLC and MyVINI, respectively.

Emulab: Emulab [12] also is a very popular testbed platform.
Its offers a sophisticated management and life-cycle processes and
does not offer that much of a network architecture. Emulab of-
fers virtual topology configuration based on ns2 configuration files
and automatic bootstrapping of experiment nodes. Initially, Emu-
lab focused on dedicated servers. Virtualization capabilities based
on improved FreeBSD jails were added later.

GENI:

GENI [16] is a large-scale U.S. initiative for building a feder-
ated virtualized testbed aiming at providing a powerful virtualized
testbed for experimental purposes. Here, all operations are signed
off and managed by a central Geni Clearing House, which can thus
be regarded as analogue to our VNP. As a possible growth path,
GENI plans on supporting federated clearing houses, but its design
has not yet been presented in detail. During phase 1 of the de-
velopment both—VINI/Planetlab and Emulab—are used as GENI
prototypes (ProtoGeni).

All testbed oriented architectures mentioned above do not con-
sider several key factors relevant for virtualizing the (commercial)
Internet: They assume a hierarchical trust model that centers on a
universally trusted entity, e.g., the PLC/GENI clearinghouses. To
overcome this limitation we consider competing players with in-
dividual administrative zones that have only limited trust and also
have the desire to hide information, e.g., their topologies. Eco-
nomic models and use cases are not critical for testbed designs but
are crucial for the adoption of an Internet-wide virtualization archi-
tecture.

6.2 Architectures for Production Networks
CABO [14] proposes to speed up deployment of new protocols

by allowing multiple concurrent virtualized networks in parallel.
To this end, infrastructure providers are to manage the substrate re-
sources while service providers are allowed to operate their own
customized network inside the allocated slices. These slices are
acquired by negotiations of service providers with a series of in-
frastructure providers.

This idea in refined by Cabernet [20] which introduces a “Con-
nectivity Layer” between the above mentioned roles. This layer is
responsible for the splicing of partial networks provided by the In-
frastructure Layer and the presentation of a single network to the
Service Layer. It facilitates the entry of new service providers by
abstracting the negotiations with different infrastructure providers
and allows for aggregation of several VNets into one set of infras-
tructure level resource reservations.

While this structure relates to our proposal, our approach differs
as we propose to split the service provider and connectivity pro-
vider role into the three roles of VNP, VNO, and SP. These roles
allow for a more granular splitting of responsibilities with respect
to network provisioning, network operation, and service specific
operations which may be mapped to different business entities ac-
cording to various different business models. Furthermore, we ex-
tend the framework by considering privacy issues in federate virtual
network operations and business aspects.

7. CONCLUSION AND OUTLOOK
We presented a VNET Control Architecture that comprises four

main entities reflecting different business roles, namely Physical
Infrastructure Providers (PIPs), Virtual Network Providers (VNPs),
Virtual Network Operators (VNOs), and Service Providers (SPs).

An important aspect of this control architecture is that it defines
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the relationships that govern the interaction between the players,
without prescribing their internal organization, structure and poli-
cies. In other words, every entity manages its resources as it sees
fit. This property is crucial to the viability of the proposal, as it
ensures the protection of business interests and competitive advan-
tages. Furthermore, our architecture encompasses other proposed
network virtualization architectures, e.g., GENI and Cabernet [16,
20].

In support of this flexible resource management strategy, we em-
phasize the need for an Out-of-VNet access management interface
to allow some basic control of virtual nodes from the outside of the
VNet.

We implemented a simple prototype for the VNET control archi-
tecture, using simple virtual nodes realized with XEN and Click.
Evaluation for VNet instantiation showed that it can scale linearly
with the number of nodes. The second evaluation considered the
Out-of-VNet access via a proxy hierarchy in order to get back to a
virtual node after its migration in the substrate. It showed that this
access can be restored in a reasonable short time frame to allow for
even deeper proxy hierarchies if necessary.

These results are encouraging since they show the viability of
parts of the architecture. In the future we plan to extend to proto-
types to realize the full architecture and start experimenting with
advanced optimization techniques to realize the possible gains in
OPEX and CAPEX.
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