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Resource management in virtual facilities

Resource sharing within virtual infrastructures is made complex
because of the details of technology specificities.

Mathematics/economics can help to highlight some key issues.
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Example: scheduling a server

▶ A single server is to be shared amongst n agents.

Agent i generates a jobs at rate �i.

▶ Initially, agents contribute resource amounts y1, . . . , yn,

building a server of rate
∑

k yk.

Under FCFS scheduling all jobs have mean waiting time
1/(

∑

k yk − ∑

k �k).

▶ Agent i suffers a delay cost, so his net benefit is, say,

nbi = �ir − �i�i

1
∑

k yk − ∑

k �k

− yi

�i is private information of agent i.
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The key issue in this talk

Agents (users) have private information (about the value of the
tasks they wish to carry out).

This creates a problem for efficiently sharing resources.

▶ Agents will attempt to free-ride.

▶ Obvious policies (like ‘internal market’, or ‘equal sharing’)
may not be suitable.

How one chooses to share a facility’s resources will influence
what agents reveal of their private information.

We would like agents to truthfully reveal their privately held
information since then we can operate the facility more efficiently.
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A model of a managed shared infrastructure

▶ An infrastructure as composed of resources.
(links, servers, buffers, etc.)

▶ It can be operated in various ways, !1, !2, . . .
(by scheduling, routing, bandwidth allocation, etc.)

▶ The subset of agents who wish to use resources of the
infrastructure, say S, differs from day to day.

▶ If operated in manner ! on day t then agent i has utility

�i,tui(!)

ui(⋅) is pubic knowledge, but only agent i knows �i,t.

▶ ! is to be chosen as a function of S and of the declared
�t = (�1,t, . . . , �n,t).
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Agents pay for resources

Agents may contribute resources to a shared infrastructure, like
y1(�1), . . . , yn(�n).

Other times agents pay fees. In this case, we should like them to
cover some daily operating cost, c,

ES,�

[

p1(S, �) + ⋅ ⋅ ⋅ + pn(S, �)
]

≥ c

Agent i wishes to maximize his expected net benefit :

nbi(�i) = ES,�

[

�iui(!(S, �)) − pi(S, �)
∣

∣

∣
�i

]

He may be untruthful in declaring his �i.



The efficient frontier
We wish to find Pareto optimal points of the vector

(nb1, . . . , nbn) = E�

[

nb1(�1), . . . , nbn(�n)
]
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Maximum social welfare

Suppose we wish to find the particular point that maximizes

nb1 + ⋅ ⋅ ⋅ + nbn =

ES,� [�1u1(!(S, �)) + ⋅ ⋅ ⋅ + �nun(!(S, �))]− c
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We call this the ‘social welfare’.
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Our infrastructure optimization problem

Our infrastructure optimization problem:

▶ Say how the infrastructure will be operated for all possible
subsets of users S.

▶ Say what fees will be collected from users.

Do the above, as function of declared �i, so that:

1. Users find it in their best interest to truthfully reveal their �i.

2. Users will see positive expected net benefit from participation.

3. Expected total fees cover the daily running cost, say c.

4. Expected social welfare (total net benefit) is maximized
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Example: a scalar resource

▶ 2 participants, both present on all days.

▶ On day t, agent i has utility for resource of �i,tu(x),
assumed known to be distributed U [0, 1].

▶ The infrastructure provides a single resource, parameterized
by a number (such as computing cycles), so operating
methods correspond to allocations:

{!} ≡ {x1, x2 : x1 + x2 ≤ 1}

Suppose ui(x) = x. Focus on one day t; with �i = �i,t.

E�1,�2

⎡

⎢

⎣
max
x1,x2

x1+x2≤1

{�1u1(x1) + �2u2(x2)}

⎤

⎥

⎦
= E [max{�1, �2}] = 2

3

We call this the ‘first best’.



The second-best solution

A ‘second-best’ is with fee structure:

pi(�i) =

{

0 , �i < �0
1
2
(�2

i + �2
0) , �i ≥ �0

Agent i will not wish to participate if �i < �0, since his net
benefit cannot be positive.

The entire resource is allocated to the agent declaring the greatest
�i, provided this is > �0.

Thus, the resource is given wholly to one agent, but perhaps to
neither.

But both agents may pay.
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The ‘solution’

This solution has the advantages that

▶ Agents are incentivized to truthful.

▶ The sum of the expected payments is

E
[

p1(�1) + p2(�2)
]

= 1/3 + �2
0 − (4/3)�3

0 .

▶ The expected social welfare is decreasing in �0.

But by taking 1/3 + �2
0 − (4/3)�3

0 = c we maximize the
social welfare of

nb1 + nb2 = E

[

2
∑

i=1

�iui(xi) − pi(�i)

]

subject to covering cost c.



Second-best versus first-best

Expected social welfare as a function of c.
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For c ∈ [0.333, 0.416] the second-best falls short of the first-best.
There is no way to cover a cost greater than 5

12
= 0.416.
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p1(�1, �2) = 1
2
c+1

2
(�2
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2
(�2
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We call this ‘ex-post’ cost-covering.

▶ We can ensure ex-post incentive compatibility and rationality.
I.e., that an agent only pays if he gets resource, and is happy
after-the-fact with the �i he declared.

p1(�1, �2) = max(�0, �2)1{�1>max(�0,�2)}



A concave utility

Suppose ui(x) =
√
x

Now the resource is shared differently.

The optimal policy is found by solving a Lagrangian dual problem

min
�≥0

⎧



⎨



⎩

E�1,�2

⎡

⎢

⎣
max

x1, x2≥0

x1+x2≤1

2
∑

i=1

h�(�i)ui(xi)

⎤

⎥

⎦
− (1 + �)c

⎫



⎬



⎭

.

where h�(�i) = (�i + �(2�i − 1)) and

xi(�1, �2) =
h�(�i)

2

∑2
j=1 h�(�j)2

As � increases the fee structure changes, so that greater cost can
be covered. The social welfare decreases, but is maximized subject
to the constraint of covering the cost.
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i
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not
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This is a key lesson:

If one wishes to optimally incentivize participation in shared
infrastructures, and to make the most of the resources
available, then both the (i) fees, and (ii) policies for ‘
resource sharing, must play a part in providing the correct
incentives to users.
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Conclusions

▶ In most realistic resource allocation problems there is private
information to participants.

▶ Resource management must give appropriate incentives.
To encourage agents who value the resource more to say so,
and so be willing to contribute more towards the cost, we
need to reward them better than an internal market would do.
But figuring out exactly how to do this is not a simple task!

▶ Simple-minded sharing policies (like proportional sharing) may
not to produce sufficient incentives for participants to
contribute resources.

▶ Many new interesting problems!!!
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Optimal queue scheduling

Instead of declaring contributions they are willing to make, we can
imagine that agents (equivalently) declare their �i.

Suppose �1 < �2 < ⋅ ⋅ ⋅ < �n.

As a function of these declarations we take contributions of the
form y(�i) from some subset of agents i = 1, . . . , j (a set with
smallest �i).

We employ a priority scheduling policy in which priority is always
given to the current job belonging to the agent with greatest �i.

Under this scheme, an agent with too great a �i will find
unprofitable to consider participating.

yi(�i) is increasing in �i, and is determined by an incentive
compatibility condition.


