Accountability in Hosted Virtual Networks

Eric Keller, Ruby B. Lee, Jennifer Rexford
Princeton University
VISA 2009
Motivation

• Trend towards hosted virtualized infrastructures
 – Enables companies to easily deploy new services
 – e.g., Amazon EC2

• Hosted virtual networks
 – *Infrastructure provider*: owns/maintains routers
 – *Service provider*: leases slices of routers
Understanding Security Threats

• **Service Provider wants**
 – Control software running exactly as written
 – Data plane forwarding/filtering as instructed
 – Data plane performing with QoS promised
 – Confidentiality/Integrity of data
 – Availability

• **Infrastructure Provider**
 – Doesn’t want to be unjustly blamed

• **Next: How are these possibly compromised**
Old model: Owning the router

- Entire platform is trusted
New model: Hosted (threat 1)

- Infra. Provider can tamper with control software,
- data plane configuration (HW router),
- data plane implementation (SW router)
New model: Shared (threat 2)

- Pink service provider can attack virtualization layer
- Possible competitor of Blue service provider
 - Affect operation of Blue service provider
Accountability

- Security threats lead to the need for accountability

- Accountable: Subject to the obligation to report, explain, or justify something; responsible; answerable [Random House]

- In hosted virtual infrastructure…
 – promised in the Service Level Agreement (SLA)
Outline of Approaches

• Detect
 – Network Measurement

• Prevent
 – Advances in Processor Architecture

• For each
 – Present solution possible today
 – Propose extension
Outline of Approaches

• Detect
 – Network Measurement

• Prevent
 – Advances in Processor Architecture

• For each
 – Present solution possible today
 – Propose extension
Monitoring SLA compliance

- Probe to determine:
 - Loss rates
 - Latency/Jitter
 - Path taken
- To know how DP supposed to act:
 - Log control messages (at boundaries)
 - Model network and replay logs
Extending the Interface Card

• Treat interface card as trusted (trusting vendor)

 • Enables performing measurement at each router
 – Reduces computation overhead
 – Improves accuracy
 – Improves amount of detail

• Enables independent verification
Outline of Approaches

• Detect
 – Network Measurement

• Prevent
 – Advances in Processor Architecture

• For each
 – Present solution possible today
 – Propose extension
Trusted Platform Module

• Recall what service provider wants
 – Control software running unmodified
 – Data plane acting as instructed
 – Data plane performing with correct QoS
 – Confidentiality/Integrity of data

• TPM: Chip on motherboard (on chip in future)
 – Encrypting storage
 – Attesting to integrity of system
TPM Limitations

- Does not protect against dynamic attacks
 - Can’t ensure software running unmodified

- Relies on chain of trust
 - Virtual machine verified by virtualization layer

- Implications
 - Can’t know if control processes started correctly and haven’t been modified
 - Can’t know if data plane acting as instructed with QoS
 (SW - Data plane is in virtualization layer)
 (HW – Configuration goes through virtualization layer)
 - Confidentiality of data not addressed
TPM needs physical separation

- Separate route processors (Logical routers)
- Remote control plane (4D, Ethane)
Security Enhanced Processor

• TPM relies on physical separation

• Instead – extend processor architecture
 – Confidentiality/integrity of data and software
 – Encryption/decryption to/from memory
 – Examples: SP[ISCA05], AEGIS[MICRO03], XOM[ASPLOS00]
 – Minimal extra circuitry

• None designed for hosted/shared environment

• None made good business case
 – So no (very limited) success
 – Market size of hosted virtualized infrastructures provides
 the incentive
Protecting Software and Data

- **Vendor installs private device key**
 - Write only

- **Service provider installs a secret key**
 - Encrypted with device’s public key
 - Sent to infrastructure provider to install
 - Write only

- **Service provider encrypts/hashes memory**
 - With secret key

- **Memory hashed and/or encrypted in main memory**
 - Decrypted/verified when cache line pulled in
 - Encryptedhashed when evicted
What’s the right approach?

<table>
<thead>
<tr>
<th></th>
<th>Measure</th>
<th>+NIC</th>
<th>TPM</th>
<th>vm-SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trust</td>
<td>Other infrastructure providers</td>
<td>Vendor</td>
<td>Vendor</td>
<td>Vendor</td>
</tr>
<tr>
<td>Run-time complexity</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Main downside</td>
<td>Accuracy vs computation / storage tradeoff</td>
<td>Need to extend interface card</td>
<td>Requires physical separation</td>
<td>Need general purpose processor extension</td>
</tr>
</tbody>
</table>

- Virtual Mode-SP (extended processor) provides protection desired, minimal complexity, with business incentives to make it reality.
Conclusion

• A step toward realizing hosted virtual networks

• New business model leads to new security issues
 – Platform is hosted and shared

• Can use monitoring to detect violations

• Better to rearchitect routers to prevent violations

• Future work:
 – Virtual Mode-SP for hosted virtualized infrastructures
 – Explore implications of trusting the vendor
Questions