
GrassRoots: Socially-Driven Web Sites for the Masses

Frank Uyeda, Diwaker Gupta, Amin Vahdat, George Varghese
U.C. San Diego

9500 Gilman Drive
San Diego, CA 92093-0404

{fuyeda, dgupta, vahdat, varghese}@cs.ucsd.edu

ABSTRACT

Large, socially-driven Web 2.0 sites such as Facebook and
Youtube have seen significant growth in popularity [5, 10].
However, strong demand also exists for socially-driven web
sites specialized to companies and knowledge domains. Un-
fortunately, existing tools for building such sites only provide
low-level functionality to address recurring search and orga-
nization patterns. Further, they require expertise at many
levels of the software stack.

Therefore, we propose GrassRoots, a declarative language
for modeling socially-driven websites and a compiler to auto-
matically generate the code at several layers of the software
stack. We provide abstractions for modeling data and rela-
tionships, search, page composition, and navigation. Most
notably, we propose a graph-based data model that allows
designers to both filter and rank search results using struc-
tural and value-based primitives. In this paper, we describe
the GrassRoots language and show how popular socially-
driven websites can be specified using it. We also describe
the GR compiler that generates web sites based on Grass-
Roots specifications.

Categories and Subject Descriptors

H.4.m [Information Systems]: Miscellaneous; D.2.3 [Soft-

ware Engineering]: Coding Tools and Techniques

General Terms

Design, Languages

Keywords

Web 2.0, Declarative Specification, Code Generation

1. INTRODUCTION
Facebook, YouTube, and Flickr have become key web-

based communities fielding millions of users [5, 10]. Besides
well-known sites, there is significant interest in specialized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSN’09, August 17, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-445-4/09/08 ...$10.00.

socially-driven sites. USA Today reports [17] that hundreds
of companies have already deployed internal social networks
to support operations. For example, a small company may
want to host training videos online for employees to view and
comment on. Sites like YouTube do not provide adequate
customizability or sufficient control for such a company’s
videos. Recognizing this demand, Cisco and IBM have been
developing corporate social networking tools [16, 6].

Besides companies, there is a long tail of communities
with specialized knowledge domains that need custom web
sites. Examples include insurance (e.g., Wellpoint.com) and
education (e.g., RateMyProfessor.com). What is common
across all of these specialized sites is the ability for users to
submit content and to search for the content contributed by
others. We label this class of web sites as Search & Submit

and note that they expand beyond traditional online social
networks. We focus on providing tools and abstractions to
ease the development of these socially-driven sites.

Today, both companies and communities with shared in-
terests must piece together their specialized web site using
one of many web-development frameworks along with sig-
nificant customized code. Customized code is necessary be-
cause standard web development tools (e.g., Ruby on Rails
[9]) do not sufficiently address all the unique aspects of each
specialized socially-driven website.

To address the problem of creating such sites, we propose
GrassRoots, an abstract language to specify a wide range
of socially-driven web sites and the GR compiler that gener-
ates the web site and configures the backing storage from
the GrassRoots specification. We believe that GrassRoots’s
abstractions also enable other aspects of the application life
cycle, such as automatic scaling.

In contrast to popular web-development frameworks, like
Ruby on Rails, GrassRoots provides specialized abstractions
for searching and ranking results. We believe that the dif-

ferentiating feature among many competing socially-driven

web sites is the way data is organized and searched. Thus,
abstractions for structuring data and searching are crucial.
GrassRoots allows developers to easily experiment by mak-
ing small changes to the specification that can then be com-
piled to a working web site. For example, the developer of a
cookbook web site might initially allow searching for recipes
by category and recipe name. Later, users might request
the ability to use ingredients as tags. GrassRoots can im-
plement this new feature by changing a few lines in the site
specification and recompiling. By contrast, a Ruby on Rails
implementation would require changes to the database, ap-
plication logic, and presentation layer.

19

To demonstrate the power of our abstractions we have
specified simplified versions of Flickr.com and Digg using
our GrassRoots language (Section 3). We omit complete
specifications for lack of space (however, a reference to the
complete specification is provided). We do show in Sec-
tion 3.5 how to add user tagging (a Facebook feature) to a
Flickr implementation by adding 3 lines to the specification.

The organization of the paper is as follows. Section 2
motivates our abstractions by surveying various sites and
looking at Flickr in detail. Section 3 describes details of
the GrassRoots language using Flickr as an example. Sec-
tion 4 describes the implementation of our GR compiler, as
well as our experiences specifying other websites. Section 5
describes related work, and Section 6 provides our conclu-
sions.

2. MODELING SITES
Our abstractions are motivated by the observation that

Search & Submit websites utilize a relatively small number
of search paradigms and organizational structures. Table 1
lists several popular Search & Submit websites with their
predominant organizational structures and search method-
ologies. Flickr and YouTube appear distinct because Flickr
hosts photos while Youtube hosts videos, but fundamentally
both allow users to search for content based on keywords and
tags. Similarly, Digg.com and Craigslist both organize data
according to a hierarchy, but Digg.com stores URLs while
Craigslist stores listings.

Conversely, sites can have the same content type but uti-
lize different organizational structures that yield different
search paradigms. For example, Del.icio.us and Digg.com
are both social bookmarking sites that host URLs. However,
Del.icio.us organizes URLs using tags, while Digg.com uses
a hierarchy and a specialized ranking algorithm. Therefore
we claim that a good abstraction for Search & Submit sites
should separate the type of data in the site from the site’s
organizational structure. To further motivate our model, we
now describe Flickr.com.

2.1 Example: Flickr.com
Flickr.com is a socially-driven website that allows users to

organize photos by associating them with textual tags. Each
tag appears as a link directing the user to a page of other
photos with that tag. Flickr also allows users to organize
their photos into groupings called “sets”. A set may contain
many photos, and photos may belong to any number of sets.

Flickr users can join groups or form friend relationships
with other users. Friend relationships are used as a basis
for granting additional access rights to photos, or to easily
tracking the new photos posted by friend. Further, groups
allow members to share photos with one another through
the group’s photo pool — a collection of photos contributed
by the group’s members. As with sets, photos can belong to
many different pools and pools can contain many photos.

Abstractly, the data objects in Flickr are Users, Groups,
Photos, Sets, Pools, Tags, and Comments. Additionally,
relationships exist between instances of these objects. For
example, a User may own many Photos, and each Photo
has a single User who owns it. These objects and relation-
ships can be modelled as nodes in a graph where special
constraints exist on the allowed edges.

While we can think of the data model as a general graph,
by imposing more structure on the graph we can provide

Search PaneStatic Panes

Summary Pane Summary Pane
of Picture Objects of Set Objects

Figure 1: A page is composed of one or more panes.

We show a Flickr page overlaid with logical panes.

more powerful search abstractions. We model Flickr pre-
dominantly using bipartite graphs. Some of these bipartite
graphs are constrained to be one-to-many (e.g., Users and
the Photo they own) while others are many-to-many (e.g.,
Users and Groups). However, since the friend relationship
between Users is asymmetrical, a directed graph structure
is used, consisting only of User nodes. Further, in sites like
Craigslist and Digg, we specify the graph as a tree, allowing
GrassRoots to provide search over specified subtrees.

We have found that five graph structures are very common
across Search & Submit sites: tree, undirected graph, directed

graph, bipartite one-to-many, bipartite many-to-many. The
third column of Table 1 lists the graph types seen in vari-
ous web sites. Specifying these structures allows for specific
search operators (shown in Table 2).

Users interact with Flickr by navigating through web pages,
each of which is divided into regions which either display
data or receive user input. We call these regions panes. Fig-
ure 1 shows an example of a Flickr page divided into panes.
Clicking on objects within each pane may invoke an action,
such as navigating to a new page. We describe panes in
detail in Section 3.3.

3. SPECIFICATION LANGUAGE
Summarizing the last section, we model a site as various

types of data objects organized into a graph with constraints
declared on the edges allowed between sets of objects. Users
navigate between pages, each of which consists of one or
more panes. Navigation invokes searches which populate
the panes of the subsequent page.

This section describes the GrassRoots language based on
this model, and shows how GrassRoots can be used to quickly
specify a Search & Submit website. We use Flickr.com as
a running example and show how GrassRoots’s abstractions
concisely capture the majority of its function and structure.

Sites are described in GrassRoots’s specification language
and then submitted to the GR compiler. From the specifica-
tion, GR produces a database schema and dynamic webpages
implementing it. This process is visualized in Figure 2.

Underlying our model are four areas of abstraction (data
models, searches, page layouts, and actions) that we now
describe, along with examples from our Flickr specification.

20

Site Objects Data Relationships Search

Flickr Images Bipartite Graph, Undirected Graph Keywords, Tags, Comparison (geo-tag)
Youtube Video Bipartite Graph, Directed Graph Keyword, Tags
Last.fm Audio Bipartite Graph, Tree Tags, Structural
Del.icio.us URLs Bipartite Graph Tags
Digg URLs Tree Taxonomy, Keyword
Craigslist Listings (Image & Text) Tree Taxonomy, Keyword, Comparison
Wikipedia Articles (Text) Directed graph Keyword, Structural
Facebook User Profile (Image & Text) Undirected graph, Bipartite graph Structural, Tags

Table 1: Different but Similar: While various sites have different details, they can all be specified using the

same abstractions. In GrassRoots, we differentiate sites by the types of data objects, the structure of the

data, and by the predominant types of search used to navigate the site.

Figure 2: GR takes a specification as input and pro-

duces a database schema and server-side scripts that

implement the site’s pages.

3.1 Data Types & Relationships
While data modeling (e.g., UML) is well studied, we in-

clude a data model in our language in order to facilitate our
new search abstractions. Unlike SQL, we separate the dec-
laration of data types and relationships. This allows devel-
opers to interchange arbitrary types of content independent
of the site’s structure.

GrassRoots defines and supports several simple data types,
such as TEXT, IMAGE, VIDEO, LOCATION, and URL. Simple data
types can be grouped and aggregated through the complex
data types: LIST and COMPOSITE. A List, analogous to a Vec-
tor in C++, is a collection of instances of a single type,
while a COMPOSITE, analogous to a struct, is a grouping of
one or more named member-types that can be individually
accessed. User and group types are special composites (that
can be overridden as needed) that include a unique ID and
a password hash.

GrassRoots allows common functionality (such as tagging,
comments, and versioning) to be be expressed as attributes
of data types. For example, the taggable and commentable at-
tributes, implicitly include the necessary storage and struc-
ture to implement these behaviors with no additional effort
from the developer. We allow any data type to be declared
as a tag or a comment for another type. Examples of this
are user names tagging pictures in Facebook, and video com-
ments on YouTube videos. GR automatically allocates meta-
data fields that can be used in search (such as owner and
submit time) for each declared type.

As mentioned in Section 2.1, all relationships within Grass-
Roots are abstracted as graphs. We specify these relation-
ship types as tree(t), graph(t), direct_graph(t),
one_to_many(t1 , t2), and many_to_many(t1 , t2), where t is the

data type used as the nodes in the graph. Names are given
to structures so they can be referenced from search queries.
Additionally, edges within structures can be augmented with
integer weights or text labels by adding the [weighted] or [la-
beled] attributes to the structure declaration
(e.g. graph[labeled](USER) ...) While some of these con-
structs exist in XQuery [18] and ER diagrams [13], none of
these existing tools completely capture all our needs.

3.2 Search
The major abstraction provided by GrassRoots is search,

an abstraction that aims to encompass such diverse search
paradigms as those found in Facebook, Digg, and Youtube.
The primary objective of search is to return a set of results
in ranked order. This task can be decomposed into two com-
ponents. First a subset of items matching some filter criteria
must be selected. Second, these items must be sorted accord-
ing to some relevance metric. We now describe filtering and
ranking in turn with special emphasis on a set of enhanced
operators. These operators leverage the declared structure
of the data to make both filtering and ranking more natural
and intuitive.

3.2.1 Filtering Results

Searches in GrassRoots begin by specifying the data type
of the result along with the cardinality of the result set.
Searches returning a single value utilize the LOOKUP keyword,
while searches returning arbitrarily many results use the SE-

LECT keyword. The syntax of the LOOKUP keyword allows
developers to fetch an object with a given UID, a random
object, or the item returned by a function, such as the min(),
max(), or parent() functions.

The SELECT search permits two types of operators that can
be used separately or in tandem. The structural operators
filter objects using graph-oriented functions. The allowed
operators are determined by the relationships specified in
the data model. These operators are listed in Table 2. In
addition, structural operators can be nested such that the
resulting list from one is used as the input to another. The
second class of SELECT operators are value filters. We enu-
merate GrassRoots’s search filters in Table 3.

In addition to these simple query types, developers can
express more complex filter logic by combining queries using
AND, OR, and NOT operators. The syntax of a SELECT is:

SELECT <type> FROM <structural filter>
WHERE [NOT] <value filter>

[{AND|OR} [NOT] <value filter>]*
ORDER {ASCENDING|DESCENDING} [BY <ranking function>]

21

Operator Description

neighbor(n) Find items adjacent to item n.
children(n) Find items which are children of item

n in a tree structure.
parent(n) Find the item which is the parent of

item n in a tree structure.
descendants(n) Find all items for which item n is an

ancestor in a tree structure.

Table 2: Structural search operators.

Search Description

matches x Find items which have value x.
contains x Find TEXT items containing value x.
less_than x Find items with values less than or

greater than x.greater_than x

between x, y Find items between x and y.
proximity o, r Find items within radius r of point o.
tagged by x Find items associated with tag x.

Table 3: Sample filter search operators.

3.2.2 Ranking Results

GrassRoots allows search results to be ordered in four dif-
ferent ways. Results can be ordered canonically based on
the value of the object or the value of one of its meta fields,
such as submit time. Next, objects can be ordered based
on node properties within the structural relationship, such
as degree (number of edges) in a graph, or a node’s Page
Rank [11]. Third, objects can be ordered by path properties,
such as shortest-path distance. This mode is currently seen
in Facebook, where the results of a user search are ordered
by the distance between each result and the querying user.
Finally, objects can also be ordered based on a weighted sum
of any number of the previous ranking methods. As sample
of ranking functions in GrassRoots are shown in Table 4.

Thus in summary, the developer specifies a search filter
based on the content’s value and structure and also a ranking
function to order the search results. Examples of search
methods are shown in Figure 3, which can be more clearly
understood after we discuss page specifications.

3.3 Pages & Panes
The developer specifies a page as a list of panes, search

queries to populate each pane, and a list of arguments to be
passed into the page. Panes can be of two types: display
panes and input panes. An example of a page divided into
panes can be seen in Figure 1. Display panes allow various
pages to display different objects, but with the same behav-
ior. Within display panes, a Detail Pane displays a single ob-
ject in depth (e.g. playing a video in YouTube). A Summary

Pane displays abbreviated information about many objects
(e.g. search results). Additionally, Static Panes contain
static content and is useful for creating page headers. In-
put panes generate a form and submit button. Input panes
can either be Submit Panes (to upload new content), Up-

date Panes (to modify existing objects), and Search Panes

(to input terms for search queries).
Sample Flickr page specifications are listed in Figure 3.

The tag result page contains a single Summary pane that is
populated by a SELECT query leverages the TAGGED BY filter.

Ranking Function Description

<field> Rank canonically by a
particular field’s value.

<structure>.degree() Sort by a node’s edge
count in the structure.

<structure>.pagerank() Sort by the node’s pager-
ank within the structure.

<structure>.distanceTo(n) Sort by path weight from
the item to node n.

<structure>.hopsTo(n) Sort by hop count from
the item to node n.

Table 4: Sample search ranking operators.

PAGE tag_result(TEXT t) {
Summary(Picture) results_pane :
SELECT Picture WHERE TAGGED BY t
ORDER ASCENDING BY _submit_time;

}
PAGE user_profile(User u) {

Detail(USER) owner: LOOKUP User u;
Summary(USER) friend_list(10, overflow) :
SELECT USER FROM Friends.neighbor(u);

Summary(Picture) owned_pics(25, overflow) :
SELECT Picture WHERE _owner MATCHES u;

"add picture" -> linkto add_pic();
}

Figure 3: Sample Flickr pages. Each page is defined

by input arguments along with pane references and

search queries. Search results are used to populate

the Detail and Summary Panes.

This filter is enabled by the taggable attribute given to the
Picture type in the data model. While not shown, Flickr’s
geo-tagging feature can be specified by adding taggable by

and a LOCATION type to Picture’s attributes. Searches could
then use the LOCATION tag or the proximity operator from
Table 3.

The user profile page takes a User object as input and has
four panes: a Detail pane to show the user’s profile, a Sum-
mary pane that is parameterized to list up to 10 friends and
“overflow”remaining results to additional pages, a Summary
pane listing up to 25 of the user’s pictures, and a Static pane
that contains a link to the add pic page.

3.4 Actions & Navigation
Actions are used to both update application state and

navigate among pages. Actions are bound to the data fields
within display panes or to the on_submit keyword in input
panes. The keyword THIS refers to the object currently being
displayed. In the case of summary panes displaying many
objects, action links are created for each object and the ac-
tion parameters are set relative to the object they are dis-
played with. Navigation is specified by the linkto action
together with the destination page and optional arguments.

Although we omit details, a formal model of computation
would represent the system as a state machine of (display-
state, database-state) pairs. The system “executes” when
user input occurs, changing the database state and possibly
passing input parameters to the next page (display state).

Figure 4 gives a sample of our Flickr pane specifications.
The Picture Summary pane displays one or more pictures

22

Summary Pane : Picture {
pic -> linkto pic_detail(this);
_owner -> linkto user_profile(_owner);

}
Detail Pane : Picture {

pic;
_tag -> linkto tag_result(_tag);
_owner -> linkto user_profile(_owner);

}
Search Pane : find_picture {

TEXT t;
on_submit -> linkto search_result(t);

}
Submit Pane : Picture {

require pic;
optional pic_title;
on_submit -> linkto user_profile(_user);

}

Figure 4: Sample of Flickr’s pane specifications.

COMPOSITE Picture {...} (taggable by USER);
Summary Pane : Picture { ...

_tag<USER> -> linkto user_profile(_tag<USER>);
}
Detail Pane : Picture { ...

_tag<USER> -> linkto user_profile(_tag<USER>);
}

Figure 5: The changes required to implement tag-

ging by user identifier in our Flickr specification are

shown on lines 1, 3 & 6. Other types of data, such

as location, could be used for tagging by changing

“USER” to the desired data type.

along with their owners. Clicking on either of these items
navigates to the specified page; for example, clicking on the
owner links to the user profile page specified in Figure 3.

The Picture Detail pane is similar to the Picture Summary
pane except it also displays a single picture and its tags. The
find picture Search pane allows the user to enter a piece
of text which is passed to the search result page. Finally,
the last pane allows the user to submit a picture; after the
submission, the user is navigated to their own profile page.

3.5 Adding a Facebook feature to Flickr
A powerful aspect of abstractions is the ability to eas-

ily add or modify parts of the modelled site. While most
sites use text tags to categorize objects, Facebook uses user
names to tag objects. Adding this kind of functionality to
Flickr would require additional database tables and a non-
trivial amount of page logic. However, within GrassRoots,
data types and behaviors have been separated. This allows
developers to specify tags, comments, or other structural
relationships using any simple or complex data types. In
Figure 5, we show how the addition of three lines in the ba-

sic Flickr specification introduces tagging with users to the
site.

Figure 6 shows the output of a Detail Picture pane pro-
duced by our GR compiler after adding user tagging. By
default, the compiler lays out panes sequentially on a page
within HTML div elements. The developer can then use CSS
to customize the page presentation, thus enabling Figure 6
to have the look-and-feel of Figure 1.

Figure 6: The pic detail page output after user tag-

ging is added to the specification, as shown in Fig-

ure 5. The added user tags are shown in a high-

lighted box.

4. IMPLEMENTATION & EXPERIENCE
The GR compiler’s logical components are depicted in Fig-

ure 2. Our current implementation converts GrassRoots
specification files into SQL schemas and PHP server scripts.
PHP can be replaced with a language of choice such as Ruby
or Python.
GR is currently written in Java and consists of about 15,000

lines of code. Our specification parser leverages the JLex [7]
lexical analyzer and the CUP [3] parser generator for Java.
The parser converts the site specification into an object
model which is used by both the database planner and page
generator components. As an example of GrassRoots’s ca-
pability, the core pages and features of Flickr were specified
in 180 lines. This includes user profiles, groups, photo sets,
tagging, and comments. After compilation, this specifica-
tion resulted in a prototype consisting of 2,000 lines of PHP,
and schemas for the 11 required database tables. We have
also concisely specified versions of several other sites in Ta-
ble 1 including Digg and YouTube in 150 lines and 205 lines,
respectively. The specifications can be found in [1]

We are also working with learning theorists to deploy a
music recommendation web site that automatically tags up-
loaded MP3s with features, such as genre (e.g., Classical)
and mood (e.g., Calm), as well as weights for how well
each tag applies. Users can search based on many tags (e.g.
Calm and Classical). Results are ordered based on a song’s
weighted relevance to all search tags. We model this site us-
ing a weighted bipartite graph that connects tags to songs.
Searches select neighbors of tags ordered by the sum of edge
weights. Existing tagging packages for frameworks such as
Rails do not support relevance weights or multiple concur-
rent tags. We plan to make the client-side interface more
interactive by adding AJAX support for reloading specific
panes. This can be done by adding actions to specify which
pane to reload and the parameters of the new search.

23

5. RELATED WORK
We now survey related work in the web development space.

Prior work focuses on tools to develop general purpose web-
sites with search abstractions limited to relational queries.
By contrast, our GrassRoots provides higher level graph-
based search abstractions by focusing on a specialized subset:
search-driven, social websites.

Web Frameworks: Web scripting languages (e.g., Ruby)
have their own frameworks (e.g., Rails) [9] for adding spe-
cific search features such as tagging. However, these libraries
limit developers to a limited set of search components, which
can only be customized by extensive code modifications.
Second, frameworks such as Rails provide only one layer for
web application development; the developer still has to be
familiar with SQL, HTML, CSS, Ruby, etc., each of which
has a different programming model. While languages have
incorporated Object Relational Mappers (ORMs) such as
ActiveRecord in Rails, designers must still manually design
their own database schemas

Online Services: Ning [8], Blist [2] and DabbleDB [4] are
online services that allow users to create database-driven ap-
plications. All online platforms are closed source and require
hosting on their servers. Blist and DabbleDB are intended
for forms and reports. Ning is a platform for building social
networks but lacks the power of graph-based search opera-
tions as we provide.

Web Application Builders: Several systems such as WebML
[12] and Hilda [19] build general purpose database-driven
websites based on declarative models. However, neither
WebML nor Hilda provide structural search and ranking ab-
stractions tailored to socially-driven web sites.

Graph Databases: Graph databases and query languages
[15, 14] provide an extensive set of graph operators. Fu-
ture versions of GrassRoots could benefit by incorporat-
ing a fuller set of the query operators provided by graph
databases.

6. CONCLUSION
Beyond high profile sites such as YouTube and Facebook,

there is a long tail of specialized socially-driven web sites.
Such communities need better tools so that they can focus on
content organization and search. We have introduced Grass-
Roots, a declarative language and compiler which presents a
graph-based data model abstraction to web application de-
velopers. Most notably, our search abstraction incorporates
primitives from both relational and graph query languages
in filtering and ranking results.

For deployment, our GrassRoots system must be inte-
grated with tools for page design and layouts such as Front-
page, and tools for scalable hosting such as Amazon EC2.
GrassRoots also needs constructs to specify access control
and security policies. The separation of application logic
from implementation in GrassRoots also provides the op-
portunity for automatic optimization for performance and
scaling.

We envision a future in which experts within a domain
can prototype a Search & Submit Web 2.0 site in a few
days using a concise GrassRoots specification, modify the
specification as they gain experience with users, use existing
tools and services to produce a production quality site, and
use the GR compiler to automatically scale as the site grows
in popularity. In doing so we hope that GrassRoots will be a
catalyst for fostering online communities and democratizing
the creation of socially-driven web sites.

7. REFERENCES
[1] http://www.flare.ucsd.edu/grassroots-specs/.

[2] blist. http://www.blist.com/.

[3] Cup. http://www2.cs.tum.edu/projects/cup/.

[4] Dabbledb. http://dabbledb.com/.

[5] Facebook.
http://www.facebook.com/press/info.php?statistics.

[6] Ibm center for social software.
http://www.research.ibm.com/social/.

[7] Jlex. http://www.cs.princeton.edu/ ap-
pel/modern/java/JLex/.

[8] Ning. http://www.ning.com.

[9] Ruby on rails. http://www.rubyonrails.org/.

[10] Youtube draws 5 billion video views.
http://ir.comscore.com/releasedetail.cfm?ReleaseID=333578.

[11] S. Brin, , L. Page, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford University, 1999.

[12] S. Ceri, , P. Fraternali, and A. Bongio. Web modeling
language (webml): a modeling language for designing
web sites. Comput. Netw., 33(1-6), 2000.

[13] P. P.-S. Chen. The entity-relationship model—toward
a unified view of data. ACM Trans. Database Syst.,
1(1), 1976.

[14] S. Flesca and S. Greco. Partially ordered regular
languages for graph queries. J. Comput. Syst. Sci.,
70(1), 2005.

[15] R. H. Güting. Graphdb: Modeling and querying
graphs in databases. In VLDB ’94.

[16] B. Stone. Social networking’s next phase. New York

Times, March 3, 2007.

[17] J. Swartz. Social networking sites help companies
boost productivity. USA Today, October 7, 2008.

[18] W3C. XQuery 1.0: An XML Query Language,
January 23, 2007.

[19] F. Yang, , J. Shanmugasundaram, M. Riedewald, and
J. Gehrke. Hilda: A high-level language for
data-drivenweb applications. In ICDE ’06.

24

