
CrossTalk: Scalably Interconnecting Instant Messaging
Networks

Marti Motoyama and George Varghese
University of California, San Diego

9500 Gilman Drive
La Jolla, California 92093

{mmotoyam,varghese}@cs.ucsd.edu

ABSTRACT
We consider the problem of interconnecting a simple type
of social network: Instant Messaging services. Today, users
are members of various IM communities such as AOL, Ya-
hoo, and MSN. Users often want to engage in conversations
that span multiple IM communities, since their friends may
use competing IM clients. While client-side solutions exist
in the form of Trillian and Pidgin, they require multiple lo-
gins and offer a subset of the features present in official IM
clients. We propose a different solution based on translat-
ing gateways that only requires a single login and allows
users to keep their existing IM clients. We claim that such
interconnection empowers users and encourages the devel-
opment of third-party applications. We propose using an
overlay of bypass gateways that avoids many of the scalabil-
ity limitations of standard gateways. We argue that smaller
IM networks have the right incentives to use these gateways,
and larger networks cannot easily obstruct bypass gateways.
Deploying these gateways into a system we call CrossTalk
can ultimately aid in protocol standardization. We describe
the architecture of bypass gateways and the implementation
challenges faced in interconnecting MSN, AOL, Jabber and
Yahoo for IM. We briefly discuss to extensions to other do-
mains such as interconnecting SIP and Skype.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications; C.2.4 [Distrib-
uted Systems]: Distributed applications; D.2.12 [Interop-
erability]: Interface definition languages

General Terms
Design, Standardization

Keywords
Instant Messaging, Interconnection, XMPP, DHT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSN’09, August 17, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-445-4/09/08 ...$10.00.

1. INTRODUCTION

“[LinkedIn] users have been loyal because there
is a switching cost. For someone to go and dupli-
cate what they’re doing, and even if they came up
with a superior platform tomorrow, they wouldn’t
necessarily switch because they’ve built their busi-
ness network. In many ways, the connections can
be worth more than the platform.” — Jonathan
Yarmis, AMR Research [10]

A vast number of socially-based applications have emerged
in recent years, providing individuals with numerous infor-
mation sharing tools. These applications enable new interac-
tion modes (e.g., IM, VoIP), allow content sharing (e.g., file
sharing), and facilitate the formation of online communities
(e.g., social networks).

However, the value of these social applications is largely
derived from the quantity and quality of their user popu-
lations. One negative aspect associated with the “network
effect” can be observed in such applications as chat and so-
cial profiling sites: users will often choose to utilize a ser-
vice not based upon its quality, but because the provider
has achieved the highest popularity in their social circles. In
other words, “the connection can be worth more than the
platform.” As a result of the network effect, users become
locked in to a particular vendor’s product.

One solution to the vendor lock-in problem is standard-
ization, where a protocol is created that will allow multi-
ple parties to intercommunicate. For example, TCP/IP was
developed at a time when many competing vendors were
introducing proprietary protocols. The problem with stan-
dardization, however, is that the market leaders lack a vested
interest in migrating to the standard. This is because stan-
dardization forces market leaders to compete on the qualities
of their services and not on the sizes of their user popula-
tions.

In this paper, we describe CrossTalk, a system that miti-
gates the problem of vendor lock-in by enabling communica-
tion across closed networks using what we call bypass gate-
ways. The cost of switching to a new network N with innova-
tive features is reduced because adopters of N can still com-
municate with their old networks. Besides early adopters, all
users benefit by gaining the ability to communicate across
network boundaries using the client of their choice.

Developers also benefit from our system by gaining a larger
audience for their applications. For example, a number of
innovative third-party services have already been deployed

61

over specific IM communication dialects, though not much
interest has been generated by these applications. These
add-ons perform such functions as controlling home devices,
tracking the physical location of buddies, and playing FM ra-
dio. Each application, however, is limited to a specific closed
network. We contend that interconnecting closed IM net-
works would encourage innovation among developers, since
their applications could reach all IM users.

Although we focus on IM, we believe that this study pro-
vides insight into interconnecting other types of social net-
works. We implemented bypass gateways for IM, allowing
transparent inter-communication between Yahoo, MSN,
AIM, and any XMPP-compatible chat network. The use of
our gateways and a federated name space (AOL user Alice
is represented uniquely as Alice@AOL) can provide many of
the benefits that result from the adoption of a uniform stan-
dard. However, we suggest that our gateways can further
catalyze the movement to a standard.

2. RELATED WORK
We review the disadvantages of two well-known solutions

to interconnecting IMs, which motivate our bypass gateways.

2.1 Client Consolidation
In client consolidation, the user runs a single application

that speaks to every service network via a uniform interface.
Examples in the IM world include Trillian, Pidgin [13], and
Adium, while examples in the social networking domain [16]
include 8hands and Socialstream. However, client consoli-
dation is only moderately popular, possibly due to three
fundamental disadvantages:

• Feature subtraction: Existing providers do not expose
their internal software interfaces, forcing developers of
client consolidation software to reverse engineer each
protocol. This generally results in missing or poorly
implemented features, since reverse engineering takes
substantial effort and specific protocol details remain
cryptic. For example, file transfer from Pidgin to AOL
frequently fails [1], and video chat performs poorly in
Trillian [11].

• Multiple identities: Client consolidation requires that
users join as many communities as possible to facilitate
connectivity. Wikipedia lists 16 “common” IM proto-
cols in the U.S. but the worldwide list is larger, includ-
ing country favorites such as QQ in China.

• Software and network overhead: While adding addi-
tional software is cheap for a PC, the storage and power
consumption that results from running 16 IM protocols
on one device can be a problem for thin clients, such
as cell phones.

Among these three disadvantages, feature subtraction is
most problematic. For example, AOL users that switch to
client consolidation software must weigh possibly reduced
functionality when communicating with users in their “base
networks”(where the majority of their buddies exist) against
reaching other communities (where fewer buddies reside). Fi-
nally, we note that client consolidation encourages the sta-
tus quo (multiple closed networks) and does not promote
the uniform adoption of an open protocol.

Jabber gateways [7] and Karaka [17] are variants of the
client consolidation approach, though much of the work is

Gateway

AOL

Cloud Cloud

Yahoo

Gateway

StandardStandard

AOL Ciient

User A

Yahoo Client

User Y

Figure 1: A standard gateway is a client on each net-

work that it connects to and translates between the pro-

tocols of each network. Such gateways do not scale be-

cause of limits (such as number of buddies) imposed on

users by networks.

outsourced to a gateway. Both require multiple IDs; more
fundamentally, these solutions only work if the IM protocol
supports the notion of a gateway, which appears to only
be true for XMPP today. There does not seem to be an
incentive for larger IM providers like MSN to introduce these
types of gateways.

2.2 Standard Gateways
The classical way to achieve interconnectivity is to use

what we call standard translating gateways, which are typ-
ically used to interconnect networks with different Layer 3
protocols [5]. Such gateways date back to Cerf’s original
proposal [3] to interconnect the ARPANET and the ARPA
Packet Radio Network.

Figure 1 demonstrates how standard gateways function in
the context of IM. In Figure 1, such a gateway (commonly
known as a “bot”) is used to interconnect AOL user A with
Yahoo user Y . The gateway on the left poses as a client on
the AOL network. A contacts the left gateway when he or
she wishes to send a message to Y . The message is then
relayed to the gateway on the right, where the message is
translated into Yahoo’s IM format and sent to user Y .

A commercial example of a standard translating gateway
for IM is GTalk2VoIP [6], which allows users to send IMs be-
tween MSN and Google Talk. However, users must first add
a service“bot” to their contact lists, then adhere to awkward
messaging semantics to speak with buddies across networks.
For example, to send IMs from MSN to Google Talk, a MSN
user must message the service bot in the following way: IM
gtalk:user@domain.com message. A more fundamental
problem is that standard translating gateways suffer from
severe scalability issues.

The scalability problem occurs because the standard gate-
way is a client in every network that requires bridging. Thus,
the gateway is subject to the restrictions imposed by the net-
work on its user population. For example, most IM networks
limit the number of buddies allowed for a given client (e.g., <
512 for MSN) and only permit communication between two
users who are buddies. Even if the network allows the gate-
way to communicate with an arbitrary number of clients,
there is still the issue of how many users a given client can
communicate with concurrently. For example, a Skype client
can only participate in one phone call at a time.

More concretely, suppose we wish to interconnect 100 mil-
lion AOL clients with the Yahoo network. If a standard
gateway wants to relay presence updates (i.e., notification
a buddy has come online) between users in the AOL and
Yahoo networks, the gateway must become buddies with all
users in both networks. But if a single gateway can only have
512 buddies, the gateway must be replicated 200,000 times.

62

In general, if there are N clients on a network, and there is
a restriction that each gateway can only communicate with
B clients, then there must be N/B gateways to cover all
clients. For Skype, B = 1. Such massive replication would
also require obtaining N/B accounts on each network. Since
the problem arises because a gateway is a client in each net-
work, the natural solution is for the gateways to “bypass”
the actual IM networks to achieve interconnectivity.

Thus, we introduce bypass gateways, where the gateway
appears as a proxy to the user’s base IM client while form-
ing an out-of-band network that enables inter-network com-
munication. We propose our gateway technique in Section 3
and provide details regarding a prototype implementation
that translates between AOL, MSN, Yahoo, and XMPP.

3. CROSSTALK
We discuss the CrossTalk system components in Section

3.1, the implementation in 3.2, the evaluation in 3.3, sample
third party applications in 3.4, and a deployment path in
3.5.

3.1 CrossTalk Components
Figure 2 illustrates the components of the CrossTalk ar-

chitecture using bypass gateways. First, we employ a simple
naming convention to identify users from different IM net-
works. For instance, if AOL user A wishes to make Yahoo
user Y a buddy, A specifies Y @yahoo in A’s list of contacts.
The system has three components:

• Clients: Users continue to instant message through
unmodified client software; thus, we overcome feature
subtraction, since CrossTalk users can still access the
features present in their official clients while interact-
ing with buddies from the same network. However, to
make use of our service, each participant must modify
a few parameters in his or her client software to point
to our gateways (the boxes labeled G in Figure 2). 1

• Gateways: The bypass gateways interpose between
the original client and servers; however, they also com-
municate in an out-of-band fashion using a gateway-to-
gateway network shown in Figure 2. We assume that
each participating institution will run a bypass gate-
way to serve its user population.

• Gateway Network and DHT : The gateway-to-gate-
way network is a logical network that consists of ma-
chines organized into a Distributed Hash Table or DHT
(Figure 2). The DHT is used to store both hard and
soft state for users. For example, the DHT trivializes
routing between gateways by storing the mapping of
user name M (e.g., M@MSN) to the IP address of
M ’s bypass gateway.

We now elaborate on the CrossTalk implementation.

3.2 CrossTalk Implementation Details
Our bypass gateway is currently capable of translating

instant messages between Jabber/XMPP, AOL, MSN, and
Yahoo; market studies [4] show these four to be the leading
IM providers. The gateway was coded in Python, as many

1In our implementation we use a SOCKS4 proxy that requires
2 parameters: one to specify the proxy host name, and one to
specify the TCP port number.

libraries are available for parsing messages from these pro-
tocols. We emulate the gateway network of Figure 2 using
OpenDHT [14].

The bypass gateway intercepts, translates, reroutes and
passes through IM messages. Each bypass gateway has a
corresponding manager that maintains state for each client.
For IM, the manager maintains the client’s roster and bypass
gateway location. The bypass gateways perform three major
functions, as depicted in Figure 2.

• Translation: To avoid the problem of translating be-
tween every pair of IM protocols, each bypass gateway
translates between a provider-specific format and a
canonical format. We chose the IETF-standard XMPP
[15] as our canonical format. For example, in Figure 2,
IM messages sent by Yahoo user Y to AOL user A
will be translated to XMPP by Y ’s gateway and sent
to A’s gateway. A’s gateway then translates the mes-
sage to OSCAR (AOL’s protocol) before forwarding
the message to user A.

• Bifurcating Presence Information: The gateway
must relay the presence information for users to their
base networks while updating the user’s status in the
gateway-to-gateway network. Thus, in Figure 2, when
MSN User M comes online, M ’s gateway will proxy
the presence messages (as usual) to the MSN Network.
However, M ’s gateway will also (Figure 2) advertise
M ’s presence on the gateway-to-gateway network by
updating the state of M in the DHT.

• Merging Buddy and Presence Information: Each
gateway must merge the roster of local buddies from a
user’s base network with the roster of foreign buddies
stored in the DHT. For example in Figure 2, suppose
AOL User A has an AOL buddy B, and two foreign
buddies M (from MSN) and Y (from Yahoo). A will
receive a roster containing B from the AOL server, and
A’s gateway will query the DHT to find that M and Y
are A’s foreign buddies. A’s gateway will then merge
B, M , and Y into an updated roster before passing the
roster to A.

The bypass gateway performs a core set of operations on
all traffic between a client and its chat network. When a
client connects to our system, it first establishes a SOCKS4
connection to the bypass gateway, where it specifies the ad-
dress of the chat server. We chose SOCKS4 over HTTP be-
cause a SOCKS4 proxy does not add a level of encapsulation
(i.e., HTTP headers) to every message. While a fixed proxy
gateway is not fault-tolerant, this problem is shared by other
proxies, and can be fixed using a load balancer.

The gateway scans traffic for markers denoting a partic-
ular protocol. For example, AIM sends “*” in all its packet
headers. Once the client protocol is identified, the gateway
parses packets received from both the client and the server.
First, the gateway searches for the client’s identity. The gate-
way then waits until the server verifies the user’s identity be-
fore performing any other action. This is important, because
traffic between foreign buddies bypasses the server network.
Without this check, a client could spoof another user and
attempt to send messages to a foreign buddy.

Once the user’s identity has been confirmed, the gateway
informs the manager of the user’s online status. The man-
ager then inserts two key-value pairs consisting of (UserId +

63

G G GG

AOL Client MSN Client Yahoo Client Jabber Client

AOL Network

(uses DHT to store
presence and name

to gateway mappings)

User A User M User Y User J

Presence

Presence

Presence

foreign
buddies

buddies

all

local

buddies

translate
yahoo XMPP

Gateway
IM

MSN Network Yahoo Network Jabber Network

Gateway XMPP Network

Figure 2: In the IM solution, clients must be behind a bypass gateway denoted by G to speak to foreign buddies who

must also be behind such a gateway. The gateways perform three functions: translation, buddy merging, and exporting

presence to the DHT.

GatewayToken, GatewayAddress) and (UserId + StatusTo-
ken, Online). The manager then retrieves the user’s roster,
queries the DHT for the location/presence information of
the user’s buddies, and relays the user’s status to the man-
agers of his/her buddies. The manager sends the roster and
presence information back to the responsible gateway. The
same process occurs when a user logs out.

Next, the gateway intercepts the roster returned from the
chat server to perform the buddy merging function alluded
to earlier. The gateway merges the roster of foreign buddies
returned from the manager with the local buddies sent from
the server. Finally, the gateway scans all transmitted instant
messages to intercept IMs destined for other IM networks.
The gateway also translates and sends inter-IM presence up-
dates.

With this infrastructure in place, let us consider AOL User
A who wishes to communicate with Yahoo user Y for the
first time. The following steps will take place (see Figure 2):

1. Initial Contact: A’s gateway intercepts a buddy addi-
tion request from A for Y @yahoo. The gateway then
looks up Y @Y ahoo in the DHT to find the IP address
of Y ’s gateway.

2. Ask for Permission: A’s gateway sends the permission
request to Y ’s gateway. If user Y is online, Y accepts
or denies the buddy addition request, and the response
is communicated back via the gateways to A. If user
Y is not online, information about the pending buddy
addition is stored in the DHT. The request will be
processed when Y comes back online and its gateway
checks the DHT for such pending requests.2

3. Send IM: Assuming that Y accepts, A adds Y to its
buddy list. Now, assume that A sends an IM to Y . The
IM is intercepted by A’s gateway as usual.

4. Translate to XMPP: A’s gateway translates from OS-
CAR to XMPP and sends the XMPP message to Y ’s
gateway.

5. Translate from XMPP: Y ’s gateway translates from
XMPP to Yahoo.

2While pending buddy addition appears to be a source of a
DoS attack, note that we do pending buddy additions only
for validated users, and the number of buddies is limited to
a few hundred.

PROTOCOL
TIME (ms) AIM JAB MSN YAH

NETWORK RTT

avg 96.0 78.0 54.5 75.0
std 0.5 20.8 4.6 3.4
max 98.3 170.1 63.3 80.5
min 95.4 60.9 47.8 68.5

MESSAGE RTT

avg 101.6 86.6 283.5 82.5
std 14.4 24.6 41.4 7.6
max 237.1 192.3 412.6 138.1
min 93.1 63.0 207.9 72.0

ESTIMATED SPT 5.6 8.6 229.1 7.5

Table 1: Latencies observed in real IM networks.

6. Receive IM: User Y receives an IM from A@AOL. The
IM looks exactly like a standard IM except for the
modified user name.

3.3 CrossTalk Evaluation
To evaluate our system, we compare the overhead imposed

by our bypass gateways against the messaging delays we
observe on the various chat network servers. First, we es-
timate the amount of time messages spend inside the chat
servers for clients not utilizing our bypass gateways. Over
the course of 24 hours, we logged a sending client S and
a receiving client R into each of the AOL, Jabber (specifi-
cally, jabber.org), MSN, and Yahoo IM networks. S pinged
the chat server to estimate the network RTT, then sent an
IM message containing only an embedded timestamp to R. R
subsequently parsed the timestamp and computed the total
time spent receiving the message, which we call the mes-
sage RTT. This entire process was repeated 100 times for
each hour of the experiment, and Table 1 shows our results.
The Estimated Server Processing Time (SPT) row repre-
sents the difference between the average network RTT to
the IM server and the average message RTT computed by
R. Thus, the SPT measure is independent of network delay.

We then tested the CrossTalk implementation on a 3.2
Ghz Pentium 4 with 1 GB of memory. We used the obser-
vations in [18], which describes the IM traffic characteristics
for an enterprise of over 4000 individuals, to generate a load
for our gateway. The load consisted of: 520 clients spread
across 13 VMs, each sending one 150 character-long mes-
sage per second to 20 other users. Recall that each bypass
gateway will serve a particular organization; therefore, sub-
jecting our prototype to a load representing 4000 people is

64

 0

 5

 10

 15

 20

 25

 30

aim jab msn yah

T
im

e
(m

s
)

Sender Protocol

Receiver
aim
jab

msn
yah

Figure 3: The average delay caused by our gateway

for pairs of clients sending various types of IM traffic

through our gateways.

reasonable. Note that one can achieve further scalability by
adding more machines. Figure 3 shows the average delay
introduced by our gateway between protocols. All protocol
traffic took less than 15 ms to process, which is compara-
ble to the amount of time messages spend inside the actual
chat servers (as represented by the SPTs in Table 1). Note
that Table 1 shows that an IM sent between two users in the
MSN network (not behind bypass gateways) experiences an
average delay of 229.1 ms, which is much higher than the
overhead imposed by our prototype.

3.4 Third Party Applications Using CrossTalk
We return to one of our motivations for application in-

terconnectivity: increasing the reach of third party appli-
cations. We created two example applications that demon-
strate the benefits of interconnecting IM protocols. The first
application provides IP geolocation, and the second exports
Last.fm information. The applications were built on top of
Yahoo Messenger 8 and AIM Lite.

When a user A wants to know user Y ’s location or Last.fm
listening habits, A simply types “/location” or “/music” into
a conversation window with Y . A sends an IM containing the
command to Y through the gateway. If A and Y are using
different IM protocols (e.g., AOL and Yahoo), the gateway
will translate the IM sent by A. The plugin at Y will observe
the command embedded in the IM message, then make an
HTTP request to the online APIs for hostip.com or Last.fm.
Lastly, the plugin will auto respond to A’s request, sending
back the information through an IM. The IM may be trans-
lated by the gateway before reaching A.

Without our gateway, AIM clients could only get location
and music information from other AOL clients, and simi-
larly for Yahoo clients. Thus, CrossTalk greatly extends the
reach of the applications by allowing IMs to reach users in
both networks, which may motivate developers to write new
IM applications. Note also that we wrote separate plugins
for each client. During the development of the plugins, we
observed that AIM and Yahoo have similar API calls. Ide-
ally, a developer would only have to write a single plugin for
all IM networks, similar to the platform offered by the pop-
ular OpenSocial [12]. We describe our vision for a general
architecture in Section 4.2 that allows this feature.

3.5 CrossTalk Deployment
We now sketch a possible deployment path for CrossTalk,

discussing incentives and impediments for each stakeholder

involved: large IM providers, small IM providers, enterprises,
and end users.

Large Providers: Large providers may alter their proto-
cols to break our translation efforts. Constant changes to
protocols, however, affect users by forcing them to upgrade
their clients, and disgruntled users can respond by switch-
ing IM clients. Second, the provider cannot distinguish by-
pass gateways from ordinary proxies; they cannot impair the
former without hurting the latter. Lastly, unlike other solu-
tions such as Pidgin, our approach continues to play adver-
tisements from the base networks. We play advertisements
from AOL even when an AOL user is conversing with a Ya-
hoo user. Thus, our gateways do not cannibalize the revenue
streams of large providers.

Small Providers: A “long tail” [2] of smaller IM providers
exists across the world. Our software contains translation
modules for 3 major IM protocols whose vendors would
most likely not contribute to CrossTalk. However, smaller
providers have a strong incentive to develop translators,
since doing so will increase the reach of their IM services.

Enterprises: The use of a DHT for storing IM state al-
lows organizations (e.g., universities, companies) to buy and
maintain machines that serve as both gateways and DHT
nodes. Our performance evaluation shows that a few inex-
pensive PCs suffice for IM. If performance becomes an issue
(for more heavyweight traffic such as VoIP), a market could
emerge for implementing bypass gateways in hardware.

End Users: If we can build critical mass via an initial com-
munity of users, then a “network effect” will set in. Again,
users have many incentives for using our bypass gateways,
which we addressed in Section 1.

4. FUTURE WORK
We now propose improvements to our system, and briefly

discuss how our bypass gateways can lead to a general ar-
chitecture.

4.1 Dealing with Encryption
The solution depicted in Figure 2 is infeasible for encrypted

protocols. Skype, for example, encrypts all client-to-server
communication, making the in-network interception and
translation of protocol messages impossible. In this case, the
gateway’s only option is to intercept messages before they en-
ter the network. In other words, we need to replace the idea
of an in-network gateway box with a gateway shim layer that
runs on the host machine. We envision inserting a shim layer
between the user input and the actual base client, either
through an SDK or by intercepting user interface commands
(key presses, mouse clicks). Traffic sent to and from the base
network is passed through unchanged. However, traffic sent
from the client (e.g., Skype) to a user in a different network
(e.g., SIP) is sent in a canonical format (e.g., SIP) through
our gateway-to-gateway network to the recipient.

4.2 General Architecture
We now describe our vision for a general architecture

(shown in Figure 4). At the top of Figure 4 are the clients.
Individuals who use unmodified clients can utilize our by-
pass gateways or shim layers to achieve interconnectivity.
However, we believe a better approach for the future is to
migrate to a new abstract client layer. The new layer should
ask for services using abstract calls (e.g., Send IM, Dial Call,
Get File). As with IP, this allows clients to remain insulated

65

Old Client Old Client New Client

Wrap Layer

Gateway

Gateway

Gateway

Mappings in DHT 2. User name −−> User state (e.g., presence)

1. User name −−> Gateway/host

3. Capability −−> Gateway/host

Get File

Dial Call

Abstract Interface

Send IM

Client−server

Interface

Map user to host

Figure 4: In the general architecture, new clients use

a more abstract interface, and the DHT allows service

composition by mapping capabilities to IP addresses.

from changes in technology, as say Skype is replaced by the
next VoIP client du jour, and Facebook is supplanted by the
next vogue in social networks. A modified client could also
explicitly build in fault-tolerance to gateway failures.

The DHT stores mappings on behalf of all applications;
recall that the IM solution needs to maintain mappings be-
tween usernames and the IP addresses of their bypass gate-
ways. The DHT can also be leveraged to store any user
state that needs to be shared beyond the responsible gate-
way (e.g., presence information in IM). A more interesting
possibility that a DHT opens up is something akin to service
composition (e.g., [8, 9]). Suppose we want flexibility in our
choice of canonical protocols. Rather than require that all
gateways translate to and from XMPP, we could allow a se-
quence of translations to occur. The DHT can be used store
a mapping from capabilities (e.g., protocol translations, ex-
its to foreign networks at a specified region) to IP addresses
(gateways, or even hosts) that can perform a particular func-
tion. These capabilities can then be composed by finding a
path through the resulting graph encoded in the DHT.

5. CONCLUSIONS
Interconnecting application level networks has three ben-

efits. First, it mitigates the problem of vendor lock-in by
allowing users to switch to new networks without losing ac-
cess to their old networks. Second, even users who do not
switch benefit by gaining access to a larger community of
individuals. This is important for applications such as IM
because the market is segmented into a number of popu-
lar providers. Third, developers of third-party applications
benefit by gaining wider audiences for their add-ons.

Existing solutions to the problem of interconnecting ap-
plication networks are fairly ad hoc, ranging from agree-
ments between pairs of providers to gateway/bot solutions
with scalability issues. Even the cleanest approach, client
consolidation (e.g., Pidgin, Socialstream), presents several
barriers to adoption for the average user. By contrast, our
solution, CrossTalk, is general and scalable. Adopters can
use whichever client software they prefer while avoiding the
need to create multiple accounts in every network they wish
to participate in. Because the bypass gateway network in-
ternally speaks a standard protocol, the solution encourages
newer clients to use the standard protocol, thereby avoiding
the need to write translators. Larger providers do not have

incentives to break our service because we encourage the
usage of their vanilla clients, which often generate revenue
by showing ads. The move to standardization is facilitated
when a large number of clients speak the standard solution.

While our paper has focused on IM, we believe that the
ideas developed in this paper can be applied to more recent
social networking applications. In particular, our analysis of
the issues with client consolidation and standard gateways,
the use of bypass gateways, and the need for a deployment
path with the appropriate incentives, are all applicable to
the general problem of interconnection. That said, we clearly
recognize that the specific problem of interconnecting say
MySpace and Facebook has a number of complex aspects
that we leave for future work.

We believe that providing a standard substrate for IM,
VoIP, and social networks to enable third-party innovation
and user empowerment is a vision worth pursuing. It was in
1973 that ARPA initiated the Internet project; the results in
terms of user empowerment and the variety of applications
that run on top of TCP/IP are a matter of historical record.
Nearly twenty five years later, in the face of application in-
terconnection issues that each of us face every day, perhaps
it is worth taking a trip back to the future.

6. REFERENCES
[1] gaim faq. http://gaim.sourceforge.net/faq.php#q49.
[2] C. Anderson. The Long Tail: Why the Future of Business is

Selling Less of More. 2006.
[3] BTinternet. The arpanet, the internet and tcp/ip.

http://www.btinternet.com/~sandyloan/TMA04.htm.
[4] comScore. http:

//www.comscore.com/press/release.asp?press=800.
[5] M. Fiuczynski, V. Lame, and B. Bershad. The design and

implementation of an ipv6/ipv5 network address and protocol
translator. In Proceedings of USENIX Annual Technical
Conference, 1998.

[6] gtalk2voip. Gtalk-to-voip. http://www.gtalk2voip.com.
[7] Jabber. Jabber Gateways. http:

//www.jabber.org/user/userguide/#usegateways.
[8] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan,

I. Stoica, and K. Wehrle. Ocala: An architecture for supporting
legacy applications over overlays. In Proceedings of
USENIX/ACM NSDI, 2006.

[9] K. Lakshminarayanan, I. Stoica, and K. Wehrle. Support for
service composition in i3. In Proceedings of Multimedia, 2004.

[10] C. Lynch. http://www.nytimes.com/external/idg/2008/
10/27/27idg-Is-underdog-Lin.html.

[11] A. M. McEvoy. Trillian Basic., 2005. http:
//www.pcworld.com/article/id,123956/article.html.

[12] OpenSocial. OpenSocial.
http://code.google.com/apis/opensocial/.

[13] pidgin. http://www.pidgin.im/.
[14] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,

S. Shenker, I. Stoica, and H. Yu. Opendht: a public dht service
and its uses. In Proceedings of ACM SIGCOMM, 2005.

[15] P. Saint-Andre. Extensible messaging and presence protocol
(xmpp): Core. Technical report, IETF, 2004.

[16] S. Schroeder. http://mashable.com/2007/07/17/social-
network-aggregators/.

[17] Vipadia. Karaka.
http://www.vipadia.com/products/karaka.

[18] Z. Xiao, L. Guo, , and J. Tracey. Understanding instant
messaging traffic characteristics. In Proceedings of International
Conference on Distributed Computing Systems, 2007.

66

