GrassRoots:

Socially-Driven Web Sites for the Masses

Frank Uyeda Diwaker Gupta, Amin Vahdat, George Varghese

University of California, San Diego

This Talk in a Nutshell

- Grass-roots communities wish to have websites that allow them to submit and flexibly search for data.
- These communities require tools that are simpler than those currently available (e.g. Apache, PHP, MySQL).
- To build such tools we need models for:
 - data objects, page layout, and, most importantly, search.
- We have instantiated these model in an easy to use language called GrassRoots, and compiler called GR.

Web Application Development

Web Application GrassRoots Pre-packaged Custom Presentation Configuration Presentation (Dreamweaver) Application Model **Application Logic** Wikis, Blogs, CMS (PHP, Ruby, Python) (WordPress, Joomla) **Application Logic** Web Frameworks (Auto Generated) (Zend, Rails, Django) **Database Configuration Database Configuration Database Configuration** (Pre-specified) (Auto Generated) Database (MySQL)

Outline

- Motivation
- Modeling
- Results

The Spread of the Social Web

- Big social networks -- international phenomenon.
 - North America: Facebook (250M)

- South America / India: Orkut (67M users)
- Not just "social networks"
 - YouTube (video sharing), Digg (social bookmarking)

- Growing interest in smaller sites specialized by industry, enterprise and communities.
 - Wellpoint (insurance)
 - Cisco (company specific)

Who Wants Social Sites?

- Lots of people!
- **Example: Physics Researchers**
 - Want to share data sets, tag interesting features
- **Example: Digital Artists**
 - Want to share data visualization programs & collaborate
- **Example: Local Parents & Baby-sitters**
 - Want job postings, referral network

These communities lack resources and expertise. Need cheap, easy-to-use tools!

Limitations of Existing Tools

- Difficult to prototype new ideas
 - Not clear which web development framework will work best
 - Require knowledge of database schemas, web programming languages, design techniques
 Addressed in this talk
- Significant time and expertise needed to develop an operational site
 - Large, complex code base
 - Integration with user management, access control and web API's
 - Engineer for security and privacy
- General techniques to scale are unknown
 - Performance tuning is "black magic"
 - Hire a consultant

Opportunity: Different But Similar

Site	Objects	Search
Flickr	Images	Keyword, Tags, Comparison (geo-tags)
YouTube	Video	Keyword, Tags
Last.fm	Audio	Tags, Structural
Del.icio.us	URLs	Tags
Digg	URLs	Taxonomy, Keyword
Craigslist	Listings (Image + Text)	Taxonomy, Keyword, Comparison
Wikipedia	Articles (Text)	Keyword, Structural
Facebook	User Profile (Image + Text)	Structural, Tags

The Essence: Search & Submit

- Users create and upload content
- Content organized/ranked based user input
- Search based on:
 - Associated keywords (e.g., Del.icio.us tags)
 - Structural relationships (e.g., friends in Facebook)
 - Taxonomy / Hierarchy (e.g., categories in Digg)
 - Comparison / Proximity (e.g., geo-tagging in Flickr)

Approach: Add Abstraction

 Model: Create an abstract model for community driven web sites.

• Specify: Allow developers to express an abstract site model in the GrassRoots language.

 Compile: The GrassRoots compiler generates web code and configures storage.

Outline

- Motivation
- Modeling
- Results

New Insights Behind Our Model

 Insight 1 (Layout): Pages are composed of panes that are populated by search results.

Insight 2 (Navigation): All navigation is search.

 Insight 3 (Search): Graph-based search with attribute filtering covers existing social search mechanisms.

Data Modeling: like UML

- GrassRoots objects:
 - High-level types (e.g., video, image, text),
 - Composite types like C-structs
 - Built in attributes: taggable, commentable
- Relationships as Graphs
 - General Graph (e.g. friends in Facebook)
 - Directed Graph (e.g. YouTube Subscribers)
 - Hierarchy / Tree (e.g. Craigslist categories)

Running Example: Flickr.com

What is **flickr**?

- Community photo-sharing website
- Users associate with each other
- Images organized using:
 - Keyword tags
 - User "photo sets"
 - Group "pools"

Insight 1: Page Layout Model

Formalizing Insight 1

- A page is composed of one or more panes
 - Panes are populated by embedded searches
- Pane
 - A region within the Page
 - Handles the input and output of a particular data collection, or displays static content
 - Defined once, and reused across many pages
 - Pane aesthetics customized with CSS

Insight 2: Navigation is Search

Formalizing Insight 2

- Navigation associates clicking on a data object to a page and search parameters.
 - Pages embed searches.
 - the "linkto" keyword provides parameters to searches.
- Syntax:

```
[object in pane] -> linkto [page]( [params] );
```

 Example: Clicking on a user's name displays all pictures owned by that user.

```
user -> linkto all_users_pictures( user );
```

Insight 3: Graph-based Search Model

Formalizing Insight 3

```
SELECT <collection>
[FROM <structural relation>]
[WHERE <filter condition> ...]
[ORDER BY <ranking function> ...]
```

- Structural relations:
 - Graphs: neighbor,
 - Tree: subtree, parent, children
- Filter conditions:
 - matches, contains, greater than, between, within distance, tagged by
- Ranking:
 - Combination of attributes or graph properties (e.g. node degree)

Outline

- Motivation
- Modeling
- Results

Abstraction Allow Powerful Modifications

- Claim: Small changes to the specification provide important features at low cost.
- Example:
 - Flickr tags photos with keywords
 - Facebook tags photos with Users
- How do we change our Flickr specification to incorporate User tagging?

Facebook User Tagging

facebook

Home

Profile

Friends

Inbox 1

Frank Uyeda Settings Logout

Photos of Kevin Kuo

Photo 8 of 288 | Photos of Kevin | Kevin's Profile

Previous Next

In this photo: Christopher Lau, liz, Kevin Kuo (photos), Sharon Prude Williams, Rigobert Vindiola, Vanessa Arriola

Added July 28

From the album: "Old school pics- for posterity sake" by Kevin Kuo

Adding User Tags to Flickr

```
COMPOSITE Picture {
    IMAGE
              pic;
    TEXT
          pic title;
              pic description;
    TEXT
} (taggable, taggable by USER, commentable);
PAGE pic detail( Picture p ) {
    Detail(Picture) main: LOOKUP Picture p;
Detail Pane : Picture{
    owner -> linkto user profile( owner );
    _tag -> linkto tag_result( _tag );
    _tag.USER -> linkto user_profile( _tag.USER );
    "add tag" -> linkto add tag( this );
    "add to set" -> linkto add to set(this);
    "add to group" -> linkto add to group(this);
```

Compiled Flickr Page with User Tags

GR Compiler Implementation

- Implemented in Java (~15K lines of code)
- Page generation in various languages.
 - Currently supports PHP

GR vs. Ruby on Rails: Abstraction and Performance

Implemented Flickr-like site using Rails plug-ins & GR

- Code Complexity
 - 50 lines of code across 19 files (vs. 180 lines in 1 file)
- Picture retrieval throughput:
 - Grassroots gives 2x max throughput.
 - Grassroots only generates necessary code
 - Ruby has large call tree.
- Tag search throughput 20 most recent
 - 500:1 performance difference, favoring GrassRoots.
 - Suspect poor SQL queries & failure to parallelize.

Summary

- Need better tools for constructing social sites.
- Leverage the commonalities among sites.
- We provide abstractions to ease development.
 - Pages are composed of panes
 - All navigation is search
 - Graph-based search with attribute filtering
- Abstractions provide flexibility & opportunity for optimization.