
Diverter: A New Approach to Networking Within Virtualized
Infrastructures

Aled Edwards, Anna Fischer and Antonio Lain
HP Laboratories, Long Down Avenue, Stoke Gifford, Bristol BS34 8QZ, UK

{aled.edwards,anna.fischer,antonio.lain}@hp.com

ABSTRACT

As virtualized data-centres become the back-end platforms
behind a new generation of utility and cloud computing in-
frastructures (such as AmazonAWS [1]) their multi-tenancy,
scale and complexity introduce new challenges that espe-
cially affect the networking layer. Multiple customers’ re-
quirements for varying logical network topologies must be si-
multaneously accommodated on the shared, underlying net-
work fabric in a secure manner.

Diverter is a new approach to network virtualization that
targets these highly flexible, large-scale, multi-tenanted en-
vironments and advances the current state-of-the-art by im-
plementing an efficient, fully distributed virtualized routing
system that allows end-to-end communication between any
endpoint with just a single network ”hop”. We have im-
plemented a prototype of this solution that, in certain net-
work configurations, achieves a throughput improvement of
at least 66 % compared to alternative approaches.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—distributed networks

General Terms

Design, Management

Keywords

Network virtualization, distributed overlays, packet filter-
ing, routing

1. INTRODUCTION
Over the past years data-centres have become the main in-

frastructures behind large-scale Internet and enterprise com-
puting, and as customers embrace utility and cloud com-
puting models (such as AmazonAWS [1]), the scale of data-
centre platforms is set to increase further. In order to pro-
vide better resource utilization and more flexible services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WREN’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-443-0/09/08 ...$10.00.

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

Management System matches requests from A and B and changes network topology

Customer A Customer B

Request from A

 to allow B

Request from B

 to allow A

Routing

allowed

Routing allowed

Figure 1: Negotiating network topology changes in
a virtualized data-centre.

to such customers, many data-centres are moving towards
multi-tenanted, virtualized environments. For example, Fig-
ure 1 shows potentially competing customers that can safely
manage the topology of their (virtual) networks while shar-
ing physical infrastructure provided by the data-centre owner.
While these virtualized environments offer many benefits,
they also represent very complex and dynamic systems, and
so pose significant management and control challenges.

Challenges include for example:

• allowing multiple customers to have distinct, separate
virtual networks that they can configure and tune in-
dividually to suit their particular (multi-subnet) appli-
cation requirements,

• allowing many of these virtual networks to co-exist
within a shared underlying fabric, whilst retaining sep-
aration and isolation between different (potentially com-
peting) customers - by default no traffic from one cus-
tomer’s virtual network should be allowed into another
customer’s virtual network,

• allowing controlled and efficient inter-communication
within virtual networks and between distinct customer
virtual networks if required and permitted,

• scaling this network virtualization to thousands of cus-
tomers and thousands of endpoints, each hosting tens
of virtual machines.

103

Limitations of traditional approaches

Traditional approaches to virtual networking [6, 12] strug-
gle to address the challenges mentioned above. Typically,
they rely on network models that provide datalink layer or
layer-2 [19] abstractions such as virtual segments or virtual
subnets. Unfortunately, these approaches require routing el-
ements to convey packets between virtual networks. These
routing elements could be hardware routers or even rout-
ing logic within a multi-interface customer Virtual Machine
(VM). Either way, these routing elements must be dynam-
ically configured in response to changing virtual network
topologies.

The use of hardware routers introduces significant porta-
bility, reliability, scalability and manageability issues. For
instance:

• routers and physical nodes hosting VMs are often ad-
ministered by different teams and this separation of
concerns can make acceptance and implementation of
an approach that reconfigures routers difficult. In the
case of installations using shared networking infras-
tructure, administrators are understandably reluctant
to allow direct access to networking equipment,

• there is still no widely-adopted direct interface and
data-model for programming heterogeneous hardware
switches and routers - this limits the portability of
any solution to networks with supported switches and
routers,

• conventional hardware routers also limit scalability:
they only “understand” VLAN [9] encapsulation, and
the use of VLANs limits the number of separate sub-
nets to 4096 (since VLAN ids are 12-bits wide), not
enough when millions of customers could require a
private subnet. Note, this limitation does not apply
to very modern routers which support so-called QinQ
VLAN encapsulation [10], but QinQ also requires NIC
support.

The multi-interface routing VM approach addresses some
of these limitations but exhibits other problems. For in-
stance:

• extra “routing” VMs are required in every customer
virtual network that needs multiple subnets to, for ex-
ample, deploy a traditional three-tier web application,

• all packets travelling inter-subnet or to other customer
networks need to pass through the routing VMs, intro-
ducing a severe performance bottleneck (see Section 3),
and also a single point of failure.

Our approach

In order to overcome these difficulties the main contri-
bution of our work is the design and implementation of
a physical node, software-only network virtualization solu-
tion based on a fully-distributed virtualized routing system
that facilitates single network“hop”communication between
any endpoint, thus providing very good performance with-
out compromising manageability.

Unlike traditional software solutions, our solution adopts
a network layer or layer-3 [19] approach to virtual network-
ing - nodes hosting VMs collaborate to implement a fully-
distributed virtual router.

IP addresses of VMs are allocated in a way that reflects
virtual network topology and such that no address clashes
occur. This means no two customers ever need to use NAT
techniques to communicate.

Our solution only requires software changes in physical
nodes hosting VMs. It assumes a flat underlying layer-2 net-
work and thus avoids having to configure switches or routers.
Unlike AmazonAWS, we correctly support scoped broad-
cast delivery using physical network multicast, which most
switches implement efficiently (by IGMP snooping). Whilst
we acknowledge that there are scalability and performance
concerns with large layer-2 networks due to packet broad-
casting and packet flooding, we note that layer-2 manage-
ability benefits mean that these issues are being addressed in
contemporary research [13, 16]. Also, our solution includes
a number of measures to reduce or even eliminate the use of
broadcast and flooding.

The rest of this paper is organized as follows: In Sec-
tion 2 we describe details of our virtual networking solution.
We present results from a first prototype implementation in
Section 3, demonstrating the positive effect on performance
achieved by our technology compared to alternative solu-
tions. Section 4 discusses related work and in Section 5 we
summarize our overall approach and its practical implemen-
tation, and additionally sketch some first ideas on future
work. Note that for the sake of brevity we do not describe
here a distributed policy engine that we use to configure
endpoints.

2. VIRTUAL NETWORKING

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

Trusted VLAN

FARM 1

FARM 2

FARM 3

Physical hosts

Virtual

Gateways

Separate subnets

inside the farm

Figure 2: Distributed Virtual Router: A logical
view.

We virtualize based on layer-3 (network-level) information
and provide support for multiple, isolated, independently
managed customer virtual networks or “farms” each consist-
ing of several subnets. This is a common configuration in
non-virtual settings. Figure 2 shows the logical view of a
small system.

By default, our system mimics the endpoint visibility pro-
vided in typical physical networks - VMs inside a subnet can
communicate with each other without any restrictions, but

104

ARP Engine

Queue Solicit

MAC Rewrite

Packet TX

Lookups:

In local cache?

Found

NOT Found

Packet RX

Anti-spoofing

Visibility

filtering

From local VM?

YES

NO

Figure 3: Packet Processing Steps.

communication between VMs of different subnets has to be
explicitly allowed by the farm owner. Communication across
two different farms is only permitted if both sides have mu-
tually agreed on such a communication.

VM IP addresses are allocated in a regular manner using
a simple one-to-one mapping between network IP addresses
and < f : s : h > triplets, where f is the farm identifier,
s is the subnet identifier relative to that farm, and h is the
host identifier within the subnet. We currently use 10.f.s.h

addresses, allowing up to 16 million VMs system-wide, but
this can be changed by the infrastructure owner at set-up
time.

Notionally, at the core of each farm network is a vir-
tual gateway connecting all the subnets within the farm.
However, these virtual gateways do not actually exist; their
functionality is distributed amongst all the physical nodes
hosting VMs, which collaborate to form a fully-distributed
virtual router for all farms. This fully-distributed virtual
router determines where to send packets by examining vir-
tual IP addresses alone, ignoring the virtual MAC addresses
used.

Our network virtualization technology is implemented by
a software module (which we call VNET) residing within
the host OS on each physical node. It intercepts packets
as they emit from VMs or the host OS and as they arrive
from the wire, processes them, discards them if they violate
packet filtering rules and ultimately transmits them to an-
other physical node or passes them into a local VM or the
host OS.

Basic packet processing

Whenever a packet arrives from a physical NIC or one of the
virtual NICs on the system, it is passed to our VNET mod-
ule. A number of processing steps then occur, as visualized
in Figure 3:

1. Any locally-sourced packet first encounters an anti-
spoofing check that ensures the sending VM is using

valid source addresses - this prevents a VM imperson-
ating another VM.

2. All packets then traverse a filter that contains all net-
work visibility rules that enforce separation between
virtual machines. If the packet does not pass the rule
checks, it is discarded.

3. The destination IP address in the packet is then exam-
ined to determine where to send it. The VNET mod-
ule manages a mapping table within each host OS that
maps IP addresses to local virtual NICs or to physical
MAC addresses of remote nodes.

4. If the packet is destined for a local VM, the VNET
module checks to see whether the source MAC address
needs rewriting - this might be to preserve the illusion
of traversing a gateway or to recreate the source virtual
MAC address that the packet originally possessed.

5. If the packet is destined for a remote node the destina-
tion MAC address is rewritten to be the physical MAC
address of the remote node.

6. If no mapping exists in the table then the packet is
queued until a mapping can be determined by an asso-
ciated ARP engine which builds up and manages the
mapping table.

In our approach we rewrite MAC addresses such that no
virtual MAC addresses ever appear “on the wire”. Our net-
work virtualization technology translates virtual MAC ad-
dresses into the MAC address of the physical node that cur-
rently runs the VM with the target IP and rewrites Eth-
ernet packet headers accordingly before sending them onto
the wire.

We exploit this MAC rewriting technique for providing the
illusion of routing through our notional virtual gateways.
Within each virtual subnet in each virtual farm a specific
MAC and IP address is reserved for the farm’s virtual gate-
way (conventionally address < f : s : 1 >). Whenever

105

packets are sent from one subnet to another, on the receiv-
ing node the source MAC address is rewritten to be the
MAC address of the gateway - this creates the illusion that
the packet has traversed the gateway and has been routed.
MAC rewriting is also used to limit broadcast and multicast
distribution as described later.

Advantages of our approach

The main benefit of our network virtualization approach is
that all communication within our virtualized infrastructure
always involves just a single network ”hop”. As the under-
lying physical infrastructure is a flat, layer-2 network, our
fully-distributed router can quickly discover the location of
(virtual) IP addresses and pass packets directly to their re-
quired destination. This has a huge, positive performance
impact, especially for inter-farm and inter-subnet communi-
cation as we will see in Section 3. As we operate directly
on layer-3 network-level information, and transmit packets
directly from source to destination, we can avoid deploy-
ing and configuring dedicated routing entities (like routing
VMs) which is an important advantage in terms of perfor-
mance and manageability.

The use of system-allocated IP addresses avoids clashes -
this means that two customer farms, if required, can always
communicate directly, without the use of NAT techniques.
We are also able to exploit knowledge of IP address structure
to limit broadcast and multicast distribution (as described
later).

MAC rewriting has three benefits - the first is that we
reduce the occupancy of physical switch forwarding tables
- given that our addressing scheme can potentially accom-
modate very many VMs simultaneously, the sheer number
of MAC addresses could cause a significant problem for con-
ventional physical switches which typically can only hold
thousands of entries. The second benefit is that each physi-
cal node no longer needs to listen in promiscuous mode (i.e.,
receiving all packets which arrive at its NICs) which means
that physical nodes need not be interrupted and need not
examine every flooded packet on the network. A third ben-
efit is we avoid encapsulating the packet thus allowing VMs
to use the full MTU of the physical network. A further ben-
efit is that by using physical MACs only, we avoid “leaking”
virtual address information onto the wire.

A further important differentiator of our networking ap-
proach is that as well as supporting“infrastructural”policies
that define which VMs can communicate with which other
VMs, our system allows customers to define their own per-
VM policies - this allows customers to specify their own IP
filters, stateful firewalls, etc. However, crucially, because
these policies are implemented outside the customer VM
within our virtualization layer, there is no way in which
they can be bypassed or subverted even if the VM is com-
promised in some way. This, of course, does not prevent a
customer using filters within their VM if they wish to do so.

The VNET ARP engine

The VNET module uses multicast ARP to discover map-
pings between IP and MAC addresses, and to discover the
physical node on which a VM is running (inferred from the
source MAC in ARP response packets). It also manages the
VNET mapping table, refreshing stale entries, and timing
out unused entries. There is a single, shared mapping table
per-node. This allows VMs to reuse mappings previously

discovered by the actions of other local VMs. Normally ARP
is used to discover the MAC address corresponding to desti-
nation IP addresses. However, in our system ARP may also
be used to discover the MAC addresses of new source IP
addresses. This is necessary after a packet has traversed the
physical network - in this case the virtual source and des-
tination MAC addresses will have been rewritten to be the
physical MAC addresses of the sending and receiving nodes
and so a “backward” ARP may be required to discover and
recreate the original virtual source MAC address.

The mapping table is limited to a fixed size. A linked
list is maintained within it, allowing the least-recently-used
entry to be discarded and reused when the mapping table
is full. However, as we operate on an underlying flat layer-
2 network (i.e. with no default route) the mapping table
has to be sized significantly larger than a typical ARP table
in a typical physical node. This is not a significant scaling
problem as, normally, the number of endpoints in active use
by the VMs on any given node is a small subset of the total
number of VMs in the system. Also the size of a mapping
table entry is relatively small, a single megabyte of physical
memory accommodating thousands of mapping entries.

Virtual IP broadcast and IP multicast traffic handling

Each virtual farm within our system may consist of multi-
ple virtual subnets. In a physical network, broadcasts are
normally restricted to their originating subnet. Similarly IP
multicasts are restricted to their originating subnet unless
their TTL is > 1. To provide similar behaviour within our
virtual networks each virtual farm is allocated a fixed Eth-
ernet multicast address, and each subnet within each virtual
farm is allocated a fixed Ethernet multicast address. Broad-
cast and multicast traffic emitting from VMs is then mapped
to the appropriate Ethernet multicast address depending on
whether the packet is broadcast or multicast.

The VNET module on each physical node listens on the
appropriate farm and subnet multicast addresses correspond-
ing to each of the VMs hosted. Thus only nodes that possess
a VM in farm X are interrupted with virtual broadcasts or
virtual multicasts from farm X. The VNET ARP engine also
uses this technique to limit the distribution of ARP request
packets - if it is attempting to determine the MAC address
of a VM in farm X subnet Y it sends the ARP packet to the
Ethernet multicast address corresponding to X and Y.

Virtual ARP handling

The VNET ARP engine also handles ARPs issued from
VMs. There are three possibilities that need to be addressed:
firstly, the IP address being resolved may belong to the same
subnet as the VM doing the resolving. In this case VNET
consults its mapping table to find a virtual MAC address cor-
responding to the virtual IP address being sought. If a map-
ping exists VNET responds immediately with the looked-up
MAC address. If no mapping exists, VNET sends an Eth-
ernet multicast ARP as described above. On receipt of an
ARP response for the IP, VNET updates its mapping table
with the new binding, and passes the ARP response into any
requesting VM. Secondly, the IP address being resolved may
belong to a different subnet. In this case VNET discards the
ARP request, but may ARP respond with the MAC address
of the notional virtual gateway if the farm is configured to
use ProxyARP. Thirdly, the IP address being resolved may
be that of the notional virtual gateway itself. In this case

106

V I F 2 P D E V

N e i g h b o u r i n g

S u b s y s t e m

IP

S u b s y s t e m

n e t c o r e

S u b s y s t e m

net f i l t e r

S Y S F S

R o u t i n g

t a b l e

A R P

t a b l e

A R P

e n g i n e

P a c k e t H a n d l e r

L o o k u p

t a b l e

V M

t a b l e

V I F 1

P h y s i c a l N e t w o r k

h o s t

n e t w o r k a p p l i c a t i o n

u s e r - s p a c e

c o n f i g t o o l

H O S T O S

K E R N E L S P A C E

H O S T O S

U S E R S P A C E

V N E T

K E R N E L M O D U L E

c o n f i g u r e +

 v i e w s t a t u s

p r o g r a m
p r o g r a m

q u e r y

q u e r y +

u p d a t e

q u e r y +

u p d a t e

in i t ia te

i n t e r - d o m a i n

c h a n n e l

i n t e r - d o m a i n

c h a n n e l

V M 1

V M 2

Figure 4: VNET kernel module integration within Linux.

VNET ARP responds immediately with the MAC address
of the notional virtual gateway.

Virtual DHCP and other configuration

The VNET module responds to DHCP broadcasts locally,
synthesizing DHCP responses to program the VM with its
IP address - this also allows the VNET module to config-
ure the gateway which the VM should use (in our case the
farm’s notional virtual gateway), and also to configure other
addresses, such as the DNS server the VM should use. Most
operating systems (within the VMs) honour this informa-
tion and dynamically configure their environment to use this
gateway/DNS address information.

Broadcast and flood avoidance

As described above, Diverter operates on a flat layer-2 net-
work. As such, there are potentially a number of issues

which might limit scalability of our system. The primary is-
sues are the use of broadcast and flooding. In a flat layer-2
network broadcasts from any node are delivered to all nodes
- also packets sent to unknown MAC addresses are flooded to
all nodes. Floods are slightly less bothersome as NICs typi-
cally discard flooded packets (assuming the NICs are not in
promiscuous mode) - however they do traverse all switches
in the layer-2 network and thus consume switch bandwidth,
switch processing resources and link capacity. Broadcasts
are more problematic. As well as consuming resources in all
switches and on all active links, broadcasts are also received
by all nodes. Thus, all nodes potentially receive an inter-
rupt for broadcast packets and have to devote processing
time to examining each broadcast and typically, discarding
it.

These overheads limit the scale of layer-2 networks and
normally a layer-2 network does not exceed 1000 nodes. In

107

our system we intend to use a large flat layer-2 network in
order to avoid the need to configure switches and routers and
thus to benefit from improved manageability of the network.
Thus we have taken a number of steps to reduce or eliminate
the use of broadcast and flooding.

The primary users of broadcast in a typical system are
ARP and DHCP. The system DHCP server we use is con-
figured to issue IP addresses with long lease-times so typi-
cally physical nodes in our system only DHCP broadcast a
few times a day. We employ a separate out-of-band mech-
anism to distribute information about physical nodes, and
this information can be used to setup static ARP mappings,
eliminating physical node ARP broadcasts altogether.

The virtual machines in our system still emit broadcast
DHCP requests but these are intercepted by the VNET
module and a local response synthesized as described above.
Broadcast ARP requests emitted by VMs are also inter-
cepted by the VNET module; these are either resolved from
the local mapping table or transformed into ARPs to a
more limited Ethernet multicast address corresponding to
the farm and subnet of the VM whose address is being re-
solved. Taking things one step further, address mappings
within the system mapping table are periodically refreshed
but VNET always attempts unicast to the previous resolved
location before resorting to multicast.

Floods are less problematic as indicated earlier. In our
system virtual MAC addresses never appear on-the-wire so
all we have to concern ourself with is flooding to unknown
physical MAC addresses. Physical nodes can arrange to emit
at a low rate (but less than the ’ageing’ timeout) a small
unicast to a guaranteed non-existent destination MAC ad-
dress. This would be enough to keep physical MAC ad-
dresses “alive” in all switches, limiting flooding, whilst only
consuming a tiny, fixed fraction of available bandwidth.

Prototype Implementation

In our current prototype implementation the VNET soft-
ware is implemented as a Linux dynamically-loaded kernel
module. Figure 4 visualizes some of the main components
of the VNET kernel module and shows how they integrate
with the rest of the Linux kernel subsystems. The VNET
module uses as much of the available standard kernel fea-
tures as possible: it hooks into the Linux IP routing and
neighbouring subsystems, mainly to learn IP-to-MAC ad-
dress bindings that the host OS has already discovered and
synchronize those with the shared global lookup table. It
listens on the virtual network interfaces (VIFs) that send
and receive traffic to and from local virtual machines, and
additionally intercepts packets coming from the physical net-
work (through PDEV) and also from the host OS IP stack
(through hooking into the IP routing table). Figure 4 also
demonstrates that all packets get filtered by the traditional
Linux kernel netfilter infrastructure before they enter the
VNET kernel module (if they pass all filtering rules).

3. RESULTS
In this section we evaluate the performance of our VNET

implementation on a Xen-based platform [3] and compare it
to alternative approaches. Similar results were also obtained
for a VMware Server based [17] prototype.

We have compared our new solution, i.e., Diverter, with
the following alternative approaches:

Xen BRG Xen configured in standard bridging mode.

EtherIP An implementation of EtherIP encapsulation [8]
developed within the HP Labs SoftUDC project [12].

VLAN tagging A VLAN tagging implementation devel-
oped within HP Labs (OpenTC project) [6, 14].

These represent the most commonly used network virtu-
alization technologies on the market today. We have two
main objectives for the performance evaluation. We would
like to demonstrate that the packet processing performed in
our solution, such as address rewriting and table lookups,
does not cause performance degradation compared to other
approaches and, our one-hop L3 network virtualization in-
troduces a significant performance advantage over other ap-
proaches whenever network traffic has to travel across one
or more virtual network segments.

We use two test scenarios for our comparisons: intra-
subnet tests show how the solutions perform when commu-
nicating VMs reside on the same virtual network segment
while inter-subnet tests demonstrate what performance
can be achieved when communication has to be routed over
multiple segments.

We obtained throughput measurements using the netperf

benchmark tool and latency results using the ping tool. Our
test systems run Xen 3.0.4 (release version) with a 2.6.16.33
Linux kernel in domain 0. We used HP ProLiant BL25p G2
blade servers each fitted with two AMD Opteron processors
running at 2 GHz, 8GB system memory and a Gigabit Eth-
ernet card. We have configured netperf with a confidence
level of 99% and a confidence interval of 5% to ensure that
our results only include consistent measurements. Through-
put results have been recorded for a netperf TCP STREAM

with a message size of 8192 bytes and a socket size of 65536
bytes.

3.1 Intra-subnet Communication

Figure 5: Intra-subnet throughput results (Mbps).

Figure 5 shows raw network throughput results in Megabits
per second (Mbps) for communication between VMs that are
hosted on the same subnet. The results show that in this
scenario there is no significant performance difference be-
tween the technologies. This is mainly due to similarities in
packet handling implementations.

108

Table 1: Ping Intra-subnet Round-Trip (msec).
Min Avg Max Mean

Dev
Xen BRG 0.1355 0.18 0.294 0.0235
Diverter 0.1582 0.2062 0.3182 0.0276
VLAN 0.1395 0.21225 0.35675 0.0295
EtherIP 0.151 0.246 0.378 0.0335

Table 1 lists latency measurements recorded using the
Linux ping tool. Each test run sent 1000 ICMP ping packets
and was repeated several times for each approach. In this
scenario, latency is very similar for all solutions. A more
detailed intra-subnet performance evaluation can be found
in [5].

3.2 Inter-subnet Communication
In this section we outline how our new layer 3 approach

can have a significant positive impact on overall network
performance compared to solutions that deploy dedicated
routing VMs. The tests demonstrated here do not include
approaches deploying VLAN tagging or Xen Brg. We ex-
pect that those would use high-performance physical layer
3 switches that route packets between virtual network seg-
ments and in that case Diverter does not have any per-
formance advantage. However, we have already emphasized
the drawbacks of implementing highly-flexible virtual net-
work routing in hardware network devices in Section 1.

Figure 6: Inter-subnet throughput results (Mbps).

This test compares our Diverter approach with one that
uses a remote VM to route EtherIP packets between virtual
network segments. Figure 6 compares raw throughput re-
sults for the following cases: (1) intra-subnet VM communi-
cation (as described in the previous section) (2) inter-subnet
communication between two VMs and (3) inter-subnet per-
formance when two pairs of VMs are transmitting at the
same time (using the same routing VM in the EtherIP
case). Note how Diverter ensures that throughput per-
formance is consistent - this is because even when traffic
has to pass multiple virtual subnets, Diverter implements
a one-hop communication path. In contrast, using a routing
VM with EtherIP affects throughput significantly and we
see a 40% reduction in case (2) and a 60% reduction in case
(3) (a throughput improvement for Diverter of 66 % and
150 % respectively). The significant drop in network perfor-
mance for EtherIP is mainly due to the fact that packets
have to traverse the routing VM which introduces virtual-

Table 2: Ping Inter-subnet Round-Trip (msec).
Min Avg Max Mean

Dev
Diverter 0.1582 0.2062 0.3182 0.0276
EtherIP 0.287 0.37 0.4975 0.387

ization overhead (i.e. network I/O processing and context
switches). Note that throughput continues to decrease sig-
nificantly as further VMs attempt to communicate via the
routing VM which very quickly becomes the bottleneck of
inter-subnet networking.

Similarly, Table 2 shows a much higher latency when a
routing VM is required, even with almost idle CPU loads,
in fact doubling the average round-trip time.

4. RELATED WORK
Overlay networks allow the creation of a virtual topol-

ogy on top of an existing infrastructure. Overlay networks
have been an extremely useful tool for the development of
the Internet since its foundation. For example, experimental
features like Internet multicast [7] used an overlay to ensure
network stability. There are many different implementations
of overlays targeting strong isolation [8, 9], improved relia-
bility [2], custom manageability [4] or just better network
performance [15]. Implementations also differ on whether
the overlay context is explicitly added to network packets.
Explicit context typically requires some form of packet en-
capsulation, for example, VLAN tagging [9] uses a small
frame header to provide a virtual subnet identifier, IP-in-IP
schemes [7] add one or more extra IP headers per IP packet,
Ethernet-in-IP [8] adds an IP header to an Ethernet frame
- to allow tunnelling non-IP protocols over IP networks-,
and others like RON [2] add a custom packet header. In
contrast, implicit overlay context uses some conventions un-
derstood by all the endpoints: for example, PlanetLab [4]
negotiates bindings from socket port numbers to overlays to
reuse IP addresses. Other implementations use a combina-
tion of explicit and implicit context: for example, Violin [11]
uses UDP tunnelling on top of a PlanetLab overlay to pro-
vide better IP address space isolation. We favor implicit
context in our approach and by mapping IP addresses into
< f : s : h > triplets we achieve strong isolation without
encapsulation.

A critical difference between our approach and existing
overlay network technologies is the way we implement rout-
ing between virtual network segments (or subnets). The
primary focus of most existing overlay technologies is to ef-
ficiently implement a layer 2 abstraction and use external
elements like routing VMs [6, 11] or VLAN-aware physical
routers [18] to create a (managed) layer 3 abstraction. In-
stead, we just focus on creating a single, fully-distributed
virtual router that gives us directly layer 3 capabilities. We
have argued the benefits of our approach when either routing
performance or administrative difficulties causes problems
for conventional approaches.

5. CONCLUSIONS
We have identified performance and manageability issues

that traditional layer 2 approaches to virtual networking ex-
hibit in supporting a new generation of large-scale virtual-

109

ized data-centres. Instead, we have implemented a fully-
distributed virtual router abstraction that solves some of
these issues.

Our current focus is on implementing support for IPv6,
enhancing virtual network performance by leveraging new
hardware virtualization features of CPUs and chipsets, switches
and network cards, and adding Quality-of-Service guaran-
tees to virtual networking for better network resource con-
trol and resilience to Denial-of-Service attacks.

Acknowledgements

We would like to thank HP intern Thom Haddow for im-
plementing a custom IPTables matching module. HP col-
leagues Eric Deliot, Alistair Coles, Mike Wray, Peter Toft
and Patrick Goldsack provided many insights during rele-
vant discussions. Nigel Edwards, Paul Congdon and Jeff
Mogul (also from HP) and Jennifer Rexford (Princeton Uni-
versity) gave us useful advice on how to improve this paper.

6. REFERENCES
[1] Amazon.com. Amazon.com - Amazon Web Services.

http://aws.amazon.com.

[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek,
and R. Morris. Resilient Overlay Networks. In SOSP,
pages 131–145, 2001.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauery, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. SOSP
2003, November 2003.

[4] A. C. Bavier, M. Bowman, B. N. Chun, D. E. Culler,
S. Karlin, S. Muir, L. L. Peterson, T. Roscoe,
T. Spalink, and M. Wawrzoniak. Operating Systems
Support for Planetary-Scale Network Services. In
NSDI, pages 253–266. USENIX, 2004.

[5] S. Cabuk, C. I. Dalton, A. Edwards, and A. Fischer. A
Comparative Study on Secure Network Virtualization.
Technical Report HPL-2008-57, HP Labs, 2008.

[6] S. Cabuk, C. I. Dalton, H. V. Ramasamy, and
M. Schunter. Towards automated provisioning of
secure virtualized networks. ACM CCS, 2007.

[7] H. Eriksson. Mbone: The Multicast Backbone.
Communications of the ACM, 37(8):54–60, 1994.

[8] R. Housley and S. Hollenbeck. EtherIP: Tunneling
Ethernet Frames in IP Datagrams, September 2002.
RFC 3378.

[9] IEEE. Virtual Bridged Local Area Networks.
Technical Report ISBN 0-7381-3662-X, IEEE, 2003.

[10] IEEE. Provider bridges, IEEE Standard 802.1ad.
IEEE Standards, 2006.
http://www.ieee802.org/1/pages/802.1ad.html.

[11] X. Jiang and D. Xu. VIOLIN: Virtual Internetworking
on Overlay Infrastructure. In J. Cao, L. T. Yang,
M. Guo, and F. C.-M. Lau, editors, ISPA, volume
3358 of Lecture Notes in Computer Science, pages
937–946. Springer, 2004.

[12] M. Kallahalla, M. Uysal, R. Swaminathan, D. E.
Lowell, M. Wray, T. Christian, N. Edwards, C. I.
Dalton, and F. Gittler. SoftUDC: A Software-Based
Data Center for Utility Computing. Computer,
37(11):38–46, 2004.

[13] C. Kim, M. Caesar, and J. Rexford. Floodless in
Seattle: a scalable ethernet architecture for large
enterprises. In Proceedings of the ACM SIGCOMM

2008, pages 3–14. ACM, 2008.

[14] D. Kuhlmann, R. Landfermann, H. V. Ramasamy,
M. Schunter, G. Ramunno, and D. Vernizzi. An Open
Trusted Computing Architecture – Secure Virtual
Machines Enabling User-Defined Policy Enforcement.
Technical Report RZ 3655 (#99675), IBM Research,
2006.

[15] S. Miura, T. Okamoto, T. Boku, M. Sato, and
D. Takahashi. Low-cost high-bandwidth tree network
for PC clusters based on tagged-VLAN technology.
Parallel Architectures,Algorithms and Networks, 2005.

ISPAN 2005. Proceedings. 8th International

Symposium on, 7-9 Dec. 2005.

[16] R. Perlman, D. Eastlake 3rd, D. Dutt, S. Gai, and
A. Ghanwani. Rbridges: Base Protocol Specification,
July 2008. draft-ietf-trill-rbridge-protocol-08.txt.

[17] VMware Inc. VMware Infrastructure 3 architecture.
http:

//www.vmware.com/pdf/vi_architecture_wp.pdf,
June 2006.

[18] VMware Inc. VMware Virtual Networking Concepts.
http://www.vmware.com/files/pdf/virtual_

networking_concepts.pdf, July 2007.

[19] H. Zimmermann. OSI Reference Model - The ISO
Model of Architecture for Open Systems
Interconnection. IEEE Transactions on

Communication, 28:425–432, April 1980.

110

