
This is the “Other Incast talk” or the “Response to the Incast talk” given on the 
last day of SIGCOMM 2009 by our colleagues at CMU. last day of SIGCOMM 2009 by our colleagues at CMU. 

It contains very recent findings beyond the writeup in the paper. 

We strongly encourage questions, criticism, and feedback. 

This is joint work with my co-authors at the Reliable, Adaptive, and Distributed 
Laboratory (RAD Lab) at UC Berkeley. 
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The bottomline of the story is that TCP incast is not solved. We will develop this 
story by answering several questions. story by answering several questions. 

We begin by looking at what is incast, why do we care, and what has already 
been done. 

We continue with a discussion on some subtle methodology issues. 

There are some instinctive first fixes. They work. But they are limited. 

We will spend some time trying to discover the root causes of incast. It requires 
looking at the problem from several angles. 

Lastly, we outline a promising path towards a solution. 
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Incast is a TCP pathology that occurs in N to 1 large data transfers. 

It occurs most visibly on one-hop topologies with a single bottleneck. 

The observed phenomenon is that the “goodput” seen by applications drops far 
below link capacity. 

We care about this problem because it can affect key datacenter applications 
with synchronization boundaries, meaning that the application cannot proceed 
until it has received data from all senders. 

Examples include distributed file systems, where block requests are satisfied only 
when all senders finished transmitted their own fragment of the block; 
MapReduce, where the shuffle step cannot complete until intermediate results 
from all nodes are fetched; or web search and similar query applications, where a 
query is not satisfied until responses from the distributed workers are assembled. 
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The problem is complex, because it can be masked by application level 
inefficiencies, leading to opinions that Incast is not “real”. inefficiencies, leading to opinions that Incast is not “real”. 

We encourage datacenter operators with different experiences to share their 
perspectives. 

From our own experience in using MapReduce, we can get a three-fold 
performance improvement just by using better configuration parameters. 

So the experimental challenge is to remove application level artifacts and isolate 
the observed bottleneck to the network. 

We believe that as applications improve, incast would become visible in more 
and more applications. 
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There is significant prior and concurrent work on Incast by a group at CMU. 
We’re in regular contact and exchanging results and ideas. We’re in regular contact and exchanging results and ideas. 

Their paper in FAST 2008 gave a first description of the problem, and coined the 
term “incast”. 

The key findings there are that all popular TCP variants suffer from this problem. 
There are non-TCP workarounds, but they are problematic in real-life deployment 
scenarios. 

Their SIGCOMM 2009 paper, presented yesterday, suggested that reducing the 
TCP retransmission timeout minimum is a first step, and that high resolution 
timers for TCP also helps. 

Our results are in agreement with theirs. However, we also have several points of 
departure convincing us that the first-fixes are limited. 
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So, what is a good methodology to study incast?
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We need a simple workload, to ensure that any performance degradation we see 
are not due to application inefficiencies. are not due to application inefficiencies. 

We use a straight-forward N-to-1 block transfer workload. This is the same 
workload used in the CMU work, and it is motivated by data transfer behavior in 
file systems and MapReduce. What happens is this:

A block request is sent. Then the receiver starts receiving fragments from all 
senders. Some time later it finishes receiving different fragments. The 
synchronization boundary occurs because we send the second block request 
only after we received the last fragment. 

There after the process repeats. 
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There is some complexity even with this straight-forward workload. We can run 
the workload in two ways. the workload in two ways. 

We can keep the fragment size fixed as the number of senders increase. This is 
how the workload was run in the FAST 2008 incast paper. 

Alternatively, we can vary the fragment size such that the sum of fragments is 
fixed. This is how the workload was run in the SIGCOMM 2009 incast paper. 

The two different workload flavors result in two different ideal behavior, but 
fortunately this is the only place that they differ. 

We used the fixed fragment workload to ensure comparability with the results in 
the FAST 2008 incast paper. 
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We also need to do measurements in physical networks. 

Our instinct is to simulate the problem on event-based simulators like ns-2. It 
turns out that the default models in a simulator like ns-2 are not detailed enough 
for analyzing the dynamics of this problem. Later in the talk you will see several 
places where this inadequacy comes up. Thus we are compelled to do
measurements physical networks.

We used Intel Xeons machines running a recent distribution of Linux, and we 
implement TCP modifications to the TCP stack in Linux. 

The machines are connected by 1Gbps Ethernet through a Nortel 5500 series 
switch. 

We did most of our analysis by looking at TCP socket state variables directly. We 
also used tcpdump and tcptrace to leverage some of their aggregation and 
graphing capabilities. 
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There are some first fixes to the problem. They work, but they are not enough. 
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Fixing the mismatch between RTO and the round-trip-time or RTT is indeed the 
first step, as demonstrated in the incast presentation yesterday. first step, as demonstrated in the incast presentation yesterday. 

Many OS implementations contain an TCP RTO minimum constant that acts as 
the lower bound and the initial value for the TCP RTO timer. 

The default value of this constant is hundreds of milliseconds, optimized for the 
wide area network, but far below RTT in datacenters. 

Reducing the default value gives us a huge improvement immediately. 

More interesting, there are several regions in the graphs. As we increase the 
number of senders, we go through collapse, recovery, and sometimes encounter 
another decrease. 

The recovery and decrease is not observed in concurrent work. Later you’ll see 
why. 
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When we have small RTO values, we need high resolution timers to make them 
effective. effective. 

This graph shows that there is a difference between low and high resolution 
timers set to the same small value for the RTO min. If we increase the RTO min 
for the high resolution timer slightly, we get similar performance to the low 
resolution timer. 

In other words, the default low resolution timer has granularity of approximately 
5ms. 

This confirms the findings in concurrent work, that high resolution timers are 
necessary. 
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The reason these first fixes are not enough is because the line with the best 
goodput is still far from the ideal. goodput is still far from the ideal. 

Also, beyond about 20 senders, the lines converge with a downward trend, 
meaning that the solution is not complete. 

We’ll explain next the difference in our results and the results you saw yesterday, 
and highlight the root causes of Incast. 
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The root causes …
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First, an observation – different networks suffer the problem to different degrees. 

We have two experimental test beds that are listed as identical – same OS, 
bandwidth, machines, switch vendor and even the same switch model. However, 
we get two very different results. 

The red line is the result we saw before, on a network where TCP sees a 
relatively large SRTT. The results are different from what you saw yesterday. The 
blue line from a network where TCP sees a smaller SRTT. The results there are 
identical to the results from yesterday!!!

So different networks suffer to different degrees. The first fixes are sufficient only 
on some networks. Hence we believe the first fixes are limited. 

It turns out that the switches have different hardware versions – they are sold as 
the same model, have the same firmware, but the different hardware versions 
resulted in the difference in round trip times. 

So the difference networks contribute to the difference between our results and 
the results from CMU. 
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The different SRTT revealed a well-known fundamental tradeoff with ACK-
clocked feedback mechanisms. clocked feedback mechanisms. 

Delayed ACKs is a default feature in TCP where the receiver acknowledges 
every other packet instead of every packet. The original motivation was to reduce 
ACK traffic for applications like Telnet. Turning it off results in more aggressive 
behavior because we can act on feedback from every packet instead of every 
other packet. 

In the graphs, the blue line represents aggressive behavior. It turns out that in a 
large SRTT network, aggressiveness harms, but in a small SRTT network, 
aggressiveness helps. 

This insight is similar to the findings from XCP, TCP Fast, and similar work – the 
larger the bandwidth-delay product, the less helpful aggressive behavior would 
be. 
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Switch buffer management is another factor that affects goodput. 

The switch we used has a pretty complex buffer management strategy. 

One interpretation gives per-port average buffer size like so. 

As we increase the number of concurrent senders, there is a harmonic behavior 
in the average buffer size. 

We know from the FAST 2008 incast paper that larger buffer sizes mitigate the 
problem. 
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If we superimpose the goodput results on the same graph, we do indeed see 
some overlap. The overlap is not exact because there are many simultaneous some overlap. The overlap is not exact because there are many simultaneous 
effects, and their superposition is not linear.

To the best of our knowledge, ns-2 default FIFO queuing models don’t capture 
this kind of behavior. We believe this is one reason that default ns-2 simulations 
don’t reflect the experimental results. 

So, different switch buffer management also contributes to the difference 
between our results and the results from CMU. 
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Another observation is that the senders are synchronized. 

You see here the TCP sequence number trace for two different senders plotted 
on the same time axes. 

The vertical dotted guide lines show that the key features line up almost exactly. 

We got this result from using the default TCP. So for default TCP, the senders are 
synchronized. 

19



The reflex response is to add some randomization.  

We bit-masked the initial RTO with the TCP sequence number. This operation 
gives us a random RTO because most TCP stacks implement random sequence 
numbers to prevent sequence number guessing attacks. 

It turns out that the randomized RTO and deterministic RTO give us identical 
performance. 

This is yet another idea that works fine in ns-2, but not on a physical network. We 
believe the reason here is that the TCP stack in ns-2 is the “ideal”, and departs
from the actual implementation in the OS kernel. 
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Having explored the problem space, we attempted to put together all the 
overlapping effects into a quantitative model. After much effort, we realized that overlapping effects into a quantitative model. After much effort, we realized that 
doing so in a general fashion is very hard. 

When one effect dominates, such as when the effect of RTOs dominate, we can 
get an effective model. 

A model based solely on the effect of RTOs gives us the same shape of the curve 
as the measured data. We have a systematic over-prediction because we don’t 
account for secondary effects such as inter-packet wait time. 

The model fails when no single effect dominates, because different effects don’t 
have a linear overlap. We know this because we constructed models based on 
linear superposition, and the predicted and measured behavior depart. 

The difficulty in our modeling efforts highlighted to us the difficulty in 
implementing a general solution. 

21



Towards a solution …

22



The solution is hard, but we believe it is possible. We believe we already have a 
good understanding of the problem space. good understanding of the problem space. 

A general solution to incast needs to survive different network environments, 
switch buffer management strategies, and background traffic conditions, which
we have not even investigated yet. 

We can narrow down the parameter space by looking at correlations in TCP state 
variables. Out of the many TCP state variables, only a small subset has strong 
correlations to each other. 

We’re working on an adaptive congestion window management scheme, with 
some promising preliminary results. We can talk more about it if you’d like. 

The first fixes are already a big improvement on the default TCP. We believe that 
we can push it further towards the ideal. 
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The takeaway message is that Incast is not solved. 

It is a real problem affecting key applications. 

We’ve already fixed protocol misconfiguration, so now we need to fix everything 
else. 

A general and comprehensive solution to incast remains elusive, but we’re 
confident that we’ll have it soon. 
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Thank you!

Emails

{ychen2, rean, liujd, randy, adj} at eecs dot berkeley dot edu

Feedback welcome. 
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