Accelerated Virtual Switching with Programmable NICs
for Scalable Data Center Networking

Yan Luo

Eric Murray

Timothy L. Ficarra

Dept. of Electrical and Computer Engineering
University of Massachusetts Lowell
Lowell, MA USA
yan_luo@uml.edu
{eric_murray,timothy_ficarra}@student.uml.edu

ABSTRACT

Recently virtual switches in data center hosts have been
employed to interconnect virtual machines (VMs) within
data center networks. Such a virtual network layer, how-
ever, faces performance challenges when the number of VMs
and the line rates scale up. Motivated by the performance
and programmability of intelligent network interface cards
(NICs), we propose to offload the virtual switching onto such
programmable NICs (PNICs) to achieve scalable VM net-
working. We describe the design and advantages of a novel
PNIC-oriented data center network architecture. We then
present a prototype of a PNIC based virtual switch that
supports virtual NICs, OpenFlow switching, clock synchro-
nization and flow monitoring. We finally introduce an ef-
ficient packet buffering mechanism enabled by such PNICs
and OpenFlow-capable top-of-rack switches for reducing the
congestion on network fabric.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network

Architecture and Design; C.2.5 [Computer-Commu-nication

Networks]: Local and Wide-Area Networks

General Terms

Design;Experimentation;Performance

Keywords

Data Centers, Programmable Network Interface Card, Vir-
tual Switch, Packet Buffering

1. INTRODUCTION

Data centers have become the next-generation computing
platforms for enterprises and Internet users. This is pri-
marily due to the economic and technical advantages of re-
source sharing in data centers. By sharing computing and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

VISA 2010, September 3, 2010, New Delhi, India.

Copyright 2010 ACM 978-1-4503-0199-2/10/09 ...$10.00.

65

storage resources through services such as cloud comput-
ing or Software-as-a-Service (SaaS), users can amortize the
cost of hardware and software. In addition, to ease system
upgrades and maintenance, virtual machines are often em-
ployed as the ability to migrate virtual machines across the
physical hosts results in higher resource utilization. Because
of the virtualization of resources, a new virtualized network
access layer has been introduced to interconnect VMs within
the data centers.

Network virtualization in data centers has recently drawn
much attention from the research community as its require-
ments and opportunities are far different from previously
studied areas. The virtualization of the network layer in
data center networks (DCNs) is expected to support agility
and isolation of VMs. Most physical switches deployed in
conventional DCNs are not designed for either supporting
such unique VM requirements or flexible enough to aug-
ment new functionalities. At the same time, VM networking
has inherently unique characteristics, such as the awareness
of the migration of VMs and their multicast membership.
Therefore, much research has begun exploring the oppor-
tunity to introduce a new, flexible and programmable net-
working layer based on the knowledge of VMs.

This new networking layer is known as a wvirtual switch,
and many designs have been proposed including Open vSwitch
[2], VMWare’s vNetwork Distributed Switch [24] and Cisco
Nexus v1000 [11]. These designs implement in-host software-
based virtual switches inside either OS kernels or the hy-
pervisors of VMs. In doing so, they leverage CPU cycles
available on the hosts to multiplex and control VMs’ traffic,
instead of relying solely on the dedicated physical switches.
While this kind of approach takes advantages of the aware-
ness of VM activities and host events, the in-host virtual
switching adds additional workloads to the host CPUs. It
also imposes increasing challenges on VM isolation and QoS
when per-port line rate reaches 10Gbps and beyond.

We observe another place on VM'’s packet path where we
can employ virtual switching: network interface card (NIC).
NICs sit between the hosts and physical switches, and there-
fore are aware of the VM addressing in the host and have
direct access to network fabric. As a result, the NICs are re-
sponsive to VM status change and migration. Because of the
adjacency, the NICs can also work collaboratively with the
top-of-row (TOR) switches in advanced address translation
and packet multiplexing. In addition, NICs with process-
ing capabilities are available to accelerate packet processing
at high-speed line rates. These devices usually incorporate

programmable processors such as Chelsio’s Unified Wire En-
gine [9], Netronome’s NFP-32xx [20], Cavium Octeon [8],
Broadcom’s BCM57710 [6] and FPGA chips. Such proces-
sors make it possible to realize packet switching at the NIC
level.

The increasing network processing power and programma-
bility of NICs bring an unprecedented opportunity for dis-
ruptive innovations of virtual networking. We are inspired
to enrich the networking functionalities of the NICs to im-
prove the efficiency of virtual switches. Our idea is similar
to offloading protocol processing from the host CPU to intel-
ligent NICs; we hereby aim to offload the virtual switching
from the hosts to the NICs. Our proposed solutions and
research directions are significantly distinctive from exist-
ing work, most of which concentrate on the either switch-
oriented network fabric [3, 12, 18, 13] or host-based virtual
switching [2, 24, 11].

In this paper, we first introduce virtual switching and
discuss the CPU and memory resource utilization in the
hosts. We then propose the programmable NIC based vir-
tual switching architecture which has the benefits of bet-
ter resource utilization, better isolation of computing and
packet switching, and the flexibility to enrich the switching
functionalities. Next, we describe the prototype of the PNIC
based virtual switch that supports virtual NICs, OpenFlow
switching, clock synchronization and flow monitoring. Fi-
nally we present a novel packet buffering scheme to alleviate
the network link congestion in data centers, leveraging the
PNICs and OpenFlow-capable TOR switches.

We make the following contributions in this work:

e We propose a PNIC-centered architecture to carry out
virtual switching in the middle ground between the DC
hosts and the TOR switches. To the best of knowledge,
our design is the first of this kind.

e We present an efficient packet store-and-forwarding
mechanism on PNICs for reducing link congestion, tak-
ing advantage of the features of emerging OpenFlow
switches.

e We make our prototype available as an open source
design to enable further research in the virtual net-
working area.

The rest of the paper is organized as follows. In Section
2 we introduce virtual switch and the programmable NIC
oriented DCNs where we shift the virtual network switching
from the host to NIC level. We then present our prototype of
virtual switch using network processor based NICs in Sec-
tion 3. In Section 4, we describe in detail a novel packet
buffering scheme to alleviate network congestion, relying on
the proposed PNIC and OpenFlow-cable switches. We dis-
cuss the related work in Section 5. Finally, we conclude the
paper in Section 6.

2. VIRTUAL SWITCHING
2.1 Host Based Virtual Switch

Modern data center networks consist of both physical net-
works connected by switches and virtual networks formed by
virtual machines running inside physical hosts. Figure 1 de-
picts a virtual machine network in a physical host. There
can be as many as 120 virtual machines [21] in a DC host,

66

DC Host VM VM VM
(vNIC|vNIC) {VNIC VNIC

P P il i iy
P& VLAVEAN | Fyian | [vian | 21

= H [7]
: 8 g;vr:ttfgl NetF| N:;F';W NetFlow NetFlow g:
sl & Qof ™o QoS Qos | £
| S| Config. — - - - :
= G o0
il s FW Fw | 2!
P S >

NIC NIC NIC

} TOR: Top-of-Rack Switch
: PNIC: Physical NIC
> : VNIC: Virtual NIC

TOR ¢ VM : Virtual Machine

Figure 1: Virtual switch in hosts (figure adapted
from Open vSwitch project)

and each VM has at least one virtual NIC (VNIC). The
VNICs communicate with external networks through the
physical NICs of the host. The traffic multiplexing between
the VNICs and physical NICs is achieved with a software
layer in the host. This layer of software can be either rudi-
mentary Ethernet bridges (e.g. Linux bridge [1]) or a full-
fledged virtual Ethernet switch such as Open vSwitch [2].

Figure 2: Extended fat-tree network including vir-
tual switches in hosts

A virtual switch (VS) inside a host consists of fast path
and slow path components similar to a physical switch. The
fast path of the switch includes typical packet processing
in a physical switch. Examples include VLAN packet en-
capsulation, traffic statistics gathering with NetFlow, QoS
enforcement and packet forwarding based on forwarding ta-
bles. The slow path is designed to support switch configu-
ration and control. For example, a representative software
virtual switch, Open vSwitch supports OpenFlow specifica-
tion [17] so that users can manipulate the forwarding table
through OpenFlow APIs.

Physical TOR Switch

Host
CPU

Host
mem

Figure 3: Resource utilization of an in-host virtual switch

2.2 DCN with Virtual Switches

Consequently, the virtual switches at the hosts extend the
physical fat-tree network to the hosts, whose topology is
illustrated in Figure 2. Each host ¢ in the DCN has np;
physical NICs connected to a TOR switch R. V; VMs run
on host ¢ and nwv; virtual NICs are accessed by the VMs
(denoted as VM (4,y) where 0 < y < V;). The VNICs have
their MAC addresses, denoted as VM AC(i,v) where 0 <
v < nv;, while PNICs have MAC addresses PM AC(i,p)
where 0 < p < mp;. Similarly, the NICs have associated IP
addresses denoted as VIP(i,v) and PIP(i,p), respectively.

2.3 Resource Utilization by Virtual Switches

Figure 3 shows the resource utilization of host based vir-
tual switching. VMs reside in host memory and are executed
on the host CPUs. The host CPUs are also utilized by the
switching software layer (e.g. Open vSwitch) to multiplex
packets between VMs and the VMs outside the host. The
host memory is shared by the VMs and the switching soft-
ware. The regular NICs of the host are connected to the
physical TOR switch, providing solely the connectivity to
upper layer switching fabrics.

In the design of in-host virtual switches, the management
component of the virtual switch is implemented in either
kernel or user space, while the fast path of the VS is usually
implemented in the OS kernel (e.g. Linux) for performance
considerations. The VS maintains the forwarding table and
flow statistics inside the kernel, and the packet processing
tasks are executed in a kernel thread to reduce the context
switching overheads. As the features of the VS grow, the
complexity of the VS execution path increases. Note that
the VS shares and competes for the host resources (CPU
and memory) with the VMs running on the same host. It
is unknown how the performance of VS scales as the NIC
line rate reaches 10Gbps and beyond. However, it is safe to
predict that the hosts can hardly support a scalable number
of VMs while dealing with the workloads of packet switching
at 10Gbps rate.

Therefore, it makes sense to consider alternatives to the
existing host based virtual switching. Figure 4 shows such
VS architecture based on programmable NICs (PNICs). We
define PNIC as a NIC with programmable processors and
memory units such as Netronome NFE-i8000 [19] and NetF-
PGA [15]. A PNIC often resides in a physical host as a

67

powerful NIC to communicate with external networks. With
PNICs, the virtual switch does not have to rely on the host
CPU and memory to multiplex packets. Instead, the virtual
switch can leverage the resources at the NICs, which can be
seen as powerful line cards. This architecture, illustrated in
the blue dashed box, resembles the architecture of modern
high-end routers, where each line card has the computing
power and storage to forward packets independently.

2.4 Benefits of PNIC Based Virtual Switching

We hereby discuss the benefits introduced by the PNIC
based virtual switching.

e Better resource utilization at hosts. The host CPUs
are dedicated for the VM workloads so that the com-
putationally intensive tasks can obtain a larger share
of the CPU cycles. The host memory is also dedicated
for VMs rather than being shared by VMs and virtual
switches.

e Performance advantages. The fast path processing at
the NIC level enables the high speed packet forwarding
in a DCN without involving expensive PCle and DMA
transactions. In addition, the NPs are optimized for
packet processing thus leading to better packet switch-
ing performance than the host CPUs.

e Isolation of computing and packet switching. The nat-
ural isolation of VM computing and VS packet process-
ing significantly reduces the context switching over-
heads and complexity of buffer management. The sep-
arate domain (NIC) for packet switching also improves
the security and reliability of the DCN.

e Rich functionality. With its programmability, the in-
telligent NICs can be reprogrammed to incorporate
new addressing schemes and routing algorithms.

e Reducing congestion through packet buffering. The
memory units available at the programmable NICs form
a distributed packet buffer, which can be leveraged to
temporarily store packets when certain links are con-
gested. The packets can later be forwarded to des-
tination VMs without retransmission over the higher
level inter-switch links, thus balancing the load on the
network fabric. We describe the details of such mech-
anism in Section 4.

Physical TOR Switch

 Virtual
» Switch

Host Host Host
CPU CPU CPU
Host Host Host
mem mem mem
T — — T —

Figure 4: Virtual switch with intelligent NICs

3. VIRTUAL SWITCH WITH
PROGRAMMABLE NICS

In this section, we present our preliminary work on imple-
menting virtual switching functionalities onto a programmable
NIC.

3.1 Network Processor Achitecture

Programmable packet processors have been incorporated
to network interface cards. FPGAs and network processors
are the representative processors used for such a purpose. It
is expected that such a trend continues as the line rates go up
to 10Gbps and beyond. In this section, we first introduce the
architecture and characteristics of network processor based
intelligent NICs. We then present the design that employs
them for accelerating virtual switches.

Network processors (NPs) are designed for high perfor-
mance packet processing, while offering high programmabil-
ity with high-level programming languages. An NP, repre-
sented by Netronome NFP-32xx [20], usually contains mul-
tiple processing cores, co-processors, on-chip memory con-
trollers, and high-speed network I/O interfaces, as shown in
Fig. 5. The fast path of packet processing is handled by the
programmable cores. Co-processors as well as hardware ac-
celerators are incorporated in many NPs to process control
path workload or speed up a particular task such as hashing.
An NP is interfaced with both SRAM and DRAM memory
modules. Commodity NP-based NICs such as [19] are de-
signed to change the way in which packets are handled in
network systems by offloading packet processing from host
CPU level to NIC level [16, 25].

3.2 Overview of the PNIC based Virtual Switch

Fig. 6 depicts the overall architecture of the virtual switch
based on a programmable NIC. This PNIC is Netronome
NFE-i8000 which is equipped with an Intel IXP2855 network
processor with 16 cores. Other resources on the PNIC in-
clude 40MB QDR2 SRAM, 768MB RDRAM and four 1GbE
ports.

The host CPU executes VM workloads and virtual switch
software, i.e. Open vSwitch (OVS). The OVS software for-
wards VM traffic in and out of the host. OVS also commu-

68

Network Processor

o

Network IO
Controller

Figure 5: Architecture of a NP.

SRAM

SRAM
Controll

On-chip Memory DRAM

DRAM
Controll

nicates with the OVS interface module on the PNIC to con-
figure the NIC level switch. A clock synchronization module
on the host periodically sends timestamps to the PNIC for
maintaining a high-accuracy clock on the PNIC, which is
essential in time-related tasks.

On the other side of the PCle bus, we have implemented
a set of VS tasks on the programmable cores of the IXP2855
NP, as illustrated in Fig. 6. In particular, the PNIC supports
the following functionalities:

e Virtual NICs. Virtual NICs are the logical interfaces
to the host for data transfers. We give more details in
Section 3.3.

e OpenFlow switching. The fast path of the OpenFlow
packet processing is accelerated by the NP on the PNIC.
Some details are in Section 3.4.

e Clock synchronization with the host. It is essential
that the PNIC maintains highly accurate clock. We
rely on the host to provide a reference clock that the
PNIC synchronizes to. We describe the design of clock
synchronization scheme in Section 3.5.

e Flow monitoring and NetFlow packet generation. We
have implemented a flow monitoring function similar
to the NetFlow features of commercial switches. Its
design is outlined in Section 3.6.

Virtual

NIC
—

RX
—

NetFlow
PktGen

Queu-

: Sched
ing

E
S

IXP28xx
1o
ST Packet
OF Buffer
Flow
Table PNIC
SRAM Im DRAM

legend
—» Flow stats/action
----------- » OVS control

Figure 6: Architecture of virtual switch based on an
IXP2855 programmable NIC.

3.3 Virtual NICs

It is important to provide abstrations of the networking
resources available on the PNIC. In our design, virtual NICs
are presented to the host as regular NICs which have pre-
defined MAC addresses and can be assigned valid IP ad-
dresses. A virtual NIC has been developed by using the
vendor-provided basic message passing API. While the orig-
inal design is presented in [7], we extend the work to support
more than four virtual NICs. This is done through a VMDq-
like design. We maintain a MAC-to-VNIC mapping table
(called TBL2v) in the SRAM on the PNIC. The outgoing
packets populate the table with their source MAC addresses
and VNIC ID. The destination MAC address of an incom-
ing packet will be used to look up in T B L2y to determine
the destination VNIC of this packet. The packet is tagged
with VNIC ID and forwarded to the host CPU, which sub-
sequently delivers the packet to upper layer protocol stack
based on the VNIC ID. With T'BL 2y and programmable
cores on the PNIC, the host CPU is freed from the MAC
address lookup, which becomes increasingly complex due to
the large number of VMs and VLANSs.

3.4 OpenFlow Switching

On the PNIC, we implement the OpenFlow switching al-
gorithm by maintaining a flow table in SRAM. More specif-
ically, we organize the flow entries using a hash table. We
calculate the hash value from the 10-tuple OpenFlow fields
and use this hash value as an index to access the flow ta-
ble entry. The actions defined by the flow table entries are
applied on the packets accordingly. As shown in our earlier
paper [16], the PNIC based OpenFlow switch can reduce

69

the packet round-trip delay by up to 20% while sustaining
4x1Gbps line rate (detailed performance evaluation results
are omitted here due to space limit). We also note that there
is enough headroom on the programmable cores which can
realize other additional processing tasks.

3.5 Clock Synchronization

We leverage the timestamp registers on the PNIC and pe-
riodic message exchange with the host to synchronize with
the reference clock on the host. In such a way, the pro-
cessing cores on the NIC can perform timing related tasks.
The programmable cores on PNIC have timestamp registers
which are incremented every 16 cycles (about 11 nanosec-
onds). The timestamp register is useful to track the time
elapse between events. However, the PNIC lacks an onboard
real-time clock. To address this issue, we rely on the system
clock of the host to maintain clock synchronization, assum-
ing the host runs a NTP-like protocol to keep itself syn-
chronized with an atomic clock. The clock synchronization
operation between the PNIC and host is as follows. First,
the host sends a special message with its current clock value
to the PNIC through a basic message passing API. Then the
PNIC recognizes this special “time” packet and extracts the
clock time T}, from the packet. Next, a packet processing
core of PNIC writes T), to SRAM and reset the timestamp
register . Finally, when the time value is needed, the proces-
sor reads value t; from the timestamp register and calculates
the current time 7" as T' = T}, + t1.

3.6 Flow Monitoring

Flow monitoring is an immediate function extension af-
ter the PNIC is equipped with VNICs, OpenFlow switching
and a synchronized clock. We maintain packet counts in
the OpenFlow flow table. The processor core on the PNIC
(denoted as “FlowStats” in Figure 6) classifies packets using
the 10-tuple headers and look up the flow table using a hash
value. The corresponding counters are updated when pack-
ets belonging to the flow arrive. Once the counter reaches
the predefined threshold, the processor core “FlowStats” no-
tifies another core “NetFlowPktGen”, which subsequently
generates a NetFlow packet. This NetFlow packet encapsu-
lates the packet counters and a timestamp that is calculated
in the way specified in Section 3.5.

We envision the PNIC-based virtual switch can play an
important role in data center networks due to its programma-
bility and natural isolation of resources on hosts and NICs.
With a close collaboration between the PNIC and the TOR
switch, the DCNs can benefit from such an architecture to
improve scalability and optimize network resources. In the
next section, we present a scenario where the PNIC based
virtual switch can enable smart buffering schemes and ef-
fectively alleviate the congestion at some hotspots within
DCNs.

4. PACKET STORE-N-FORWARD
THROUGH OPENFLOW SWITCH AND
PROGRAMMABLE NICS

It has been shown that the links near the edges of a data
center observe the greatest degree of packet losses due to the
bursty traffic among the servers of the data center [5]. While
the aggregate traffic rate may be below the link capacity, a
momentary traffic burst can result in short-lived congestion.

The traffic ON-period is usually within 100 ms [5], during
which the traffic volume reaches up to 100M bits for 1Gbps
links, or 1G bits for 10Gbps links. It is feasible to provision
a packet buffer (or multiple buffers) to temporarily store
the packets when congestion occurs, and later forward them
when the congestion goes away.

In this section, we first illustrate a scenario of traffic con-
gestion then propose a solution enabled by PNICs to alle-
viate the congestion problems. As shown in Fig. 7, let’s
suppose at time t1, all the physical links of host m are
fully loaded. At this moment, the sender virtual machine,
VM (j,0), on host j generates a flow of packets destinated to
VM (m,0) on host m. The flow has to be stalled at the TOR
switch R due to the link congestion at VM (m,0). We try
to devise a solution as follows. It may occur that the other
virtual switch V'.S,,, connected to the same TOR switch, has
an under-loaded link. Thus, V' S,, can sink the flow of pack-
ets and buffer them inside host n, as represented with circle
(1). VS, stores the packets in the hope that one of the
physical links of host m can be freed in the near future at
time t2. The storage of packets is made possible by the large
amount of inexpensive memory available on the hosts. Once
a link is freed at at time t2, the buffered packets will be
forwarded from V'S,, to V'S, through the last TOR switch,
represented with circle (2). The saving of network band-
width consumption and packet delay is significant because
the flow does not congest the higher layer switches or cause
packet re-transmission.

Figure 7: Packet store-and-forward to address con-
gestion problems.

We next describe the hardware architecture for imple-
menting the proposed store-n-forward mechanism. As shown
in Fig. 8, PNICs and an OpenFlow-capable TOR switch

work collaboratively to realize such a packet buffering scheme.

The TOR switch maintains a flow table and is capable of
communicating with an OpenFlow controller. The PNIC
implements an OpenFlow controller and is equipped with
memory for packet buffers.

The proposed scheme has two stages: packet storing stage
and packet forwarding stage. The packet buffering protocol
for the packet-storing stage is as follows. First, a series of
packets arrive at an uplink port of the switch and go to a
VM on host i through packet path (a). Such a flow is regis-
tered in the flow table at the switch per OpenFlow protocol,
and the default action on this flow is to “forward to host
i”. When the congestion sensing unit in the switch detects
congestion at the ports to host ¢, it selects a PNIC that

70

has adequate packet buffer space. This is shown as step 1
in the figure. Such controller selection can follow a round-
robin fashion or make assertions based on the availability of
memory space on PNICs. Next, the sensing unit notifies the
OpenFlow controller at the chosen PNIC (e.g. host k) about
the congestion, which is illustrated as step 2 in the figure.
The notification message conforms to OpenFlow protocol.
Lastly, the OpenFlow controller on the PNIC initiates an
OpenFlow command to update the flow entry in the TOR
switch with the new action: “forward to host k”, as shown
as step 3. The packet path now becomes (b) and the subse-
quent packets are received and stored on the PNIC of host
k.

) legend
packet —; clr(rtId "
TR a
Gl Uplink pxtp
I‘ N I
OpenFlow-capable, AEE
TOR Switch N -

Figure 8: Control procotol of PNIC based packet
buffering.

The operations in the packet-forwarding stage are similar
to the steps in the packet-storing stage, following basically
three steps. In step 1, the congestion sensing unit in the
switch detects the congestion status. When the congestion
at a port is alleviated, the sensing unit in the switch signals
the OpenFlow controller within the PNIC of host & in step 2.
The OpenFlow controller sends an OpenFlow command to
update again the flow entry in the switch so that the default
action on the flow is “forward to host ¢”, as shown in step 3.
The processor on the PNIC injects to the TOR switch the
previously stored packets, which are subsequently forwarded
to their original destination, host 7, through packet path (c).

It is worth noting that the PNICs are the better suited
than the DC hosts to temporarily store and later forward
packets for several reasons: (a) the packets do not have to
travel across the PCle bus to reach the host memory, re-
ducing traffic on the bus; (b) the VMs will be isolated from
these packet buffers to ensure security and preserve privacy;
and (c) host resources can be dedicated for VMs without the
need of reserving resources for packet buffers.

We are in the process of prototyping the proposed packet
buffering scheme. There are several research problems that
we are currently investigating, such as the selection of the
buffers where multiple buffers are present, packet ordering,
and load balancing issues. We plan to address these issues
in the near future.

5. RELATED WORK

Pfaff et al. presented Open vSwitch (OVS), the first open
source virtual switches specifically built for virtual machine
environments [21]. Besides fast forwarding performance,
OVS supports an external interface for fine-grained control
of switch configuration and forwarding behavior. It effec-
tively addresses many challenges of VM networking includ-
ing isolation in joint-tenant environments, the VM mobility
across subnets and so on.

Towards the acceleration of data plane performance for
virtual networks, Anwer et al. presented a virtualized data
plane based on FPGA [4]. They leverage the open, pro-
grammable network processing hardware, NetFPGA [15], to
design a hardware-based data plane for virtual networks.
Their design is shown to support isolation of virtual routers
without compromising the forwarding performance.

In [14], Liao et al. proposed a computing cluster that
can perform packet processing in parallel for virtual network
substrate. In their design, one or more forwarding machines
can be allocated for virtual networks based on the packet
processing requirements of the VNs. Their proof-of-concept
prototype shows promising results.

Tripathi et al. presented a new virtual NIC (VNIC) based
architecture for achieving network virtualization [23]. Their
idea is to associate VNICs with dedicated hardware and OS
resources. In such a way, the VNIC can ensure full separa-
tion of traffic for VMs within the same physical host. This
idea has similarity to SR-IOV [22] and VMDQ [10] based
designs. While both supporting VNICs, our design differs
from [23] in that we leverage the computation power at the
NICs to perform complex packet processing.

There exist some commercial products for distributed VM
networking. VMWare vSphere vNetwork Distributed Switch
provides a centralized point of control for cluster level net-
working and moves beyond per host network configuration
in virtual environments [24]. Cisco Nexus 1000v [11] is a
software switch tightly coupled with VMWare’s hypervisor.
It supports policy-based VM connectivity, mobile VM secu-
rity and network policies, etc.

Our work is closely related to the Open vSwitch project
[21]. The major distinction is that we change the loca-
tion where virtual switching is carried out. We apply pro-
grammable NICs to multiplex VM packets, provide resource
abstractions and support management interfaces. To the
best of our knowledge, we are the first to propose such vir-
tual switch architecture and design a prototype to evaluate
its performance.

6. CONCLUSION

Motivated by the performance and programmability of in-
telligent network interface cards (NICs), we propose to of-
fload the virtual switching onto such programmable NICs
(PNICs) to achieve scalable data center networking. We de-
scribe the design and advantages of a novel PNIC-oriented
data center network architecture. We then present a pro-
totype of a PNIC based virtual switch that supports vir-
tual NICs, OpenFlow switching, clock synchronization and
flow monitoring. We envision an efficient packet buffering
mechanism enabled by such PNICs and OpenFlow-capable
top-of-rack switches for reducing the congestion on network
fabric.

71

Acknowledgments

This work is supported in part by National Science Foun-
dation award CNS-0709001, a subcontract from the GENI
Project Office at BBN Technologies and a grant from Intel
Research Council. Eric Murray is supported by the REU
supplemental grant from the GENI Project Office. Timo-
thy Ficarra is supported by a National Science Foundation
GK-12 Fellowship under award DGE-0841392. The authors
thank Dr. Martin Casado from Nicira Networks for his in-
sightful comments on the direction of our work.

7. REFERENCES

[1] Linux net:bridge.
http://www.linuxfoundation.org/en/Net:Bridge.

[2] Open vswitch project. http://www.vswitch.org/.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In
SIGCOMM, 2008.

[4] Muhammad B. Anwer and Nick Feamster. Building a
Fast, Virtualized Data Plane with Programmable
Hardware. In ACM SIGCOMM VISA’09 Workshop,
Barcelona, Spain, August 2009.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang.
Understanding data center traffic characteristics. In
ACM WREN’09 Workshop, August 2009.

[6] Broadcom. BCM57710 Product Brief: 10-Gbps
DUAL-PORT TCP, RDMA, iSCSI CONTROLLER
WITH x8 LANE PCI EXPRESS.
http://www.broadcom.com/products/Ethernet-
Controllers/Enterprise-Server/BCM57710,

2009.

[7] P. Cascon, J. Ortega, W. Haider, A. Diaz, and
I. Rojas. A multi-threaded network interface using
network processors. In Proc. of the 17th Euromicro
International Conference on Parallel, Distributed, and
Network-Based Processing, February 2009.

[8] Cavium Networks. Octeon multi-core processor family,
2009.

[9] Chelsio. The Unified Wire Engine: Introducing

Terminator 3.

http://www.chelsio.com/unifiedwire_eng.html, 2009.

Shefali Chinni and Radhakrishna Hiremane. Virtual

Machine Device Queues: An Integral Part of Intel

Virtualization Technology for Connectivity that

Delivers Enhanced Network Performance. Intel White

Paper, 2007.

[11] Cisco. Cisco Nexus 1000V Series Switches.
http://www.cisco.com/en/US/products/ps9902/,
2009.

[12] A. Greenberg, J. Hamilton, N. Jain, S. Kandula,

C. Kim, P. Lahiri, D. Maltz, and P. Pat. VL2: A
Scalable and Flexible Data Center Network. In ACM
SIGCOMM, Spain, August 2009.

[13] Changhoon Kim, Matthew Caesar, and Jennifer
Rexford. Floodless in SEATTLE: A Scalable Ethernet
Architecture for Large Enterprises. In ACM
SIGCOMM, Seattle, WA, August 2008.

[14] Yong Liao, Dong Yin, and Lixin Gao. PdP:

Parallelizing Data Plane in Virtual Network Substrate
.In ACM SIGCOMM VISA’09 Workshop, Barcelona,
Spain, August 2009.

[15]

[18]

[19]

John W. Lockwood, Nick McKeown, Greg Watson,
Glen Gibb, Paul Hartke, Jad Naous, Ramanan
Raghuraman, and Jianying Luo. Netfpga—an open
platform for gigabit-rate network switching and
routing. In MSFE ’07: Proceedings of the 2007 IEEE
International Conference on Microelectronic Systems

Education, pages 160161, San Diego, CA, USA, 2007.

IEEE Computer Society.

Yan Luo, Pablo Cascon, Eric Murray, and Julio
Ortega. Accelerating openflow switching with network
processors. In ACM ANCS, 2009.

Nick Mckeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. OpenFlow:
Enabling Innovation in Campus Networks. The
OpenFlow Switch Consortium, mar 2008.

R. Mysore, A. Pamboris, N. Farrington, N. Huang,

P. Miri, S. Radhakrishnan, and V. Subram. PortLand:

A Scalable Fault-Tolerant Layer 2 Data Center
Network Fabric. In SIGCOMM, August 2009.
Netronome. Product Brief - NFE-i8000 Network

72

20]

(21]

22]

23]

24]

(25]

Acceleration Card, 2006.
http://www.netronome.com/.

Netronome Systems. Nfp-3200 network flow processor
product brief, 2009.

Ben Pfaff, J. Pettit, T. Koponen, K. Amidon,

M. Casado, and S. Shenker. Extending Networking
into the Virtualization Layer. In ACM HotNets, New
York, NY, October 2009.

PCI SIG. Single Root I/O Virtualization and Sharing
Specification, Revision 1.0. http://pcisig.com/, 2008.
S. Tripath, N. Droux, T. Srinivasan, and K. Belgaied.
Crossbow: From Hardware Virtualied NICs to
Virtualized Networks. In ACM SIGCOMM VISA’09
Workshop, August 2009.

VMWare. VMWare vSphere: vNetwork Distributed
Switch. http://www.vmware.com/products/vnetwork-
distributed-switch/,

2010.

L. Zhao, Y. Luo, L. Bhuyan, and R. Iyer. A Network
Processor Based Content-Aware Switch. IEEE Micro,
May-June 2006.

