Adaptive Virtual Network Provisioning

Ines Houidi
Institut Telecom
Telecom SudParis
Evry, France

ines.houidi@
it-sudparis.eu

Panagiotis Papadimitriou
Computing Dept.
Lancaster University
Lancaster, UK
p.papadimitriou@
lancaster.ac.uk

ABSTRACT

In the future, virtual networks will be allocated, maintained and
managed much like clouds offering flexibility, extensibility and
elasticity with resources acquired for a limited time and even on
a lease basis. Adaptive provisioning is required to maintain vir-
tual network topologies, comply with established contracts, expand
initial allocations on demand, release resources no longer useful,
optimise resource utilisation and respond to anomalies, faults and
evolving demands.

In this paper, we elaborate on adaptive virtual resource provi-
sioning to maintain virtual networks, allocated initially on demand,
in response to a virtual network creation request. We propose a dis-
tributed fault-tolerant embedding algorithm, which relies on sub-
strate node agents to cope with failures and severe performance
degradation. This algorithm coupled with dynamic resource bind-
ing is integrated and evaluated within a medium-scale experimental
infrastructure.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: [Network Archi-
tecture and Design]

General Terms

Design, Management

Keywords

Network virtualization, Virtual network provisioning, Fault-tolerant
embedding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

VISA 2010, September 3, 2010, New Delhi, India.

Copyright 2010 ACM 978-1-4503-0199-2/10/09 ...$10.00.

Wajdi Louati
Institut Telecom
Telecom SudParis
Evry, France
wajdi.louati@
it-sudparis.eu

41

Djamal Zeghlache
Institut Telecom
Telecom SudParis
Evry, France

djamal.zeghlache@
it-sudparis.eu

Laurent Mathy
Computing Dept.
Lancaster University
Lancaster, UK
l.mathy@Iancaster.ac.uk

1. INTRODUCTION

Recently, network virtualization has received much attention [12,
5,7,20,21, 13,9, 11, 4], as it composes a promising way to diver-
sify the Internet and ensure coexistence of heterogeneous network
architectures on top of shared substrates. In addition, network vir-
tualization enables the emergence of new actors and business roles
to offer on-demand virtual networks (VNs) customized for particu-
lar service and user requirements [11, 4, 20, 17, 26]. For example,
the so-called VN Providers offer the required level of abstraction
and indirection between Service Providers and Physical Infrastruc-
ture Providers and are mainly responsible for constructing and de-
livering VN topologies.

Once allocated, virtual networks will be subject to dynamic vari-
ations due to changes in services demands, traffic loads, physical
resources and infrastructures, and subject to mobility-induced vari-
ations. Hence, VN extensibility and elasticity are critical, espe-
cially in dynamically changing network environments. Existing
work on network virtualization mainly focuses on initial VN provi-
sioning including resource matching [19, 15], VN embedding [25,
24,19, 18, 10, 14] and VN binding [7, 21, 13,9, 20]. According to
our knowledge, there are no research studies on adaptive provision-
ing of instantiated VNs to cope with dynamic changes in service
demands and resource availability, especially when these changes
enforce dynamic virtual node and link re-assignment.

In this context, we elaborate on adaptive VN provisioning with
emphasis on the framework and algorithms in order to preserve VN
topologies, established contracts and service level agreements in
the event of resource failures or severe performance degradation.
We rely on a multi-agent based framework to ensure distributed
negotiation, adaptation and synchronization between substrate no-
des that provide resources for VNs. This framework is composed of
autonomous agents integrated into substrate nodes that carry out a
decentralized fault-tolerant VN embedding algorithm to cope with
(virtual) node and link failures. We use an implementation which
couples the distributed VN embedding algorithm with dynamic VN
binding to evaluate the performance and scalability of the adaptive
VN provisioning within a medium-scale experimental infrastruc-
ture.

The paper is organized as follows. Section 2 presents the initial
VN provisioning steps including resource matching, VN embed-
ding and VN binding. Adaptive VN provisioning is introduced in

VN graph
T esource Discovery and ["'Ig
Matching VN Provider
VN User @
Discovery & @ Q
Matching Query 83
25
w @
Resource Discovery
Framework
| Advertise / Register
+ in SD Frameork
' @ ®
| VN Embedding
V. @ I (Resource Selection) &
7
Descriptions o
A A 2
C’gggﬁ‘- .~ . llocation and
[yt 1 configuration
Virtual — T
Resources VN Provisioning ‘g
.iL Infrastructure
{ Virtual Netwark 0 Provider
3 =7

Figure 1: Virtual network provisioning

Section 3. Section 4 describes the multi-agent based adaptive em-
bedding framework that integrates fault-tolerant provisioning and
resource optimisation features. Our implementation for adaptive
VN provisioning is discussed in Section 5. In Section 6, we pro-
vide experimental results on the performance and scalability of the
fault-tolerant adaptive embedding. Finally, in Section 7 we high-
light our conclusions and discuss directions for future work.

2. VIRTUAL NETWORK PROVISIONING:
OVERVIEW

This section provides an overview of an initial provisioning pro-
cess to set up virtual networks according to user demands. We as-
sume the existence of VN Providers which essentially act as brokers
that request, negotiate and acquire virtual resources from Physical
Infrastructure Providers (InPs) on behalf of Service Providers, VN
Operators or end-users. Upon receiving VN requests, the VN Pro-
viders are responsible for VN provisioning in cooperation with the
InPs.

As shown in Fig. 2, VN provisioning includes four steps [15]:
(i) resource description and advertisement, (ii) resource discovery
and matching, (iii) VN embedding, and (iv) VN binding. Hereby,
we briefly discuss these steps, since initial provisioning is extended
to achieve adaptive embedding and handle run-time dynamic vari-
ations.

2.1 Resource Description and Advertisement

Prior to any VN provisioning operation, InPs describe and ad-

42

vertise physical resources they wish to offer (Fig. 2 - Step 1) to
inform VN Providers on available substrate resources properties.
In previous work [15], a resource description schema enables InPs
to describe and customise their offered substrate resources. Phys-
ical resources are described in terms of functional attributes (i.e.,
static parameters such as node/link type) and non-functional at-
tributes (corresponding to real-time parameters such as currently
available capacity/bandwidth). Only functional attributes are ad-
vertised by the InP into the resource discovery framework (Step 2).
The non-functional attributes are registered into local repositories
in substrate nodes, since such dynamic attributes require decentral-
ized real-time monitoring to be kept up-to-date and consequently
stay in InP’s realm and control. To simplify VN provisioning and
enable coordinated matching and embedding, each node descrip-
tion includes key attributes of the links directly connected to the
node.

2.2 Resource Discovery and Matching

Upon receiving a VN request from users (Fig. 2 - Step 3), re-
source discovery and matching consist of searching and finding re-
source candidates that comply with the requirements specified by
the VN request. As depicted in Fig. 2 (Steps 4, 5), the VN Pro-
vider uses the discovery framework to search, discover and match
the available substrate resources advertised by the InPs with the
VN requests. To facilitate the overall discovery and matching pro-
cess, in [15] we organized and classified the resource descriptions
registered in the discovery framework using conceptual clustering.
This groups substrate resources with similar concepts, descriptions
and properties into clusters. Such clustering generates a hierarchy
of clusters, called dendrogram, along with conceptual descriptions
of each cluster. A similarity based matching algorithm [15] asso-
ciates the required virtual nodes with the most similar cluster in
the dendrogram. As a result, the initial matching step identifies for
each required VN node (in the request) candidate resources (in the
substrate) that fulfil the virtual node requirements.

2.3 VN Embedding

Once candidate resources have been identified by the matching
step, the VN Provider sends to the InP the required VN topology
as well as a list of candidate resource IDs related to each required
virtual node (Fig. 2 - Step 6). The InP uses this data to find the
optimal VN embedding, i.e., assigning the required virtual nodes
and links (specified in the VN request) to a specific set of substrate
nodes and substrate paths. VN embedding relies on a selection pro-
cess within each InP. Finding the optimal VN embedding satisfying
multiple objectives and constraints is a NP-hard problem that has
been addressed in numerous research studies [25, 24, 19, 18, 10,
14]. The primary objective is to allow a maximum number of VNs
to co-exist on top of the same substrate, while reducing the cost for
users and increasing revenue for providers. In [14], we proposed a
decentralized embedding algorithm across the substrate nodes.

2.4 VN Binding

Upon VN embedding, the selected substrate resources are allo-
cated by the InPs in order to instantiate the requested VN (Fig. 2
- Step 7). VN binding essentially consists of virtual node and link
setup. The substrate nodes handle incoming virtual node requests
within their management domains, triggering the appropriate ac-
tion (e.g., virtual node creation and configuration). Virtual link
setup is dependant on the link virtualization technology and typ-
ically packet encapsulation/decapsulation is required. Eventually,
the InP aggregates the allocated substrate resources to instantiate
the VN (Fig. 2 - Step 8) and to provision the VN service to the

End | VN
| Request
| S
No | - D
Adaptive | Jes @ Matchlng! 3
Matching | | Discovery 5
R Q
Adapi > | rsewecion 3
aptive *\(_g;,<> election =)
Embedding [~ | |Embedding | | 3 3
L | N = 3
f— g8
| [Allocation/ S g
Ves || Binding @
| Virtual| Metwork
|
|
- — — — — — — — e — — >
|

Figure 2: Adaptive virtual network embedding

user. The deployment of new architectures, services and applica-
tions in the offered VNs is achieved by the VN Operators and Ser-
vice Providers. Further details on VN instantiation can be found in
our previous work [20].

3. ADAPTIVE VIRTUAL NETWORK PRO-
VISIONING

Once the VN has been provisioned and set up, adaptive provi-
sioning and maintenance of the VN comes into play. Dynamic
changes are induced by variations in the substrates and VNs and
are related to resource failures, mobility, migration and mainte-
nance needs. Dynamic and adaptive provisioning should handle
changes in the topologies or resource restrictions of previously in-
stantiated VNs and simultaneously cope with resource failures or
performance degradation. The main goal of adaptive provision-
ing is to maintain VN topologies, established contracts and service
level agreements.

The right side of Fig. 2 illustrates a diagram summarizing the
initial provisioning steps, while the left side depicts adaptive pro-
visioning which has to handle two cases of dynamic changes that
call for adaptive matching and embedding:

e Case 1: It occurs when the VN user defines or expresses new
requirements such as VN extensions (expansion of coverage)
and new service requirements. These new demands may re-
sult in adding, removing and updating attributes/values to
components of a previous VN request. New InPs may have
to be involved and new additional resources provided to meet
the new demands. The set of candidate resources defined in
the initial matching should be updated to reflect the changes
in virtual resources attributes/values and the need for new
resources. An adaptive matching algorithm is required to
identify new candidate resources with respect to the new re-
quest requirements. The adaptive matching algorithm starts
by searching for virtual resources in the vicinity or neigh-
bourhood of previous candidate resources (identified during
the initial matching) instead of returning to the top level or

43

root of the dendrogram to find a solution. The potential can-
didates are necessarily children, parents or siblings of prior
matching. More precise and richer descriptions, with more
attributes, move the matching deeper into the dendrogram.
If the description is more abstract and high level, with fewer
details and attributes, the matching moves up in the dendro-
gram. The adaptive matching algorithm is not discussed in
this paper.

e Case 2: It corresponds to scenarios where virtual or physi-
cal resources allocated to VN fail or suffer from anomalies
(e.g., substrate or virtual node failure or performance degra-
dation). The InP maintains the VN topologies (affected by
the failures) by selecting new virtual or substrate resources
to replace or compensate for the affected resources. Three
resource failure scenarios are discussed in this paper: vir-
tual node, substrate node and link failures. In this paper, we
present and implement an adaptive embedding algorithm to
deal with these scenarios.

Adaptive provisioning is concluded with dynamically binding
and allocating new resources to maintain the VN. This procedure
includes: (i) virtual node migration to the new host or new virtual
node setup and configuration depending on the type of failure, and
(ii) virtual link reassignment and setup to preserve the requested
VN topology.

4. ADAPTIVE VIRTUAL NETWORK EM-
BEDDING

In this section, we elaborate on the fault-tolerant VN embedding
algorithm which is the most critical component of the adaptive VN
embedding procedure. The VN embedding algorithm is specifi-
cally designed to maintain VN topologies in the event of resource
failures.

4.1 Multi-Agent Based Adaptive Embedding
Framework

First, we discuss the design of an adaptive VN embedding frame-
work to deal with dynamic changes requiring automatic and run-
time reparation. The framework is responsible for:

1. Detecting and identifying local changes through monitoring
(e.g., node/link failure, performance degradation).

2. Selecting new substrate resources to maintain VN topologies.

3. Instantiating a virtual node in the new selected substrate node
or migrating virtual nodes from a substrate node to another.

4. Binding the virtual node along with the virtual links that are
affected.

The framework relies on the multi-agent based approach to en-
sure distributed negotiation and synchronization between the sub-
strate nodes [1]. As depicted in Fig. 3, the adaptive embedding
framework is composed of autonomous agents which are integrated
in substrate nodes. These substrate agents communicate, collabo-
rate and interact with others to plan collective reselection of re-
sources for adaptive VN embedding. The agents monitor, super-
vise and extract the dynamic (i.e., non-functional) attributes from
the local repositories and decide locally which reselection actions
to undertake.

The adaptive embedding framework relies on situation-awareness
approaches. In fact, the conceptual clustering technique used dur-
ing the matching phase can provide a generic model for a situated

Substrate | |Substrate | | Substrate
Node Node Node
Agent Agent Agent
Pa ™
Agent - I Agent
Substrate - T Substrate
Node *l 77777 ;_-Q\ugte@ 2 7 - ~p & Node

Agent Ve ’
Substrate v
Node

Agent

Substrate &
Node ﬁ

Agent
Substrate
N Node

Cluster1 Ao

’ e Substrate
D Node

Figure 3: Multi-agent based adaptive embedding framework

multi-agent based infrastructure. The situated view of agents is de-
termined based on similarities between substrate nodes. These sim-
ilarities have been previously determined by the conceptual cluster-
ing algorithms, as introduced in Section 2.2. Only agents within the
same cluster can negotiate and cooperate. The situation awareness
signifies that each agent is aware of what is happening around it,
i.e., to which cluster it belongs to and with which agents it should
negotiate and synchronize to handle the distributed adaptive em-
bedding decision making.

4.2 Distributed Fault-Tolerant Embedding Al-
gorithm

We hereby propose a distributed fault-tolerant embedding algo-
rithm to maintain VN topologies by reselecting new resources to
replace the no-longer available ones. There is no need to consult a
central entity upon failures, since distributed localized control can
react quickly to local changes. The algorithm assumes the exis-
tence of supervision, monitoring and fault-diagnosis mechanisms
to detect resource failures.

The multi-agent based framework introduced above is used to
carry out the distributed fault-tolerant embedding algorithm. The
cooperation between substrate agents relies on the matching results.
Indeed, only substrate agents belonging to the same cluster (i.e., the
set of candidate substrate nodes that match a given virtual node n,)
are responsible for executing the distributed fault-tolerant embed-
ding algorithm. This algorithm can handle the following resource
failure scenarios:

o Virtual node failure: When a substrate agent detects that a

supported virtual node n,, has failed, it must either re-instantiate

a new virtual node in the same substrate node or, if not pos-
sible, request other substrate nodes (i.e., the candidate re-
sources matching the node n,) to allocate resources for the
virtual node. The virtual links associated with the affected
virtual node should be also reallocated. The distributed adap-
tive VN embedding (Algorithm 1) is executed to repair the
virtual node failure.

e Substrate node failure: When a substrate node n; hosting
multiple virtual nodes has failed, the agents that belong to the
same cluster can detect this failure through keep-alive mes-
sages exchanged periodically. Only substrate node agents
that belong to the same cluster are allowed to collaborate in
order to choose alternative hosts where the affected virtual
nodes as well as their associated links will be migrated [22]
or allocated. Thus, the distributed adaptive VN embedding

44

algorithm is executed for each virtual node hosted to the sub-
strate node where failure was detected.

e Link failure: Upon link failure, the agent substrate nodes di-
rectly connected to this link collaborate to select an alterna-
tive link or path. Similarly to link failures, the fault-tolerant
embedding algorithm can react to conditions of congestion
or overload in the substrate links by monitoring bandwidth
in the substrate nodes. In both cases, only Step 6 of Algo-
rithm 1 is executed to reassign the affected virtual links.

Fig. 4 illustrates a step-by-step scenario describing the distributed
adaptive VN embedding in the event of virtual node failure. Each
substrate node agent runs Algorithm 1. Upon detecting a virtual
node failure, the substrate node agent hosting this virtual node sends
a failure notification message (ErrorMSG(n,)) to all substrate agents
in the same cluster to notify them that the node n, is no longer avail-
able (Step 1). Next, each agent should check its ability to support
the request node on behalf of the failed one. To achieve that, each
agent extracts the non-functional (NF) attributes of the affected VN
request node n, as well as the NF attributes of its own resources.
The NF attributes are presented in the form of attribute-value pairs:
(att, x).

The NF attributes of an arbitrary request node n, are represented
as follows:

ny, = ((att1,x,1), (attr,x,2), ..., (atty, xyp), ..., (atty, x,p)).

The NF attributes of the substrate node (agent host) ng are ex-
pressed as:

ng = ((atty,x51), (attr, x2), ..., (atty, xgp), ..., (atty, xgp)).

The objective is to check how much the associated substrate node
capabilities can respond to the virtual node n, requirements. The
substrate node ng that should be selected should be as similar as
possible to the virtual node n,. To this end, each agent computes a
dissimilarity metric dism between the NF attributes of request node
n, and the NF attributes of its associated substrate node (Step 2).
The dissimilarity function expression is the following:

Dissimilarity function expression: The NF attributes may be of
different types including binary, nominal and interval types. A node
description may also include a mixture of the NF attributes types.
To consider and combine all possible NF attributes types (binary,
nominal or interval), the dism metric is computed as follows [23]:

p s ()
Yo & d;;

dism(i, j) =
T

€y

where:

e pis the number of NF attributes of the request node i.

o Let dl(]f) denote the dissimilarity of nodes i and j related to

atty. di(jf) is determined according to the atts type:

— if the type of atty is binary or nominal:

) — {

— if the type of atty is interval, a normalized distance such
as Euclidean distance and Manhattan distance can be
used.

0 if xif =xjs
Lif xip #xjr

Agent based
Substrate Node

Agent based
Substrate Node

Running
VN (n,)

Agent based
Substrate Node

Agent based
Substrate Node

ot Runhing]
Monitoring Moniforing Monitpring
virtual node
failure (n,)
x ErrorMSG(, | o
ErrorMSG(T,) 2 n
T o
R — T a g
! ErrorMSGi,) [——FroMSei— &5
ErorMSGII,) =
ErrorMSG(1,)
New New New
Selection Selection Selection
Dissimilarity
Metric Dissimilarity Dissimilarity
Metric Metric =0
MSG(1, di 6 =
MSG(11y, dism) MSG(1, dism—— 3 % a
MSG(1y, dismy S=o
MSG(Ny, dism) ©8a
MSG(1, dism) "
- MSG(1, dism}
Reselected
Substrate Node
Support the
affected node 11,

Figure 4: Message exchanges among agents for fault-tolerant embedding

° 81({) is used to express the priority coefficients of the NF at-
tribute arty for nodes i and j. Consequently, multi-level pri-

ority is assigned to the NF attributes of each virtual node.

Algorithm 1 : Distributed adaptive VN embedding algorithm
running by each agent based substrate node

1) Send a notification message (ErrorMSG(n,)) to all agents in
the same cluster

2) Compute a dissimilarity metric between the NF attributes of
the affected request node n, and the NF attributes of the substrate
node ng

3) Exchange, via (MSG(n,,dism)) messages, the computed dis-
similarity metrics dism within the same cluster. The agent com-
pares its dissimilarity metric of the request node n, with all sub-
strate nodes

4) If the dissimilarity metric of the request node 7, is the minimal
one compared to the other computed dissimilarity metrics

5) then the substrate node hosting the agent will support the re-
quest node n,,.

6) Map the associated virtual links to the substrate paths between
substrate nodes

Once the dissimilarity metrics dism are computed for the affected

virtual node n,, the agent exchanges these metrics via (MSG(n,,dism))

message with all the agents belonging to the same cluster (Step 3).
Each agent compares its dissimilarity metrics with those computed
by the other agents. For the virtual node n,, the (substrate node n,
virtual node n,) pair that has the minimum dissimilarity metric is
selected for the adaptive embedding decision (Steps 4 and 5).

45

Once the virtual node n, is assigned to the new substrate node,
its associated virtual links are mapped to the substrate paths (Step
6) using a distributed shortest-path algorithm (see [14]).

IMPLEMENTATION
In this section, we provide an overview of our implementation
for adaptive VN provisioning which utilizes the proposed fault-
tolerant embedding algorithm.

S.

5.1 Infrastructure and Software

We have implemented the adaptive VN embedding, as discussed
in this paper, on the Heterogeneous Experimental Network [2], which
comprises more than 110 computers interconnected by a single
non-blocking, constant-latency Gigabit Ethernet switch. We mainly
use Dell PowerEdge 2950 systems with two Intel quad-core CPUs,
8GB of DDR2 667MHz memory and 8 or 12 Gigabit ports. Our
implementation synthesizes existing node and link virtualization
technologies for adaptive VN provisioning. In particular, we use
Xen 3.2.1 [6], Linux 2.6.19.2 and the Click modular router pack-
age 1.6 [16] (with patches eliminating SMP-based locking issues).
We rely on XML to represent (virtual) network topologies and re-
source specifications within VN requests.

5.2 Functionality

A fixed number of HEN nodes compose the substrate, while we
use a dedicated node for the VN Provider which receives VN re-
quests and initiates VN provisioning, as exemplified in Section 2.
Once a VN has been instantiated, we utilize the fault-tolerant VN
embedding algorithm via autonomous agents that are deployed in
the substrate nodes. Each substrate node exposes control interfaces
allowing for remote procedure calls based on XML-RPC. Agents
exchange messages depending on the cluster classification and are
responsible for detecting (virtual) node failure and performance

degradation. Upon the detection of such an event, host discovery,
virtual node migration or instantiation and virtual link setup are di-
rectly invoked. Within a substrate node, each virtual node request
is handled by a separate thread, speeding up VN binding. For vir-
tual link assignment, we modified and implemented a distributed
version of the Bellman-Ford algorithm [8], which is known as the
fastest distributed algorithm for solving shortest-path problems for
generic network topologies.

To satisfy the node and link constraints of incoming VN requests,
the substrate agents need updated resource information. To this
end, the substrate nodes monitor CPU load and link bandwidth of
adjacent links!. Each node maintains a local repository with its
functional and non-functional attributes.

For the inter-connection of the virtual nodes, we currently use
tunnels with IP-in-IP encapsulation. Each virtual node uses its vir-
tual interface to transmit packets, which are captured by Click for
encapsulation, before being injected to the tunnel. On the receiving
host, Click demultiplexes the incoming packets delivering them to
the appropriate virtual node. For packet forwarding, we use Click
SMP with a polling driver. In all cases, Click runs in kernel space.

The substrate topologies are constructed off-line by configuring
Virtual Local Area Networks (VLAN) in the HEN switch. This
process is automated via a switch-daemon which receives VLAN
requests and configures the switch accordingly.

To allow separation between multiple VNs, we use a globally
unique identifier for VNs, namely vnetID. We also use the identifier
vmlID for the virtual nodes. The scope of vmID is restricted to a
specific VN.

6. EVALUATION

In this section, we provide experimental results to evaluate the
efficiency of the distributed fault-tolerant embedding algorithm. Ac-
cording to our knowledge, there is no related algorithm in the lit-
erature; hence, we use a centralized adaptive embedding algorithm
as a baseline for our performance study. The centralized algorithm
combines local fault detection with centralized recovery. First, each
substrate node detects and reports (virtual) node and link failures to
a management entity responsible for the recovery decision. Subse-
quently, the management node exchanges messages with all par-
ticipating substrate nodes for host discovery and virtual link reas-
signment. More precisely, the management entity sends the NF
attributes of the failed virtual node to all substrate nodes which
compute the dissimilarity metric and further communicate it to the
centralized coordinator for the decision making. The subsequent
steps (i.e., virtual node/link binding) are coordinated by the man-
agement node in cooperation with the involving substrate nodes.

First, we assess the performance of the fault-tolerant VN em-
bedding and adaptive binding within HEN using our implementa-
tion. Next, we evaluate the scalability properties of the algorithm
in GRID5000 experimental infrastructure [3].

6.1 Performance Evaluation

A first experiment has been set up to measure the delay incurred
to adapt the VN when a virtual node performs poorly or fails. To
this end, we initially provision the VN of Fig. 5(a) on top of a
substrate topology which is composed of 10 nodes (Fig. 5(b)).
Adaptive VN provisioning includes the following steps: (i) host
discovery for the affected virtual node using the fault-tolerant algo-
rithm, (ii) virtual node binding via migration or reinstantiation in

'In our implementation, node and link capacities are the only non-
functional parameters considered.

46

S

(a) VN topology (b) Substrate topology

Figure 5: VN and substrate topology in HEN for performance
evaluation

the new host, and (iii) virtual link binding based on the distributed
shortest-path algorithm.

Fig. 6 shows the corresponding results with a varying number of
clusters. The time required to adapt the VN with the distributed em-
bedding algorithm is always less than 2 sec and is decreased further
in the presence of multiple clusters, as host discovery is restricted
among fewer nodes. The improved performance with more clusters
is also confirmed by Fig. 7, which depicts the number of messages
exchanged during dynamic VN adaptation. This number includes
the messages exchanged both for fault-tolerant embedding and VN
binding.

In addition, Fig. 6 demonstrates the benefits of the distributed
over centralized VN embedding. Even with a single cluster, the
distributed algorithm needs less time to adapt the VN, since the re-
quired messages are exchanged directly between the nodes, without
the need for centralized coordination. Efficient clustering speeds
up host discovery and eventually enables dynamic VN adaptation
at very short timescales.

We further measure the delay to adapt VNs in the event of a
substrate node failure. In this case, a substrate node may host mul-
tiple virtual nodes which should be assigned to other hosts as de-
termined by the fault-tolerant embedding algorithm. In this experi-
mental scenario, we initially provision 3 VNs with the topology of
Fig. 5(a) on top of the same substrate (Fig. 5(b)), which results in
substrate nodes hosting up to 3 virtual nodes. The delay incurred
during adaptation of the 3 VNG is illustrated in Fig. 8, uncovering
the efficiency of the proposed embedding algorithm. In the pres-
ence of multiple clusters, VNs adaptation is concluded within less
than 3 sec.

6.2 Scalability Evaluation

Hereby, we evaluate the scalability of the distributed fault-tolerant
embedding algorithm in large-scale networks such as GRID 5000
[3]. The experimental facility GRID 5000 has been used to gener-
ate full mesh substrate topologies with different sizes (from O up
to 100 nodes). Autonomous agents are deployed in the GRID 5000
machines to emulate the substrate agents to carry out the distributed
fault-tolerant embedding algorithm. Our goal is to evaluate the de-
lay and the number of messages required by the algorithm for dy-
namic host discovery in the event of virtual node failure. The bind-
ing step (i.e., virtual node and link setup) is not considered in this
evaluation; we only measure the delay required for the distributed
decision making.

Fig. 9 depicts the delay incurred for adaptive VN embedding
with full-mesh substrate topologies. We present experimental re-
sults from a substrate without clustering (corresponding to the curve
with one cluster in Fig. 9) versus a substrate with 2, 5 and 10 clus-

3.0

25

time (sec)

Centralized 1 Cluster 2 Clusters 3 Clusters 4 Clusters 5 Clusters

Figure 6: Average time required to adapt a VN in the event of
virtual node failure

250

200

150 |

number of messages exchanged

1 Cluster 2 Clusters 3 Clusters 4 Clusters

5 Clusters

Figure 7: Number of messages exchanged to adapt a VN in the
event of virtual node failure

ters. As shown in Fig. 9, the delay required to adapt a VN without
clustering is in the order of 2 sec for as many as 100 substrate no-
des. This delay does not exceed 0.75 sec when using clustering in
substrate networks. The number of messages exchanged between
substrate nodes decreases with clustering, as message exchange oc-
curs only within the cluster that the failure has been detected.

Fig. 10 corroborates the delay results shown in the Fig. 9.
A comparison with the centralized algorithm shows that the time
required by our distributed fault-tolerant embedding algorithm to
adapt a VN upon failures is much lower than the delay incurred
with the centralized approach (the upper curve in Fig. 9). This
is due to the increased number of messages exchanged between a
centralized coordinator and substrate nodes.

7. CONCLUSION AND FUTURE WORK

In this paper, we presented the design, implementation and ex-
perimental evaluation of an adaptive fault-tolerant VN embedding
algorithm to deal with dynamically changing network environments.
The adaptive VN embedding algorithm relies on a multi-agent based
framework to effectively repair resource failures and maintain VN
topologies. The proposed algorithm has been implemented and
evaluated within a medium-scale experimental infrastructure, where
we are able to dynamically bind and allocate resources. Our exper-

5.0

4.5

time (sec)

Centralized 1 Cluster 2 Clusters 3 Clusters 4 Clusters 5 Clusters

Figure 8: Average time required to adapt VNs in the event of
substrate node failure

1]
—+—1 Cluster 7
= 250 —&—2 Clusters //)
E —+—5 Clusters e
= —#—10 Clusters s
E 2r —E& —Centrelizad // i
2 i
w
=15 //Er b
o -
o -
= -
-
= = i
2 -
@ _ .|
£ T
[= o
05f -~ -
[
E .
20 30 40 a0 B0 0 a0 90 100

Mumber of substrate nodes

Figure 9: Average time required for adaptive VN embedding in
the event of virtual node failure

imental results show that our adaptive embedding algorithm and
dynamic binding can react quickly and efficiently to resource fail-
ures.

12000 T T T T T T T

—— 1 Cluster /g]
—&— 2 Clusters Ve
—+— 5 Clusters s
—&— 10 Clusters <

8000+ 7 B
—B — Centrelized -

10000

BO00 -

4000

2000+

MNurmber of messages exchanged to repair a node failure

20 30 40 50 =] 70 a0 a0 100
Mumber of substrate nodes

Figure 10: Number of messages exchanged during adaptive VN
embedding in the event of virtual node failure

Future work will focus on adaptive matching in order to dynami-
cally identify new candidate resources with respect to new require-
ments from VN users or Service Providers, which result in modifi-

cations to previous VN requests such as VN extensions/contractions.

Acknowledgments

Part of this work was performed within the 4WARD project, which
is funded by the European Union in the 7th Framework Programme
(FP7). We would like to thank our colleagues in the project for
many fruitful discussions.

8.
(1]

(2]
(3]

(4]
(3]

[6

—_

(7]

(8]

(9]

[10]

(11]

[12]

[13]

REFERENCES

Foundation for intelligent physical agents,
http://www.fipa.org/.

Heterogeneous Experimental Network,
http://hen.cs.ucl.ac.uk.

GRID 5000, https://www.grid5000.fr/.

4WARD Project, http://www.4ward-project.eu.

T. Anderson, L. Peterson, S. Shenker, and J. Turner.
Overcoming the internet impasse through virtualization. In
Proceedings of ACM HOTNETS, San Diego, CA, USA,
2004.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R.Neugebauer, I.Pratt, and A. Warfield. Xen and the
art of virtualization. In Proceedings of 19th ACM Symposium
on Operating Systems Principles. ACM Press, October 2003.
A. Bavier, N. Feamster, M. Huang, L. Peterson, and

J. Rexford. In VINI Veritas: Realistic and Controlled
Network Experimentation. In Proceedings of SIGCOMM
"06, pages 3—14. ACM, 2006.

R. Bellman. Dynamic programming. Princeton, N.J. Press,
1957.

S. Bhatia, M. Motiwala, W. Miihlbauer, Y. Mundada,

V. Valancius, A. Bavier, N. Feamster, L. Peterson, and

J. Rexford. Trellis: A platform for building flexible, fast
virtual networks on commodity hardware. In Proceedings of
ACM CoNEXT ROADS Workshop, 2008.

N. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual
network embedding with coordinated node and link
mapping. In Proceedings of IEEE INFOCOM, 2009.

N. Feamster, L. Gao, and J. Rexford. How to Lease the
Internet in Your Spare Time. SIGCOMM CCR, 37(1):61-64,
2007.

GENI: Global Environment for Network Innovations.
http://www.geni.net.

J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and

M. Chiang. DaVinci: Dynamically Adaptive Virtual

48

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Networks for a Customized Internet. In Proceedings of ACM
CoNEXT ’08. ACM, 2008.

I. Houidi, W. Louati, and D. Zeghlache. A Distributed
Virtual Network Mapping Algorithm. In Proceedings of
IEEE International Conference on Communications, pages
273-286, Beijing, China, May 2008.

I. Houidi, W. Louati, D. Zeghlache, and S. Baucke. Virtual
Resource Description and Clustering for Virtual Network
Discovery. In Proceedings of IEEE ICC Workshop on the
Network of the Future 2009, Dresden, June 2009.

E. Kohler, R. Morris, B. Chen, J. Jahnotti, and M. F.
Kasshoek. The click modular router. ACM Transaction on
Computer Systems, 18(3):263-297, 2000.

W. Louati. On demand Virtual Network Service for Dynamic
Networks. 2007.

J. Lu and J. Turner. Efficient mapping of virtual networks
onto a shared substrate. TR. WUCSE-2006-35, Washington
University, 2006.

R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network
testbed mapping problem. ACM Computer Communication
Review, January 2003.

G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann,

R. Bless, A. Greenhalgh, A. Wundsam, M. Kind,

O. Maennel, and L. Mathy. Network virtualization
architecture: Proposal and initial prototype. In Proceedings
of ACM SIGCOMM VISA, Barcelona, Spain, August 2009.
J. D. Touch. Dynamic Internet Overlay Deployment and
Management Using the X-Bone. In Proceedings of IEEE
ICNP ’00. IEEE, 2000.

Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and

J. Rexford. Virtual Routers on the Move: Live Router
Migration as a Network-Management Primitive. ACM
SIGCOMM CCR, 38(4):231-242, 2008.

L. Xiao-hong, X. Yang, Q. Ke-yun, and P. Zheng. A
clustering application method based on mix type variables in
social system appraisement. In Proceedings of IEEE
International Conference on Man and Cybernetics Systems,
3:2857-2862, 2003.

M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual
network embedding: Substrate support for path splitting and
migration. ACM SIGCOMM Computer Communication
Review, April 2008.

Y. Zhu and M. Ammar. Algorithms for assigning substrate
network resources to virtual network components. In
Proceedings of IEEE INFOCOM, 2006.

Y. Zhu, R. Zhang-Shen, S. Rangarajan, and J. Rexford.
Cabernet: Connectivity Architecture for Better Network
Services. In Proceedings of ReArch '08. ACM, 2008.

