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ABSTRACT

In a virtualized infrastructure where physical resources are
shared, a single physical server failure will terminate sev-
eral virtual servers and crippling the virtual infrastructures
which contained those virtual servers. In the worst case,
more failures may cascade from overloading the remaining
servers. To guarantee some level of reliability, each vir-
tual infrastructure, at instantiation, should be augmented
with backup virtual nodes and links that have sufficient ca-
pacities. This ensures that, when physical failures occur,
sufficient computing resources are available and the virtual
network topology is preserved. However, in doing so, the
utilization of the physical infrastructure may be greatly re-
duced. This can be circumvented if backup resources are
pooled and shared across multiple virtual infrastructures,
and intelligently embedded in the physical infrastructure.
These techniques can reduce the physical footprint of vir-
tual backups while guaranteeing reliability.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance
of Systems—Reliability, availability and serviceability ; C.2.1
[Computer-Communication Networks]: Network Ar-
chitecture and Design—Network communications

General Terms

Algorithms, Reliability

Keywords

Infrastructure Virtualization

1. INTRODUCTION
With infrastructure rapidly becoming virtualized, shared

and dynamically changing, it is essential to provide strong
reliability to the physical infrastructure, since a single physi-
cal server or link failure affects several shared virtualized en-
tities. Providing reliability is often linked with over-provisioning
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both computational and network capacities, and employing
load balancing for additional robustness. Such high avail-
ability systems are good for applications where large dis-
continuity may be tolerable, e.g. restart of network flows
while re-routing over link or node failures, or partial job
restarts at node failures. A higher level of fault tolerance is
required at applications where some failures have a substan-
tial impact on the current state of the system. For instance,
virtual networks with servers which perform admission con-
trol, scheduling, load balancing, bandwidth broking, AAA
or other NOC operations that maintain snapshots of the net-
work state, cannot tolerate total failures. In master-slave/
worker architectures, e.g. MapReduce, failures at the master
nodes waste resources at the slaves/workers.

Through synchronization [4, 10] and migration techniques
[9, 21] on virtual machines and routers, we postulate that
fault tolerance can be introduced at the virtualization layer.
This has several benefits. Different levels of reliability can
be customized and provisioned over the same physical in-
frastructure. There is no need for specialized, fault tolerant
servers. Instead, redundant (backup) virtual servers can be
created dynamically, and resources are pooled together, in-
creasing the primary capacity. Both will lead to a better
overall utilization of the physical infrastructure.

In this paper, we propose an Opportunistic Redundancy
Pooling (ORP) mechanism to leverage the properties of the
virtualized infrastructure and achieve a n : k redundancy
architecture, where k redundant resources can be backups
for any of the n primary resources, and share the backups
across multiple virtual infrastructures (VInfs).

For a quick motivating example, consider two VInfs with
n1 and n2 computing nodes. They would require k1 and
k2 redundancy to be guaranteed reliability of r1 and r2, re-
spectively. Sharing the backups will achieve a redundancy of
k′ = max(k1, k2) with the same level of reliability, reducing
the resources that are provisioned for fault tolerance by at
most 50%.

In addition, there is joint node and link redundancy such
that a redundant node can take over a failed node with guar-
anteed connectivity and bandwidth. ORP ensures VInfs do
not connect to more redundant nodes than necessary in or-
der to keep the number of redundant links low.

The other contribution of this paper is a method to stati-
cally allocate physical resources (compute capacity and band-
width) to the primary and redundant VInfs simultaneously,
taking into account the output of the ORP mechanism. It
attempts to reduce resources allocated for redundancy by
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utilizing existing redundant nodes, and overlapping band-
widths of the redundant virtual links as much as possible.

Our paper focuses on the problem of resource allocation
for virtual infrastructure embedding with reliability guar-
antee. Practical issues such as system health monitoring,
protocol design, recovery procedures, and timing issues are
out of the scope of this paper.

The organization of this paper is as follows. In the next
section, we briefly describe the background, notations and
define reliability in Section 2. Then, we describe a virtual ar-
chitecture that can provide fault tolerance and estimate the
benefits of sharing redundancies in Section 3. We see how
the link topology is preserved under failures in Section 4,
and how resources can be efficiently allocated in the phys-
ical infrastructure in Section 5. Finally, we evaluate and
validate the ideas through simulation in Section 6, present
related work in Section 7. Section 8 concludes this paper.

2. PROBLEM STATEMENT
We consider a resource allocation problem in a virtual-

ized infrastructure, such as a data center, where the virtual-
ized resources can be leased with reliability guarantees. The
physical infrastructure is modeled as an undirected graph
G = (N , E), where N is the set of physical nodes and E is
the set of physical links. Each node µ ∈ N has an avail-
able computational capacity of Γµ. Each undirected link
(µ, ν) ∈ E , µ, ν ∈ N has an available bandwidth of Λµν .

Each resource lease request is modeled as an undirected
graph G = (N, E). N is a set of compute nodes and E is
a set of edges. We call this a virtual infrastructure (VInf).
γu is the computation capacity requirement for each node
u ∈ N , and bandwidth requirements between nodes are λuv,
(u, v) ∈ E and u, v ∈ N .

Reliability is guaranteed on the set of critical nodes C ⊆ N

of a VInf G through redundant virtual nodes in the phys-
ical infrastructure G. A backup (redundant) node b must
be able to assume full execution of a failed critical node c.
Hence, the backup node must have sufficient resources in
terms of computation γb ≥ γc and bandwidth to neighbors
of c: λbu ≥ λcu,∀u ∈ N, (c, u) ∈ E.

The problem is to allocate least resources for a VInf G on
a physical infrastructure G, including redundancy such that
a reliability guarantee of at least r is achieved.

2.1 Reliability
We define reliability as the probability that critical nodes

of a VInf remain in operation, over all possible node failures.
This is not to be confused with availability, which is defined
as a ratio of uptime to the sum of uptime and downtime [19].
By guaranteeing a reliability of r, we are ensuring that there
are sufficient redundant physical resources available in times
of failure, with probability r. For a VInf with n critical nodes
and k backup nodes, we want to ensure that the probability
of a k-node failure out of the n+k virtual nodes is less than
1 − r. This covers cases where some critical and backup
nodes fail simultaneously.

2.2 How many backups?
The number of redundant nodes depend on the physical

mapping, and the failure models of both the physical nodes
and the virtual infrastructure. We impose two physical map-
ping constraints: (i) each virtual node is only mapped to
one physical node, and (ii) the mapped physical nodes are
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Figure 1: Minimum number of backups needed for
a reliability guarantee of 99.999%.

placed apart to avoid correlated failures among the physical
machines, e.g. on different racks with different power sup-
plies. This way, the failure rate of a virtual node u is directly
derived from the physical node µ it is mapped on. Guaran-
teeing reliability can then be focused on the failure model of
the virtual infrastructure. In general, the reliability of the
overall virtual infrastructure (including k redundant nodes)
can then be computed as

r(k) =
k
X

y=0

min(n,y)
X

x=0

 

k

y − x

!

p
y−x(1 − p)k−(y−x)

f(x) (1)

for some failure probability distribution f(x) in which x is
the number of critical nodes that failed. The binomial term
is due to independent failures of the redundant nodes, and
the assumption that physical nodes hosting them are homo-
geneous with a failure rate p.

Virtual node failures due to any cascading effect (e.g.
load-based, tree-based, or degree-based) can be fully cap-
tured by the f(x) term. Computing f(x) for these models is
detailed more in the full version of this paper [23]. Once f(x)
is obtained, a numerical method for searching k can then be
used to ensure guarantee a certain level of reliability r.

For ease of exposition, we focus in this paper on indepen-
dent node failures. Then r(k) reduces to

r(k) =

k
X

x=0

 

n + k

x

!

p
x(1 − p)n+k−x (2)

Thus the integer ceiling of its inverse corresponds to the
minimum number of redundant nodes k.

3. REDUNDANCY POOLING
Since redundant nodes are idle, those that are provisioned

for one VInf can be reused with another VInf, provided the
reliability guarantees are still met. To simplify discussion,
we now assume the failure rates of all critical and physical
nodes are independent and uniform. Fig. 1 shows the num-
ber of backup nodes required as the number of critical nodes
increase for a reliability guarantee of 99.999% over various
failure probabilities p = 0.01, . . . , 0.05. The range of phys-
ical failure values were chosen due to a recent Intel study
from different locations and different types of cooling [2].

The curves’ sub-linear property can be used to reduce re-
dundancy: if two or more VInfs pool their backup nodes,
the total number of backup nodes required is reduced. For
example, for the case of p = 0.01, two VInfs of 100 critical
nodes each will require a total of 16 backup nodes (k = 8

34



each). This number can be reduced to 11 when both VInfs
(with combined n = 200) pool their backup nodes together,
saving redundant resources by 31.25%.

However, it can be shown [23] that for large n, k is asymp-
totically linear, so combining large VInf yields little gain.

For this reason, we introduce Opportunistic Redundancy
Pooling (ORP). This is a method to pool backup nodes such
that there is no additional overhead on bandwidth (and syn-
chronization, in the case of hot standbys). Another advan-
tage with this method is that VInfs with different reliability
guarantees can be pooled together. It makes use of the dis-
crete steps of the curves as shown in Fig. 1. For example,
in the case where a VInf with 30 critical nodes and p = 0.03
needs 8 backup nodes, the reliability is 99.9998544522%, due
to the discrete steps on the curve. The excess 0.0008544522%
reliability can be “lent” to other VInfs that require no more
than 8 backup nodes1. Conversely, it can also be viewed that
the residual excess from a few VInfs are pooled to reduce the
number of backups a VInf needs, as shown in Fig. 2.

Suppose there are m+1 VInfs which require k0, k1, . . . , km

backup nodes for reliability guarantee of r0, r1, . . . , rm, re-
spectively, and k0 ≥

Pm

i=1 ki. VInf-0 pools its backup nodes
with VInf-i, i > 0, and each backup node backs up VInf-0
and at most one other VInf. We assume2 that the recovery
protocol when activating backup nodes prioritize VInf-i over
VInf-0, and VInf-i uses no more than ki backup nodes after
recovery. Then, the reliabilities of VInf-i for i > 0 are un-
changed, and the pooling is admissible only if the reliability
of VInf-0 r′0 after pooling backups is no less than r0.

Define zVInf(k, y) as the probability that a total of y nodes
fail in a VInf with k backup nodes, i.e.,

z
VInf(k, y) =

min(n,y)
X

x=0

 

k

y − x

!

p
y−x(1 − p)k−(y−x)

f
VInf(x),

(3)
where n is the number of nodes of that VInf. The reliability
of VInf-0 after pooling is then

r
′
0 = 1 −

k′

X

x=0

Pr

„

x of k′ backups are down, or
used by VInf-1, . . . , VInf-m

«

×

Pr

„

more than k0 − x nodes fail
from VInf-0 with k0 − k′ backups

«

. (4)

The first term is the probability mass function (pmf) of the
sum of m independent VInfs with ki backup nodes each.
The pmf of each independent event qVInf-i(x) is

q
VInf-i(x) =

8

>

>

<

>

>

:

zVInf-i(ki, x) , 0 ≤ x < ki

1 −

ki−1
X

y=0

z
VInf-i(ki, y) , x = ki.

(5)

Convolving all m pmfs give the first term of (4) to be

Q(x) = F−1

„ m
Y

i=1

F
`

q
VInf-i(x)

´

«

, (6)

1This means either the VInf needs lower reliability guaran-
tee, has smaller number of critical nodes, has a skewed f(x)
that gives smaller k, or all of the above.
2Having priority enables us to focus on getting the new r′0
to be greater than the guarantee r0, which leads to a simple
computation of r′0. As described later, the method of com-
puting also supports an incremental evaluation of r′0 when
more VInfs are admitted into the system.

where F(·) and F−1(·) is the Discrete Fourier Transform
(DFT) and its inverse, respectively, of minimum length k′.
It is, however, more convenient to keep the length to be at
least k0 so that more VInfs can be pooled in future without
having to recompute m DFTs again3. Then, (4) reduces to

r
′
0 = 1 −

k′

X

x=0

Q(x)

„

1 −

k0−x
X

y=0

z
VInf-0(k0 − k

′
, y)

«

. (7)

The time complexity to decide whether VInfs 1, . . . , m can
be pooled with VInf-0 is bounded by the m DFTs, which
evaluates to O(mk log k).

Refer to Fig. 3 for a graphical explanation with two VInfs.
VInf-0 shares some of its backup nodes with one other VInf
under ORP. We show two cases of VInf-1, one with reliability
requirement of 99.9% and another with 99.9999%. VInf-0’s
reliability requirement is kept at 99.999%. For simplicity,
failure rates of all critical nodes are set to be independent
and uniform at p = 0.01.

In the top plot, the number of backup nodes k0 for VInf-0
increases in a step-wise fashion similar to Fig. 1 as the num-
ber of critical nodes increase. The step-wise increase in k0

creates opportunities for VInf-1 to reuse some of VInf-0’s
backup nodes as there is much excess in VInf-0’s reliabil-
ity prior to pooling (see the shaded area in the middle plot).
The lower plot shows the maximum number of critical nodes
VInf-1 while reusing VInf-0’s backup nodes, and the respec-
tive number of backup nodes reused are shown in the top
plot. Since VInf-1 is essentially utilizing VInf-0’s excess re-
liability, the peaks and valleys of the curve in the lower plot
follows that of the middle plot. It can be observed, too,
that the size of VInf-1 is significant as compared to that of
VInf-0, and the number of backups conserved is up to 50%.

The advantage of ORP can be summarized as follows.
No degradation for large n. The pooling scheme makes
use of the excess reliability arise from discrete steps in k.
Hence, there will always be gaps that can be filled with
VInfs that need smaller k.
Pooling over different r. This scheme allows for VInfs of
arbitrary reliability requirements to be pooled together.
Flexibility in adding VInfs. A new VInf-m + 1 can al-
ways be added into VInf-0’s pool of backup nodes so long as
VInf-0’s new reliability computed from (7) is still above the
required r0. All previous m DFTs can be stored to speed
up this admission control procedure by a factor of O(m).
Flexibility in removing VInfs. VInf-i can always be
removed from the pool since VInfs other than VInf-0 are
unaffected, and VInf-0 will have its effective reliability in-
creased. Conversely, if VInf-0 is removed, the other VInfs
simply reclaim the respective backups as their own, which
can be pooled with new incoming VInfs.

There are other ways of extending ORP. We do not study
these cases due to three major reasons: (i) there is a com-
promise of flexibility in dynamically adding and removing
VInfs, (ii) the gains may be marginal as compared to the
initial sharing, and (iii) the time complexity to re-evaluate
of the reliabilities of all pooled VInfs may be high.

Pooling VInfs this way is opportunistic, since we do not
predict the statistics of future incoming VInfs. In general,
however, VInf-0 should be the one with the largest number

3For performance reasons, the length could be kept at
2⌈log2 k0⌉ to make use of Fast Fourier Transform algorithms.
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Vinf-0

Vinf-1Vinf-2

Figure 2: Pooling backup nodes. This can be as:
either (i) VInf-0 “lends” some of its backup nodes to
other VInfs, or (ii) VInfs 1 and 2 collectively “lend”
their backup nodes to VInf-0.
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Figure 3: VInf-0 shares its k0 backup nodes with
VInf-1 (p = 0.01). The lower plot shows the maxi-
mum number of critical nodes VInf-1 can have while
reusing VInf-0’s backup nodes for two cases of relia-
bility guarantee, while maintaining VInf-0’s reliabil-
ity above 99.999%. The upper plot shows the corre-
sponding number of VInf-0’s backup nodes used by
VInf-1, and the middle plot shows the excess relia-
bility from VInf-0 that has been reused for VInf-1.

of backup nodes as this allows for more degrees of freedom
in choosing other VInf-i to pool backup nodes with.

4. PROVIDING RELIABLE LINKS
The virtual infrastructure G = (V, E) has to be preserved

when backup nodes resume execution of failed critical nodes.
This translates to ensuring that every backup node has guar-
anteed bandwidth to all neighbors of all critical nodes.

4.1 Minimum Redundant Links
It is possible to minimize the total number of links while

providing redundancy for a VInf. Harary and Hayes [14]
studied the problem of constructing a new graph G′ = (N ∪
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Figure 4: (b) and (c) show two different ways of
preserving VInf (a) to account for two redundant
nodes. While the former utilizes 1 less link and 1
less bandwidth unit, it requires some nodes to be
rearranged in the recovery phase.

B, E′) with minimum links (i.e., |E′|) such that upon the
removal of any k = |B| nodes (i.e., k node failures), the
resultant graph always contain the original VInf G.

However, this poses a limitation since the result only guar-
antees graph isomorphism and not equality. In other words,
there may be a need to physically swap remaining VMs while
recovering from some failure in order to return to the orig-
inal infrastructure G. Recovery may then be delayed, or
require more resources for such swapping operations.

We illustrate this using the example in Fig. 4. The new
graph G′ in Fig. 4b is obtained using Theorem 2 in [14]4. If
nodes b1 and c3 fail, the only way to recover is to have c3

to be in the position of the current c2 and backup node b2

assuming the role of c2. The problem here is that node c2

is not a backup for node c3 in the first place! Hence, the
recovery procedure is lengthened to two steps: (i) recover
node c3 at backup node b2, and then (ii) swap nodes c2

and c3. This problem will always arise no matter where the
backup nodes are placed in G′.

Furthermore, deriving optimal graphs G′ with minimal
links for any general graph G has exponential complexity.
To the best of the authors’ knowledge, optimal solutions
are found only on regular graphs such as lines, square-grids,
circles, and trees [14, 1, 12].

4.2 Redundant Links without Swapping
To overcome the aforementioned limitations, we choose to

use the following set of redundant links, at the expense of
incurring more redundant resources. Formally, the set of
redundant links L that are added to G is a union of links

L
1 = {(b, u) | ∃(c, u) ∈ E,∀b ∈ B, u ∈ N, c ∈ C} (8)

L
2 = {(a, b) | ∀a, b ∈ B}, (9)

where B and C are the sets of backup and critical nodes,
respectively. The first set L1 connects all backup nodes to
all neighbors of all critical nodes, and the second set L2

interconnects all backup nodes since two critical nodes may
be neighbors of each other and may fail simultaneously. The
latter set can be omitted if there are no links between any
critical nodes. See Fig. 4c for an example.

Adding L to G is much more straightforward and does not
suffer from the aforementioned swapping / rearrangement

4Theorem 2 works only on unweighted graphs. We subse-
quently obtained the minimum link weights through exhaus-
tive iteration.
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Figure 5: On the left is a VInf with redundant links
to two backup nodes. Suppose that the virtual nodes
(circles) are deployed at the physical nodes (squares)
on the right. Unutilized links are dotted lines and
redundant links are in bold. Only 1 unit of band-
width needs to be reserved on link (µ2, µ4).

problem. More importantly, when pooling backups across
VInfs, redundant links L can be added without affecting
other existing VInfs which use the same backup nodes.

The number of redundant links in L may seem large (O(nk+
k2)), but the amount of physical bandwidth reserved can be
reduced while embedding them. This is because not all links
will be in use at the same time. A simple example in Fig. 5
can illustrate this. The small VInf in Fig. 5a consists of two
nodes and a link between them with 1 bandwidth unit. One
of the nodes is critical and is backed up by two redundant
nodes. Suppose that due to limited available compute capac-
ities, the physical deployment of the virtual nodes is that of
Fig. 5b. If the redundant links are embedded verbatim into
the physical infrastructure, the link (µ2, µ4) would require
2 units. However, it is only necessary to reserve 1 unit on
this link, since at most 1 backup node will be in use at any
time. Minimizing the physical footprint of these redundant
links during physical embedding give rise to a tight coupling
between the virtual nodes and links.

5. RESOURCEALLOCATION: AMIXED IN-

TEGER PROGRAMMING PROBLEM
We use a joint node and link resource allocation approach

to address the tight coupling between the virtual nodes and
links of a VInf. In [8], a multi-commodity flow (MCF) prob-
lem is formulated to jointly allocate nodes and links of a
VInf to physical infrastructure. We adapt the MCF prob-
lem with additional constraints to solve for the minimum
bandwidth used on redundant links.

The MCF problem is a network flow problem where the
objective is to assign flows between sources and destinations
in a network. The virtual links of a VInf can be seen as flows
between virtual nodes. To determine the actual locations of
the virtual nodes, the physical network is appended with
virtual nodes and “mapping” links connecting every virtual
node to their possible physical locations, i.e., links (u, µ) for
all virtual nodes u and physical nodes µ are appended to the
set of physical links E . The first physical node in which a
flow passes through will be the location of the virtual node
of that flow. Additional constraints are added to the MCF
to ensure that a virtual node has only one physical location.

5.1 Allocation Constraints
Denote by ρuµ a binary variable that represents the map-

ping between a physical node and a virtual node, i.e., ρuµ =

1 if a virtual node u is mapped onto physical node µ, 0 oth-
erwise. Compute capacity constraints on the physical nodes
are captured as follows

ρuµγu ≤ Γµ, ∀u ∈ N ∪ B,∀µ ∈ N ′
. (10)

The set of backup nodes B may be omitted from the above
if backup nodes are reused from a redundancy pool, and the
compute capacity reserved is already more than the maxi-
mum of that of the new critical nodes, i.e, max γc. Other-
wise, the above constraints may be included and the RHS is
the deficit compute capacity.

Bandwidth constraints and link mappings are derived from
the MCF problem. A virtual link (u, v) between two virtual
nodes u and v can be seen as a flow between source and
destination under the MCF problem. Due to the inclusion
of redundant links, we define four types of flows:
Virtual links E: flows between two virtual nodes u, v ∈ N .
The amount of bandwidth used on a link (i, j) is denoted by
ℓuv
E [ij].

L
1 flows: flows between a backup node a ∈ B and a neigh-

bor v ∈ N of some critical node. The amount of bandwidth
on L1 flows depend on which critical node c the backup node
a recovers, and how much bandwidth can be “overlapped”
across different failure scenarios. As such, we denote by
ℓacv
L1 [ij] the amount of bandwidth used on a link (i, j) when

such a recovery occurs. This allows us to model the overlaps
between redundant flows.
Aggregate flows: flows on a link between redundant nodes
B and the neighbor v ∈ N of some critical node. This re-
flects the actual amount of bandwidth reserved after overlaps
on link (i, j). We denote this by ℓv

o [ij].
L

2 flows: flows between two backup nodes a, b ∈ B. The
amount of bandwidth used on a link (i, j) is denoted by
ℓab
L2 [ij]. Unlike L1 flows, we do not model any possible over-

lapping of these redundant links with L1. This is to ensure
the L2 flows can be easily reused when sharing with other
VInfs.

The flows E, L1 and L2 follow the conservation of flow
equations. Due to space limitations, we omit these flow
conservation constraints and proceed to describe the new
constraints with respect to redundant and mapping links.

The actual amount of bandwidth reserved on a physical
link (µ, ν) after considering overlaps of L1 flows can be cap-
tured by the following constraint:

X

a∈B,c∈C′,
(c,v)∈E

ℓ
acv
L1 [µν] ≤ ℓ

v
o [µν], ∀(µ, ν) ∈ E ,∀(a, v) ∈ L1,

∀C′ ∈ C, |C′| ≤ k.

(11)

The subset of critical nodes C′ represent a possible failure
scenario where at most k critical nodes fail. The RHS cap-
tures the maximum bandwidth used in those cases. Unfor-
tunately, the caveat here is that this leads to an exponential
expansion of constraints when k goes large. The impact of
overlapping redundant links, however, is significant as can
be observed in our evaluation [23].

The last set of constraints defines the link capacity on
physical links (µ, ν) and mapping links (u, µ).

X

(u,v)∈E

ˆ

ℓ
uv
E [µν] + ℓ

uv
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≤ Λµν , ∀(µ, ν) ∈ E , (12)
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(13)

The first constraint accounts for all flows on a physical link
(µ, ν) in both directions, and the total should be less than
the physical remaining bandwidth Λµν . For the second con-
straint, the LHS is similar in that it accounts for all flows
on the mapping link (u, µ), and Λ is an arbitrary large con-
stant. This way, the mapping variable ρuµ will be set to 1 if
there are non-zero flows on that link in either direction.

For the mapping of the physical and virtual nodes, straight-
forward constraints are expressed. We refer to [23] for the
details. We only mention that additional mapping restric-
tions can be included in these constraints, such as specify-
ing the preference (or exclusion) of specific physical nodes
to allocate a given virtual node, or separation constraints
enforcing that separate virtual nodes do not share the same
physical node.

5.2 Objective Function and Approximation
We seek to minimize the amount of resources used for a

VInf. The objective function of the adapted MCF is then
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–

(14)

where αµ and βµν are node and link weights, respectively.
To achieve load balancing across time, the weights can be
set as 1

Γµ+ǫ
and 1

Λµν+ǫ
, respectively.

The variables of this linear program are the non-zero real-
valued flows ℓ and the boolean mapping variables ρ. The
presence of boolean variables turns the linear program into
a NP-Hard problem. An alternative is to relax the boolean
variables to real-valued variables, obtain an approximate vir-
tual node embedding by picking a map with the largest ρuµ,
and re-run the same linear program with the virtual nodes
assigned to obtain the link assignments [8].

6. EVALUATION
In this section, we evaluate the performance of the sys-

tem when allocating resources with and without redundancy
pooling and redundant bandwidth reduction, labeled share
and noshare respectively. In particular, we focus on the
resource usage of the physical infrastructure and the admis-
sion rates of VInf requests. We further compare that to a
system where VInfs do not have reliability requirement, i.e.
zero redundancy (labeled nonr), as a baseline to gauge the
additional amount of resources consumed for reliability.

Our simulation setup is as follows. The physical infra-
structure consists of 40 compute nodes with capacity uni-
formly distributed between 50 and 100 units. These nodes
are randomly connected with a probability of 0.4, and the
bandwidth on each physical link is uniformly distributed be-
tween 50 and 100 units. VInf requests arrive randomly over
a timespan of 800 time slots and the inter-arrival time is
assumed to follow the Geometric distribution at a rate of
0.75 per time slot. The resource lease times of each VInf
follows the same distribution but at a rate of 0.01 per time
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Figure 6: Rejection rates of VInfs according to the
sizes. Suffix c refers to VInfs with critical nodes
(r = 99.99%) and maximum bandwidth 35. nc refers
to those without.

slot. A high request rate and long lease times ensures that
the physical infrastructure is operating at high utilization.
Each VInf consists of nodes between 2 to 10, with a com-
pute capacity demand of 5 to 20 per node. Up to 90% of
these nodes are critical and all failures are independent with
probability 0.01. Connectivity between any two nodes in
the VInf is random with probability 0.4, and the minimum
bandwidth on any virtual link is 10 units. We scale the reli-
ability guarantee of each VInf from 99.5% to 99.995% while
the maximum bandwidth of any virtual link is limited to 30
units. Another set of results that scales the maximum band-
width is presented in [23]. A custom discrete event simulator
written in Python is used to run this setup on the Amazon
EC2 platform, and the relaxed mixed integer programs are
solved using the open-source CBC solver [5].

Fig. 7 shows the mean performance of the three cases
share, noshare and nonr across 10 simulation runs. noshare
has the least acceptance rate and VInf occupancy, and more
backup nodes per VInf than share, which is able to pool
redundancies and efficiently reuse backups.

CPU usage per VInf is slightly higher in noshare than
share. The redundant nodes in share consume less resource
(suffix redC) than that in noshare despite admitting more
VInfs. This gap widens with increased reliability guarantee,
showing the effect of redundancy pooling.

The bandwidth usage per VInf is actually smaller for share
than noshare. This is so even though much higher band-
width is dedicated for redundancy (suffix redB) in share
than noshare. In the latter case, the redundant links use
less bandwidth due to lower acceptance rates for VInfs with
critical nodes rather than being more efficient with resources.
We illustrate this with Fig. 6. This indicates that noshare
is highly inefficient; expansion of redundant backups and
links without pooling have led to larger granularity in VInf
resource requests. share conserves more bandwidth and is
able to admit larger sized VInfs.

In summary, increasing redundant nodes and expanding a
VInf with backup links leads to VInfs with larger granularity.
If the physical infrastructure admits these expanded VInfs
verbatim as in the case of noshare, much inefficiencies can
occur. VInfs that have more nodes, bandwidth, or higher
reliability requirement (or all of them) get expanded much
larger than share, leading to more rejections and losses in
revenue. Smaller VInfs, especially those with no critical
nodes, are more readily admitted and it is almost impos-
sible for larger VInfs to be admitted. Although more CPU
and bandwidth are used in the noshare case, there is sub-
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stantially less VInfs than share (as much as 24%) present
in the physical infrastructure. This is so even where more
bandwidth is dedicated for redundant links in share as more
VInfs with more critical nodes get admitted. In compari-
son to the case where no reliability is guaranteed (nonr),
the number of VInfs that can be admitted dropped by at
most 20% and the largest drop in acceptance rate goes from
65% to 51% when compared to share. When compared to
noshare, the figures are 38%, and from 65% to 41% re-
spectively. Hence, the resources required for provisioning
reliability is quite significant.

7. RELATED WORK
Network virtualization is a promising technology to re-

duce the operating costs and management complexity of net-
works, and it is receiving an increasing amount of research
interest [7]. Reliability is bound to become a more promi-
nent issue as infrastructure providers move toward virtual-
izing their networks over cheaper commodity hardware [3].

Analysis on the reliability of overlay networks in terms of
connectivity in the overlays has been developed [16]. Un-
fortunately, it is not applicable to our problem as we are
concerned with critical virtual nodes and embedding them
as an entire infrastructure with reliability guarantees.

Fault tolerance is provided in data centers [18, 13] through
special design of the network: having excessive nodes and
links in an organized manner as redundancies. These works
provide reliability to the data center, but do not customize
reliability guarantees to embedded virtual infrastructures.

While we are not aware of works studying the allocation of
reliable virtual networks, [22] considered the use of “shadow
VNet”, namely a parallel virtualized slice, to study the re-
liability of a network. However, such slice is not used as a
back-up, but as a monitoring tool, and as a way to debug
the network in the case of failure. [21] considered the use
of virtualized router as a management primitive that can be
used to migrate routers for maximal reliability.

Meanwhile there are some works targeted at node fault
tolerance at the server virtualization level. Bressoud [4] was
the first few to introduce fault tolerance at the hypervisor.
Two virtual slices residing on the same physical node can be
made to operate in sync through the hypervisor. However,
this provides reliability against software failures at most,
since the slices reside on the same node.

Others [10, 9] have made progress for the virtual slices to
be duplicated and migrated over a network. Various duplica-
tion techniques and migration protocols were proposed for
different types of applications (web servers, game servers,
and benchmarking applications) [9]. Remus [10] and Ke-
mari [20] are two other systems that allows for state syn-
chronization between two virtual nodes for full, dedicated
redundancy. However, these works focus on the practical
issues, and do not address the resource allocation issue.

VNsnap [15] is another method to take static snapshots
of an entire virtual infrastructure to some reliable storage,
in order to recover from failures. This can be stored as
reliably in a distributed manner as replicas [6], or as erasure
codes [11]. VNsnap does not address synchronization, nor
guarantee sufficient resources for recovery from snapshots.

Fundamentally, there are methods to construct topologies
for redundant nodes that address both nodes and links reli-
ability [1, 12]. Based on some input graph, additional links
are introduced such that the least number is needed. How-
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Figure 7: Figures above compare the performance of
the system when backup nodes and links are shared
against unshared. This is studied under varying re-
liability guarantees. nonr is the baseline case where
VInfs are admitted without any redundancy.
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ever, a node failure, in this case, may involve migrations or
rotations among the remaining nodes to preserve the original
topology. This may not be suitable in a virtualized network
scenario where migrations may disrupt other parts of the
network that are unaffected by the failure.

Our problem involves virtual network embedding [8, 17,
24] with added node and link redundancy for reliability. In
particular, our model employs the use of path-splitting [24],
which allows a link between two nodes to be split over mul-
tiple routes such that the aggregate flow across those routes
equal to the demand between the two nodes. This gives more
resilience to link failures and allows for graceful degradation.

8. CONCLUSION
We considered the problem of efficiently allocating re-

sources in a virtualized physical infrastructure for Virtual
Infrastructure (VInfs) with reliability guarantees, which is
guaranteed through redundant nodes and links. Since a
physical infrastructure hosts multiple VInfs, it is more re-
source efficient to share redundant nodes between VInfs. We
introduced a pooling mechanism ORP to share these redun-
dancies for both independent and cascading types of fail-
ures. The physical footprint of redundant links can be re-
duced as well, by considering the maximum over all failure
scenarios while allocating resources with a linear program
adapted from the Multi-Commodity Flow problem. Both
mechanisms have significant impact in conserving resources
and improving VInf acceptance rates.
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