RiaS — Overlay Topology Creation on a PlanetLab
Infrastructure

Jens Lischka, Holger Karl
Paderborn Center for Parallel Computing
Paderborn University
33102 Paderborn, Germany
jeli@mail.uni-paderborn.de, holger.kari@mail.uni-paderborn.de

ABSTRACT

The PlanetLab testbed was originally built to develop new
technologies for distributed storage, network mapping, peer-
to-peer systems, distributed hash tables and query proces-
sing in a live-traffic environment. This allowed researchers
to construct their own overlay network topologies on top of
IP without any need for direct Layer 2 access.

While this structure is easy to use for many purposes, it
does not lend itself directly to experiments with new rout-
ing protocols, which need a finer-grained control of where
packets flow. Enabling such tests of new protocols and ar-
chitectures on the PlanetLab infrastructure is the objective
of this paper. To this end, a researcher must be able to build
Layer 2 topologies upon the PlanetLab infrastructure and to
have routing and forwarding protocols execute in such a de-
fined infrastructure. Currently this is impossible due to the
nature of PlanetLab’s network virtualization.

This paper describes RiaS, a tool to create customized
network topologies inside of PlanetLab slices. This enables
researchers to evaluate and test new routing protocols on
PlanetLab. We analyze the existing shortcomings of Pla-
netLab, identify the prerequisites to enable routing experi-
ments, and propose our Routing-in-a-Slice (RiaS) system to
overcome this impasse.

Categories and Subject Descriptors

C2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks; C2.1 [Computer-Communication
Networks|: Network Architecture and Design

General Terms

Design, Experimentation, Measurement, Performance

Keywords

Network Testbeds, Overlay Networks, Experimentation, Net-
work Testbeds, Routing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

VISA 2010, September 3, 2010, New Delhi, India.

Copyright 2010 ACM 978-1-4503-0199-2/10/09 ...$10.00.

1. INTRODUCTION

PlanetLab [1] is a global research network that supports
the development of new overlay network services on top of
IP. This is also reflected in the way PlanetLab’s network
virtualization VNET [2] is realized. To safely share the net-
work resources among many users PlanetLab forbids manip-
ulations of the network stack (e.g. change routes, add new
network interfaces) and direct Layer 2 access (e.g. ethernet
packet sockets). This suffices for IP overlay experiments
since there is no need for direct Layer 2 access but does not
meet the requirements to evaluate new routing schemes.

Suppose a researcher developed a new, IP-independent
routing scheme on his own private ethernet testbed. As
a next step he wants to evaluate his routing scheme in a
bigger, real-world environment and chooses PlanetLab. The
researcher will probably do something like read incoming
packets on one network interface card (NIC) (e.g. eth0) and
forward them to one or more other NICs (e.g. ethl, eth2,
etc.). To do so without modifying his code base he must
be able to access multiple NICs on PlanetLab the same way
he does on his ethernet testbed. In other words, he has to
be able to setup his own customized Layer 2 topologies® on
PlanetLab, which is currently impossible.

Our goal is to give researchers a tool that lets them create
customized Layer 2 topologies on PlanetLab to run routing
experiments in a huge, world-wide distributed live-traffic en-
vironment. In this paper we describe the current PlanetLab
network virtualization in detail and in particular identify the
problems related to routing experiments in the PlanetLab
environment (Section 2). Next we propose several solutions
to these problems and compare them in terms of:

1. Their deployability to the current PlanetLab kernel.
Since PlanetLab is a world-wide distributed research
network, changes to the PlanetLab kernel should be
minimized to prevent downtime of the system and not
affect its stability.

2. Their ability to grant (virtualized) Layer 2 access and
to define multiple NICs.

3. Their performance; it should be possible to run mul-
tiple network experiments on the same hardware in a
very efficient way.

4. Their ability to allow researchers to run routing exper-
iments without the need to modify their source code.

!By Layer 2 topologies we mean that it is possible to send
packets between neighboring nodes directly encapsulated in
Layer 2 (e.g ethernet) frames

Performance

Deployability Layer 2 Access

Support existing software

Application Level +/- + +/- +/-
Full Virtualization - - + +
Container based + - + +
Multiple tun/tap interfaces - +/- + +

Table 1: Overview of Virtualization Solutions

For example, one should be able to run already existing
routing software like XORP [3] or Quagga [4].

In Section 3 we propose an overlay network solution to the
problem followed by some experimental results in Section 4.
Section 5 concludes the paper and gives an outlook on our
future work.

2. NETWORK VIRTUALIZATION

In the this section we discuss how network virtualization
on PlanetLab currently works, what kind of problems arise
related to routing experiments on PlanetLab, and how we
can fix them.

2.1 PlanetLab network virtualization

PlanetLab is a global research network that supports the
development of new network services. The PlanetLab in-
frastructure currently consists of 1085 nodes at 498 sites
connected to the internet. In this context a site is a physi-
cal location where PlanetLab nodes are located and a node
is a dedicated server that runs components of PlanetLab
services. To setup experiments on the PlanetLab infrastruc-
ture a researcher allocates a slice, which is a set of allo-
cated resources distributed across PlanetLab nodes. A set
of allocated resources on a single PlanetLab node is called a
sliver. Slivers are currently implemented as Linux-Vservers
[5], which is a container-based virtualization approach (see
Section 2.4) that allows several virtual linux hosts to run
simultaneously on a single, shared kernel; no virtual host
has direct access to the hardware. This concept allows to
share the hardware resources of PlanetLab nodes among a
large number of network experiments simultaneously in a
very efficient way.

This container-based virtualization design has also a dis-
advantage. All virtual hosts share the same kernel and also
share the same network stack. The issue is that routing ex-
periments have to manipulate the central routing table and
that

such a routing table manipulation would affect all other
experiments running on this PlanetLab node since they all
share the same kernel and in particular the same network
stack. Suppose one wants to run his own routing software
on a PlanetLab node. To do this one would have to add at
least one more network interface to this node. This interface
would be visible and configurable by all other slices on this
PlanetLab node since it is added to the shared stack which
is accessible by all slices. Clearly this is problematic for
concurrently running experiments.

PlanetLab circumvents this problem by a very restrictive
VServer network configuration setting. The VServers on
PlanetLab nodes are configured in such a manner that the
user owns no rights to change/add routing table entries or
to configure/

10

add new NICs or tunnels. This makes it hard for re-
searchers to build their own topologies on PlanetLab. In
particular it is impossible to build Layer 2 topologies.

Currently, network virtualization on PlanetLab is done by
PlanetLab Virtualized Network Access (VNET) [2]. VNET
relies on Connection Tracking, which is part of Linux’s Net-
filter system [6]. VNET associates every inbound and out-
bound IP packet with a connection structure which ensures
that slices send and receive only packets associated with
connections that they own. That is, slices can only:

e Send packets associated with new connections or con-
nections that they initiated.

e Receive packets associated with connections that they
initiated or bound.

When an IP packet is sent through a socket, it passes through
VNET and is associated with a new or existing connection.
If the connection is not already bound to a slice, VNET al-
lows the packet to pass through and binds the connection
to the slice that sent the packet. If the connection is bound
to a slice, and it is not the slice that sent the packet, the
packet is dropped and an error is returned to the sending
application.

When an IP packet is received by the stack, it also passes
through VNET and is associated with a new or existing
connection. If the packet was expected (that is, if the con-
nection was bound by a slice or the connection was initiated
by a slice) VNET allows the slice to receive the packet.

Hence, the problem of the current PlanetLab network vir-
tualization to support the creation of Layer 2 topologies is
that it forbids the creation and configuration of network in-
terfaces by PlanetLab’s VServer network settings. Thus, to
create Layer 2 topologies some changes to the virtualization
techniques that are currently in use are necessary. In the fol-
lowing, we propose possible solutions and discuss their pros
and cons with respect to our needs and their deployability
on PlanetLab.

2.2 Application level virtualization

Application Level or Overlay Virtualization has the great
advantage that it can be adopted in PlanetLab without
any modifications to the PlanetLab Kernel or VNET. Since
PlanetLab consists of more than 1000 world-wide distributed
nodes deployability is a key factor. But most current over-
lays (like X-Bone [7]) typically assume IP or a close relative
as the architecture inside the overlay itself and are thus un-
suitable for experimenting with new IP-independent proto-
cols and architectures.

The big disadvantage of an overlay solution lies in its per-
formance as we will see in Section 4. This is particularly
important since the resources are shared among many con-
currently running experiments.

2.3 Full virtualization

Using virtual machines (e.g. XEN [8], User Mode Linux
(UML)[9]) instead of Linux Vservers would provide each
slice with its own, fully virtualized network stack and en-
able

1. Layer 2 access,
2. creation and configuration of NICs,

3. run existing routing software/protocols without mod-
ification.

Several network virtualization projects like PL-VINI [10] or
VIOLIN [11] make use of this approach. PL-VINI, for ex-
ample, uses UML virtual machines to create virtual network
topologies. UML allows to run a fully virtualized Linux ker-
nel as an application within a normal Linux process. Con-
cretely, PL-VINI runs the UML machines as user process
inside the Linux VServers. The virtualization of the net-
work stack is now done by the UML machine and the nodes
are connected via UDP tunnels. This allows researchers to
run existing routing software without modifications on Pla-
netLab nodes and provides virtualized Layer 2 access.

Using virtual machines with a fully virtualized kernel seems
to be a solution to our problem. But running a virtual ma-
chine for each slice is not competitive in performance against
the container-based VServer approach [12]. In addition the
application of VMs on PlanetLab slices entails extensive
changes to the current PlanetLab system and is therefore
not easy deployable.

2.4 Container based virtualization extended by
namespaces

Instead of a fully virtualized kernel it would suffice to
serve each slice with its own virtualized network stack and
continue to use Linux VServer for the host virtualization.
Linux provides a network stack virtualization technology
called Network Namespaces (NetNS) [13]. Network name-
spaces allow to assign a private set of network resources to
one or several processes. These have their own set of network
devices, IP addresses, routes, sockets, and so on. Other pro-
cesses outside of the namespace cannot access these network
resources.

Using network namespaces on PlanetLab would require
some changes to the PlanetLab kernel to integrate the NetNS
patchset and run each VServer with its own network name-
space. Nevertheless this approach requires much less effort
than the migration to full virtualization. In addition to that
we do not lose the performance advantages of the container
based concept.

Trellis [12], for example, is a network virtualization solu-
tion that makes use of NetNS by associating each VServer
process with its own network namespace. This enables re-
searchers to manipulate the network resources inside their
own experiments without affecting other slices. Trellis has
shown that the combination of Linux VServer with NetNS
combines good performance (run many slices on the same
machine, forwarding throughput performance) with our re-
maining requirements (Layer 2 access, creation and configu-
ration of NIC/routing tables, run existing routing software/
protocols). Currently Trellis is running on the nodes of the
VINI network which consists of around 40 physical nodes.
Thus using Trellis to build huge topologies is not possible at
this time.

11

Figure 1: Sample Overlay Topology

2.5 Multiple tun/tap interfaces

tun/tap [14] provides packet reception and transmission
for user space programs. It can be viewed as a simple Point-
to-Point or Ethernet device, which instead of receiving pack-
ets from a physical media, receives them from a user space
program and instead of sending packets via physical media
writes them to the user space program.

tun/tap devices enable experimenters to implement their
own custom network stack in user space. This would enable
users to implement Linux packet sockets directly accessing
these tun/tap devices and thus to run routing experiments
on (virtualized) Layer 2. A disadvantage regarding to full
and container based virtualization is that this approach does
not allow the use of privileged Linux tools like ifconfig or
route.

To create Layer 2 topologies with tun/tap devices we need
to setup multiple tun/tap devices in PlanetLab slices and
connect them via EtherIP tunneling [15]. Also tun/tap is
integrated in the PlanetLab kernel, its tun/tap driver imple-
mentation currently supports only a single tun/tap device.
To use multiple tun/tap one has to do some slight modifica-
tions to PlanetLab’s tun/tap implementation but the effort
of migration to PlanetLab is manageable.

Table 1 again summarizes the proposed virtualization ap-
proaches with respect to the four objectives performance,
deployability, 1.2 access and their ability to support already
existing routing software.

We have introduced four different virtualization techniques
to fix the problems of PlanetLab related to run routing ex-
periments. As we have seen, User space virtualization is a
flexible solution to our problem since it is deployable onto
PlanetLab without any modifications to the PlanetLab Ker-
nel. Full virtualization seems to be a good approach but it
is not easy to migrate to PlanetLab and it has some per-
formance drawbacks. The idea of using multiple tun/tap
devices provides users with a great flexibility for their rout-
ing experiments and would be relatively easy applicable on
PlanetLab but it does not allow users to use Linux tools
such as ifconfig or route. The best solution to our prob-

PLE Tunnel Deamon

~— TIB

tunnel modul

l read/write

@ read_sock write_sock @

recv

send

From user

Il tap0 ‘

ethO

To user

Internet

Figure 2: RiaS Tunnel Daemon on PlanetLab Node

lem seems to be the container based (Trellis) approach since
it provides a fully virtualized network stack but still uses
Linux VServers. Compared to full virtualization it is easier
to migrate to PlanetLab but still entails some changes to the
PlanetLab Kernel. Unfortunately there are currently only
few nodes running Trellis in the VINI network available. To
achieve our goal anyway we use a combination of Trellis and
PlanetLab nodes which is described in the following section.

3. THE RIAS OVERLAY

The RiaS overlay topologies consist of router and host
nodes. Since the router nodes need to have multiple network
interfaces they are mapped onto VINI nodes that use the
Trellis implementation which allows us to set up multiple
network interfaces, whereas the host nodes are mapped to
PlanetLab nodes.

There exist three kinds of connections:

1. Trellis to Trellis,
2. Trellis to PlanetLab, and
3. PlanetLab to PlanetLab

tunnels. The interconnection of the router (Trellis) nodes is
done by the Trellis ethernet over GRE (EGRE) tunneling
mechanism. Thus there is nothing more to do for us. For
the remaining connections we use UDP tunneling. For the
interconnection of router-and host nodes we were forced to
use UDP Hole Punching [19], since the Trellis nodes use net-
work address translation to communicate with the outside
world.

To establish the tunnel connections, we run a tunnel dae-
mon on each node of the overlay network. The role of the
daemon is to establish Layer 2 tunnel connections which al-
low experimenters to send/receive Layer 2 frames to/from
neighbor nodes.

In the following chapter we describe in detail how the RiaS
tunnel daemons work.

3.1 RiaS tunnel daemon

The central part of the RiaS overlay network is built by
the RiaS tunnel daemons. In principle these tunnel dae-
mons build a VPN connecting PlanetLab and Trellis nodes.
Each daemon consists of a tunnel module which is connected
to a set of tun/tap interfaces on the one side, and two UDP

12

Trellis Tunnel Deamon

‘ > TIB

—| tunnel modul

[read/write

@ read_sock

recv

write_sock @

From user send

] tapN |~
g

To user

eth0

] tapl |=

1 tap0 |~

Internet

Figure 3: RiaS Tunnel Daemon on Trellis Node

sockets for write and read operations on the other side. Now
each time a packet is put onto a tun/tap interface, it is given
to the tunnel module, encapsulated inside an IP packet and
sent to the internet through the write socket. The tunnel
module gets the necessary address information of its neigh-
bor nodes from the Tunnel Information Base (TIB). On the
other side the packets are received by the read socket, de-
capsulated by the tunnel module and forwarded to the cor-
responding tun/tap devices.

Figure 4 depicts the way of an ethernet frame between two
neighbor nodes in the RiaS overlay in more detail. The user
application first creates a packet socket and binds it to the
tun/tap interface tap0. When the application starts to send
a packet it is copied from from the guest VServer V1 to the
kernel space @ of the host system, traverses the network
stack (in case of a packet socket it is directly given to layer

2) and gets to the corresponding tun/tap interface @ At
this time the packet consist of an ethernet header with the
destination MAC address of tap0 on host H2, src MAC ad-
dress of tap0 on the local host H1, and the payload. Instead
of calling the tansmission method of the real network card
as a virtual network interface would usually do, the tun/tap

interface writes the packet back to a file in user space @
The RiaS daemon is listening on this file descriptor and adds
a new IP header to each incoming packet which consists of
the IP address of NIC ethO of host H2 as destination address
and of the IP address of the local NIC eth0 as source address.
The tunnel daemon gets the necessary address information
from its Tunnel Information Base (TIB) which was formerly
configured by the topology creation process (s. Section 3.2).
After encapsulation the daemon sends the packet back to
the network stack @ The packet passes the network stack
again @ and is send to the real network interface @, which

transmits it to the neighbor host over the internet @
On host H1 the packet is received by the real network

interface and passes the network stack @ which emits
the packet to the socket of the tunnel daemon inside of guest

VServer V2 . The demon strips off the tunnel header and
writes the packet to the file of the tun/tap daemon @ This

triggers the tun/tap interfaces receive function @ which
emits the (now decapsulated) ethernet frame again to the

Host H1 Host H2
VServer V1 VServer V2
User Tunnel Tunnel User
Application Deamon Deamon Application
[fd @
encap
socket socket socket
send (7 send 3 User User recv|(0) recv| ({49
Kernel Kernel
Network © Network ©@
Stack . Stack write
write
@ ® (B
tap0 ethO M eth0 ©@ tap0
xmit xmit) w recv recv

Figure 4: RiaS Tunneling Mechanism

Physical PlanetLab/Vini Infrastructure

Map Topology

CoMon Server }__Send Query

Resource
Allocator

Utilization Info

Mapper

Provide PN

Overlay Mapper

Provide VN Topology
VN Description

Figure 5: Topology Creation Architecture

network stack @ As a last step the frame is delivered to
the user application on the receiving side @

The tunnel daemons on PlanetLab and Trellis nodes differ
for two reasons :

1. As already mentioned in Section 2.5 PlanetLab re-
stricts us to use a single tun/tap interface. Thus the
tunnel module of the PlanetLab tunnel daemon (s.
Figure 2) listens on a single tun/tap interface.

2. Trellis nodes use NAT on the host system for the VServer

guests to communicate with the internet. For our tun-
nels we used the hole punching algorithm proposed in
[19] to traverse the NAT.

On trellis nodes we are able to setup a tun/tap interface for
each neighbor node. Each tun/tap interface has a Planet-
Lab neighbor node as its counterpart (s. Figure 3). Based
upon the information of the TIB the tunnel daemon can de-
termine the destination address for outgoing packets, and

13

the tun/tap interface to which the incoming packets are for-
warded.

The definition of multiple tun/tap interfaces on the Trellis
nodes allows researchers to route packets to different hops
by choosing different tun/tap devices. On PlanetLab nodes
we have to handle routing over MAC addresses since we have
only one tun/tap interface. For this purpose the TIB holds
a tuple of the IP of the neighbor host and the MAC address
of its tun/tap device. Based on the MAC address the tunnel
daemon can decide to which of its neighbors the packet will
be sent. As an example consider three PlanetLab nodes nl,
n2, and n3 connected by tunnels (nl,n2) and (nl,n3). If
one wants to send a packet from n1 to n2 he adds the MAC
address of the remote tun/tap interface of n2 as destination
address of the packets L2 header and puts it on the local
tun/tap interface of nl. The tunnel daemon will now lookup
the corresponding IP address of n2 in its TIB and add it to
the tunnel header.

3.2 Topology creation

Because the configuration of large overlay network topolo-
gies onto a physical network by hand is a rather tedious task
we automated the process. In addition to topology config-
uration a researcher is also able to define a set of resource
capacity constraints to the nodes of his overlay. For example
if a researcher wants to run his experiment on a set of nodes
with a CPU capacity of at least 100 MHz it is the role of
Topology Creation to find a set of proper PlanetLab/VINI
nodes. In literature this task is commonly known as Virtual
Network Mapping (VNM). Our Overlay Mapper (OM) (s.
Figure 5) consist of two components:

1. A Resource Allocator, and
2. a Virtual Network Mapper (VN Mapper)

component. The Resource Allocator is connected to a CoMon
[16] monitoring server which provides a snapshot of the cur-
rent resource utilization on the PlanetLab and VINI net-
work. The Resource Allocator builds a Physical Network

Sink

Source

netperf netperf

Tunnel
Deamon

Tunnel
Deamon

FWDR ‘

user
kernel
tap0
10.0.0.1
eth0
192.168.44.1

user
kernel
tap0
10.0.0.2
eth0
192.168.55.2

forwarding

100 MBit/s 100 MBit/s

eth0

Figure 6: RiaS Tunnel Experiment A Setup

Source Sink

IGRE Tunnel
10.0.0.1
eth0
192.168.44.1

kernel

forwarding GRII[]]l;ulilgd

100 MBit/s 100 MBit/s

eth0
192.168.44.2

eth0
192.168.55.2

Figure 7: GRE Tunnel Experiment B Setup

(PN) description based upon these resource utilization in-
formation and hands it over to the VN Mapper. On the
other side the researcher provides his topology description
(VN) to the VN Mapper. The Mapper now allocates a set
of physical nodes which meet the requirements of the user’s
description and configures the topology upon the Planet-
Lab/VINI infrastructure.

For the VN Mapping task We use vnmFlib [17], since it
is able to handle large network topologies with any set of
capacity constraints onto PlanetLab/VINI in a reasonable
time.

4. EXPERIMENTAL RESULTS

The main advantage of our overlay solution which uses
tunneling in user space lies in its flexibility and easy ap-
plicability on the PlanetLab and Trellis infrastructure. Its
main disadvantage, however, is its bad performance. We
have seen in Section 3.1 that tunneling in user space en-
tails some additional overhead: The packet is copied back
to user space by the tun/tap device, it gets an additional IP
header, is copied back to kernel space and traverses the net-
work stack a second time. In this section we investigate the
impact of our tunnel mechanism on throughput and latency
compared to a tunnel mechanism that works exclusively in
user space.

Our benchmarks are run on the simple topologies depicted
in Figure 6 and 7, consisting of three machines connected by
100 MBit ethernet links. The FWDR machine in the middle
simply forwards packets from machine Source to machine
Sink inside its Linux Kernel. Both Source and Sink machines
are equipped with a Pentium 3 500MHz processor and 256
MByte memory, FWDR has two Pentium 4 2.6 GHz CPUs
and 1 GB memory.

For the throughput measurement we used the netperf [18]
network performance measurement tool at a confidence level
of 95%.

For experiment A we run a RiaS tunnel daemon on Source
and Sink machine (Figure 6). Experiment B (Figure 7)

14

Unidirectional UDP Throughput
120 T T T T

T
RiaS Tunnel

GRE Tunne] -----
100 [~ *

80 - |

40 -

Throughput (MBit/s)
=)
(=]
T
Il

20 -/ 4

0+ | | | | | | |
200 400 600 800 1000 1200 1400

Packetsize (Byte)

Figure 8: Unidirectional UDP Throughput

Roundtrip Times
1.2 T T

T
RiaS Tunnel ———
GRE Tunnel =----: L

0.6 - bl

Latency (ms)

02 q

400 500

Packetsize (Byte)

600

Figure 9: Latency Measurements

serves as a reference for our performance measurements and
uses the Linux in-kernel GRE tunnel module.

Figure 8 shows the unidirectional UDP throughput for dif-
ferent packet sizes of our RiaS tunnel and the GRE in-kernel
tunnel. With about 92 MBit/s the in-kernel tunnel achieved
roughly the maximum throughput at a packet size of 1024
byte. Clearly our solution is not as efficient as the in-kernel
tunneling but for a packet size of 1412 MBit it managed
to achieve about 70% of the GRE tunnel performance. For
bigger packets the performance decreases strong since our
tunneling adds an extra header of 46 bytes to each packet.
Together with the 42 bytes of the UDP, IP and ethernet
header we get a maximum payload of 1412 bytes before we
exceed the MTU of our ethernet cards. Since we want to
emulate Layer 2 behavior inside our overlay we turned of IP
fragmentation on our UDP tunnel. As a consequence when
the packet size exceeds the MTU, the network card starts
to fragment each packet into two ethernet frames of nearly
equal size. This clearly leaves a lot of space in each ethernet
frame unused and results in nearly 50% performance loss.

It is also striking that the throughput of our Rias tun-
nel decreases strongly for smaller packet sizes. For example,
at a packet size of 128 byte our solution only reaches 13%
of the in-kernel tunnel performance. Running strace on the
RiaS daemon process shows that nearly 70% of the over-
all runtime is used by the write system calls whenever the
packet is copied from kernel to user space and vice versa.
This does not surprise since each incoming packet causes
two additional write calls as we described in Section 3.1.
Consequently since smaller packets entail more write oper-
ations they also entail more overhead.

To measure the latency values depicted in Figure 9 and

400 Byte 600 Byte 800 Byte
RiaS [0.89,0.93] [0.95,0.98] [1.00,1.03]
GRE [0.08,0.082] [0.081,0.084] [0.086,0.088)

Table 2: Ping Test Results

Table 2 we used ping -c 100 -s packetsize. One can see that
the latency of the RiaS tunnel is nearly ten times bigger than
the GRE latency. The standard deviation also rose at a rate
of about ten times. For example the standard deviation for
a packetsize of 200 byte rose from 0.014 ms to 0.12 ms.

5. CONCLUSION

The application of routing experiments on PlanetLab re-
quires the ability for researchers to configure their own cus-
tomized network topologies. In particular one should be able
to run existing routing software/protocols without the need
to modify it.

To achieve this goal it is decisive to be able to setup multi-
ple network interfaces on the PlanetLab nodes. In Chapter
2 we pointed out why this is impossible with the current
network virtualization in PlanetLab and discussed several
alternatives and their applicability on PlanetLab to over-
come this problem.

We proposed an overlay network solution to the problem
based on user space tunneling. Its advantage lies in its flexi-
bility and easy applicability upon the PlanetLab infrastruc-
ture. But tunneling in user space also adds some additional
overhead as we described in Section 3.1. To evaluate the
price of this flexibility we compared our solution with in-
kernel tunneling and observed that throughput is reduced
at about 30% and latency is tenfold on average. Although
this seems to be a big disadvantage, it can help researchers to
compare different network protocols on a PlanetLab infras-
tructure rather than to obtain absolute performance values.
In addition one should not underestimate the advantage of
a solution in user space since PlanetLab is a world-wide dis-
tributed testbed of about 1000 nodes and must continue to
support a large user base. For this reason changes to the
PlanetLab Kernel should be avoided whenever possible.

For the future we plan to investigate more solutions to
the problem which use PlanetLab nodes exclusively as for
example the method described in Section 2.5. We also plan
to test an in-kernel solution which uses a loadable kernel
module to get better throughput and latency results while
the impact on the PlanetLab kernel is still minimized.

6. ACKNOWLEDGEMENTS

We would like to thank Andy Bavier for his great support
with the Trellis and VINI infrastructure. We would also like
to thank Christoph Konersmann for helping us with his bash
scripting skills whenever needed.

15

7. REFERENCES
[1] Planetlab. https://www.planet-lab.org.

[2] M. Huang. VNET: PlanetLab Virtualized Network
Access. 2005.

[3] M. Handley, O. Hodson and E. Kohler. XORP: an
open platform for network research. SIGCOMM
Comput. Commun. Rev., 33(1):53-57, 2003.

[4] GNU Quagga Project. http://www.quagga.org.

[5] Linux-VServer. http://linux-vserver.org.

[6] Linux Netfilter. http://www.netfilter.org.

[7] J.D. Touch, Y.S. Wang, V. Pingali, L. Eggert,

R. Zhou, G.G. Finn. A Global X-Bone for Network
Experiments. TRIDENTCOM ’05: Proceedings of the
First International Conference on Testbeds and
Research Infrastructures for the DEvelopment of
NeTworks and COMmunities.

[8] The xen.org Project http://www.xen.org.

[9] M.E. Hoskins. User-mode Linux. Linux Journal 145,

2006.

A. Bavier, N. Feamster, M. H., L. Peterson, and

J. Rexford. In VINI Veritas: Realistic and Controlled

Network Experimentation. In Proc. of SIGCOMM,

pages 3—14, 2006.

D. Xu, X. Jiang VIOLIN: Virtual Internetworking on

Overlay Infrastructure Proc. International Symposium

on Parallel and Distributed Processing and

Applications, 2004

S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada,

V. Valancius, A. Bavier, N. Feamster, L. Peterson,

J. Rexford. Trellis: A Platform for Building Flexible,

Fast Virtual Networks on Commodity Hardware.

CoNEXT 08

NetNS. http://Ixc.sourceforge.net /network.php.

M. Krasnyansky. Universal TUN/TAP Driver: Virtual

Point-to-Point (TUN) and Ethernet (TAP) Devices,

2007. http://vtun.sourceforge.net/tun.

R. Housley, S. Hollenbeck. RFC 3378 EtherIP:

Tunneling Ethernet Frames in IP Datagrams, 2002.

http://www.rfc-archive.org/getrfc.php?rfc=3378.

K. Park, S.P. Vivek. CoMon: a mostly-scalable

monitoring system for PlanetLab. SIGOPS Oper.

Syst. Rev. 40(1), pages 65—74, 2006

J. Lischka, H. Karl. A virtual network mapping

algorithm based on subgraph isomorphism detection.

VISA ’09: Proceedings of the 1st ACM workshop on

Virtualized infrastructure systems and architectures,

pages 81-88, 2009.

Netperf — Network Performance Measurement Tool

http://www.netperf.org/netperf

M. Holdrege, P. Srisuresh. RFC 3027 Protocol

Complications with the IP Network Address

Translator, Section 5.1 , 2001.

http://www.rfc-archive.org/getrfc.php?rfc=3378.

(10]

(1]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

