Internet Inter-Domain Traffic

Craig Labovitz, Scott Iekel-Johnson, Danny McPherson
Arbor Networks

Jon Oberheide, Farnam Jahanian
University of Michigan
Motivation

- Measuring the Internet is hard
- Significant previous work on
 - Router and AS-level topologies
 - Individual link / ISP traffic studies
 - Synthetic traffic demands
- But limited “ground-truth” on inter-domain traffic
 - Most commercial arrangements under NDA
 - Significant lack of uniform instrumentation
- Goal: longitudinal observations of Internet traffic
 - Can we instrument representative distribution of ISPs?
 - Estimate of traffic volume / growth
 - Analysis of changes in Internet traffic demands
Conventional Wisdom

- Internet is a global scale end-to-end network
 - Packets transit (mostly) unmolested
 - Value of network is global addressability / reachability (metcalfe effect)

- Broad distribution of traffic sources / sinks

- An Internet “core” exists
 - Dominated by a dozen global transit providers
 - Interconnecting content, consumer and regional providers
Methodology

- **Focus on inter-domain traffic**
 - i.e. distinguish from web hits, tweets, VPN, etc.

- **Leverage widely deployed commercial Internet monitoring infrastructure**
 - Add export of coarse grain traffic statistics (ASNs, ASPaths, protocols, ports, etc.)
 - Via anonymous XML forwarded to central servers

- **Cajole carriers into participation**
 - 110+ ISPs / content providers
 - Including 3,000 edge routers and 100,000 interfaces
 - And an estimated ~25% all inter-domain traffic

- **Wait two years…**
Additional Methodology Details

- **Within a given ISP, commercial probes**
 - Monitors NetFlow / Jflow / etc and routing across multiple edge routers
 - Probes are topology aware of ISP, backbone and customer boundaries
 - Some deployments include payload / DPI observations

- **Post-process data**
 - Focus on distributions / share
 - Calculate percentages per category
 - Calculate weighted averages using number of routers in each deployment

- **Augment analysis with**
 - Provider interviews / surveys
 - Known traffic volumes
Methodology Validation

- Validate predictions based on “ground-truth”
 - Linear fit of 12 known ISP traffic demands
 - Significant variety in measurement technology and definitions
 - Linear R squared (coefficient of determination) value of 0.91
- Further validate with extensive discussions / surveys of providers
- Also provides estimate of inter-domain size / growth (45 Tbs and 45%)
Change in Carrier Traffic Demands

<table>
<thead>
<tr>
<th>Rank</th>
<th>2007 Top Ten</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISP A</td>
<td>5.77</td>
</tr>
<tr>
<td>2</td>
<td>ISP B</td>
<td>4.55</td>
</tr>
<tr>
<td>3</td>
<td>ISP C</td>
<td>3.35</td>
</tr>
<tr>
<td>4</td>
<td>ISP D</td>
<td>3.2</td>
</tr>
<tr>
<td>5</td>
<td>ISP E</td>
<td>2.77</td>
</tr>
<tr>
<td>6</td>
<td>ISP F</td>
<td>2.6</td>
</tr>
<tr>
<td>7</td>
<td>ISP G</td>
<td>2.24</td>
</tr>
<tr>
<td>8</td>
<td>ISP H</td>
<td>1.82</td>
</tr>
<tr>
<td>9</td>
<td>ISP I</td>
<td>1.35</td>
</tr>
<tr>
<td>10</td>
<td>ISP J</td>
<td>1.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>2009 Top Ten</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISP A</td>
<td>9.41</td>
</tr>
<tr>
<td>2</td>
<td>ISP B</td>
<td>5.7</td>
</tr>
<tr>
<td>3</td>
<td>Google</td>
<td>5.2</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Comcast</td>
<td>3.12</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Based on analysis of anonymous ASN (origin/transit) data (as a weighted average % of all Internet Traffic). Top ten has NO direct relationship to study participation.

- In 2007, top ten match “tier-1” ISPs (e.g., Wikipedia)
- In 2009, global transit carry significant traffic volumes
 - But Google and Comcast join the list
 - And a significant percentage of ISP A traffic is Google transit
Consolidation of Content *(Grouped Origin ASN)*

- In 2007, thousands of ASNs contributed 50% of content.
- In 2009, 150 ASNs contribute 50% of all Internet traffic.
A Google Case Study

- Over time Google absorbs YouTube traffic
- As of July 2009, Google accounts for 6% of all Internet inter-domain traffic
- Google the fastest growing ASN group

Graph of weighted averaged grouped ASNs

- Red line represents YouTube
- Blue line represents Google
A Comcast Case Study

- In 2007, Comcast has typical “eyeball” peering ratios.
- By 2009, Comcast resembles a transit / content provider:
 - Wholesale transit, cell backhaul, video distribution, backbone consolidation.
Market Forces Intuition

Revenue from Internet Transit
Source: Dr. Peering, Bill Norton

Revenue from Internet Advertisement
Source: Interactive Advertising Bureau
Market Intuition

- **Commoditization of IP and Hosting / CDN**
 - Drop of price of wholesale transit
 - Drop of price of video / CDN
 - Economics and scale drive enterprise to “cloud”

- **Consolidation**
 - Bigger get bigger (economies of scale)
 - e.g., Google, Yahoo, MSFT acquisitions

- **Success of bundling / Higher Value Services**
 - Triple and quad play, etc.

- **New economic models**
 - Paid content (ESPN 3), paid peering, etc.
 - Difficult to quantify due to NDA / commercial privacy

- **Disintermediation**
 - Direct interconnection of content and consumer
 - Driven by both cost and increasingly performance
Traditional Internet Model
A New Internet Model

- Flatter and much more densely interconnected Internet
- Disintermediation between content and “eyeball” networks
- New commercial models between content, consumer and transit
Applications

<table>
<thead>
<tr>
<th>Rank</th>
<th>Application</th>
<th>2007</th>
<th>2009</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Web</td>
<td>41.68%</td>
<td>52.00%</td>
<td>24.76%</td>
</tr>
<tr>
<td>2</td>
<td>Video</td>
<td>1.58%</td>
<td>2.64%</td>
<td>67.09%</td>
</tr>
<tr>
<td>3</td>
<td>VPN</td>
<td>1.04%</td>
<td>1.41%</td>
<td>35.58%</td>
</tr>
<tr>
<td>4</td>
<td>Email</td>
<td>1.41%</td>
<td>1.38%</td>
<td>-2.13%</td>
</tr>
<tr>
<td>5</td>
<td>News</td>
<td>1.75%</td>
<td>0.97%</td>
<td>-44.57%</td>
</tr>
<tr>
<td>6</td>
<td>P2P (*)</td>
<td>2.96%</td>
<td>0.85%</td>
<td>-71.28%</td>
</tr>
<tr>
<td>7</td>
<td>Games</td>
<td>0.38%</td>
<td>0.49%</td>
<td>28.95%</td>
</tr>
<tr>
<td>8</td>
<td>SSH</td>
<td>0.19%</td>
<td>0.28%</td>
<td>47.37%</td>
</tr>
<tr>
<td>9</td>
<td>DNS</td>
<td>0.20%</td>
<td>0.17%</td>
<td>-15.00%</td>
</tr>
<tr>
<td>10</td>
<td>FTP</td>
<td>0.21%</td>
<td>0.14%</td>
<td>-33.33%</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>2.56%</td>
<td>2.67%</td>
<td>4.30%</td>
</tr>
<tr>
<td></td>
<td>Unclassified</td>
<td>46.03%</td>
<td>37.00%</td>
<td>-19.62%</td>
</tr>
</tbody>
</table>

(*) 2009 P2P Value based on 18% Payload Inspection
Weighted average percentage of all Internet traffic using well-known ports

- **Growing volume of Internet traffic uses port 80 / 443**
 - Includes significant video component and source of most growth
- **Unclassified includes P2P and video**
 - Payload matching suggests P2P at 18%
 - P2P is fastest declining
Evolution of End-to-End

- Growing dominance of web as application front-end
- Plus burden of ubiquitous network layer security policies
- Results in growing concentration of application traffic over a decreasing number of TCP / UDP ports
 - Especially port 80
 - Especially video
Migration of File Sharing to the Web

- In 2006, P2P one of largest threats facing carriers
 - Significant protocol, engineering and regulatory effort / debate
- In 2010, P2P fastest declining application group
 - Trend in both well-known ports and payload based analysis
- Significant corresponding growth in direct download and streaming video
 - Carpathia small hosting company by traffic volume in Fall 2008
 - Mega becomes Carpathia customer in November 2008
 - Carpathia Hosting grows overnight to more than 0.8% of all traffic
Discussion

- Significant changes in inter-domain traffic patterns
- Not quite Wired’s “The Web is Dead”
- But significant shift from connectivity to content
 - Aggregation of content / traffic sources
 - Shift from transit to direct interconnection
 - Most significant growth in ~150 large content ASN
- And concurrent shift in applications to port 80
 - i.e. the web may represent the new end-to-end
- Implications on engineering and research
 - ACL / port based security model
 - Fault tolerance
 - Routing, traffic engineering, network design
 - Rapid growth of non-interactive traffic demands (i.e. DC)
Questions

labovit@arbor.net
http://www.monkey.org/~labovit