
Differentially-Private

Network Trace Analysis

Frank McSherry and Ratul Mahajan

Microsoft Research

Overview

.

1

Overview

Question: Is it possible to conduct network trace analyses in a

way that provides strict formal “differential privacy” guarantees?

Methodology: Select a representative sample of network trace

analyses from the literature, reproduce with differential privacy.

Results: We were able to reproduce every analysis we attempted.

The privacy/accuracy trade-off varied by analysis; caveats hold.

Toolkit and analyses we wrote are available at:

http://research.microsoft.com/pinq/networking.aspx

2

Network Trace Analysis

Much of networking research relies on access to good, rich data.

Network traces (long lists of observed packets) are one example.

The research process is complicated by a tension between:

Utility: The trace should reflect actual network behavior.

Privacy: The trace could reflect actual network behavior.

While this looks irreconcilable, there is an important difference.

Utility requirements are typically for aggregate statistics.

Privacy requirements are typically for individual behavior.

Not obviously hopeless. But, how to proceed?

3

Privacy in NTA: Related Work

We aren’t the first people to look at privacy in trace analysis.

Not going to be the last, either.

Some examples of other approaches:

Trace anonymization: Sometimes it works, sometimes it doesn’t.

Prefix-preserving anonymization is a good example of challenge.

Code to Data: Data unmolested, but code may be inscrutable.

Current proposals either seem to rely on experts (eg SC2D, trol)

or leak [bounded amounts of] arbitrary information (Mittal et al).

Secure Multi-party Computation: Same as for Code to Data.

Our aim: Formal guarantees first. As useful as possible next.

4

Differential Privacy

Differential privacy formally constrains computations to conceal

the presence or absence of individual records:

Definition: A randomized M gives ε-differential privacy iff:

for all input datasets A, B and any possible output S,

Pr[M(A) = S] ≤ Pr[M(B) = S]× exp(ε× |A	B|) .

Ensures: Any event S “equally likely” with/without your data.

1. Doesn’t prevent disclosure. Ensures disclosure not our fault.

2. No computational / informational assumptions of attackers.

3. Agnostic to record type. Could be PII, binary data, anything.

Simplest example of DP computation is Count + Noise.

5

Privacy Integrated Queries

PINQ: Common platform for differentially-private data analyses.

1. Provides interface to data that looks very much like LINQ.

2. All access through the interface gives differential privacy.

?

?
?

Analysts write arbitrary LINQ code against data sets, using C#.

No privacy expertise needed to produce analyses. (but it helps)

We are going to try to write Network Trace Analyses using PINQ.

6

What’s the Hard Part?

While DP has many great features, it comes with challenges too:

Some we will deal with here:

1. Achieving DP involves perturbing answers to queries (noise).
A: Reframe analyses using statistically robust measurements.

2. Programming in PINQ requires high-level, declarative queries.
A: This can certainly require some creativity/reinterpretation.

Some are still challenges, and should be discussed (none fatal):

3. Masking just a few packets does not mask a “person”.

4. The guarantees degrade the more a dataset is “used”.

5. ... more ...

7

Worm Fingerprinting in LINQ

One view of a worm (from Singh et al) is as a payload seen

destined for many distinct source and destination IP addresses.

aavar trace = LoadTrace(); // type can be as simple as Packet[]
aa
aavar worms = trace.GroupBy(pkt => pkt.Payload)
aavar worms = trace.Where(group => group.Select(pkt => pkt.SrcIP)
aavar worms = trace.Where(group => group.Distinct()
aavar worms = trace.Where(group => group.Count() > srcThreshold)
aavar worms = trace.Where(group => group.Select(pkt => pkt.DstIP)
aavar worms = trace.Where(group => group.Distinct()
aavar worms = trace.Where(group => group.Count() > dstThreshold);
aa
aaConsole.WriteLine(worms.Count());

Identifies worms and then reports their number.

8

Worm Fingerprinting in PINQ

One view of a worm (from Singh et al) is as a payload seen

destined for many distinct source and destination IP addresses.

aavar trace = LoadTrace(); // type is now PINQueryable<Packet>
aa
aavar worms = trace.GroupBy(pkt => pkt.Payload)
aavar worms = trace.Where(group => group.Select(pkt => pkt.SrcIP)
aavar worms = trace.Where(group => group.Distinct()
aavar worms = trace.Where(group => group.Count() > srcThreshold)
aavar worms = trace.Where(group => group.Select(pkt => pkt.DstIP)
aavar worms = trace.Where(group => group.Distinct()
aavar worms = trace.Where(group => group.Count() > dstThreshold);
aa
aaConsole.WriteLine(worms.Count(epsilon));

Identifies worms and then reports their number, approximately.

9

Building Analysis Tools

At this point, we can start to build useful tools in PINQ.
For example: Cumulative Density Functions. (Approach 1/3)

IEnumerable<double> CDF(PINQueryable<int> input, int maximum, double epsilon)
{

foreach (var entry in Enumerable.Range(0, maximum))
yield return input.Where(x => x < entry)

.Count(epsilon / maximum);
}

10

Building Analysis Tools

At this point, we can start to build useful tools in PINQ.
For example: Cumulative Density Functions. (Approach 2/3)

IEnumerable<double> CDF(PINQueryable<int> input, int maximum, double epsilon)
{

var tally = 0;
var parts = input.Partition(Enumerable.Range(0, maximum), x => x);
foreach (var entry in Enumerable.Range(0, maximum))
{

tally = tally + parts[entry].Count(epsilon);
yield return tally;

}
}

11

Building Analysis Tools

At this point, we can start to build useful tools in PINQ.
For example: Cumulative Density Functions. (Approach 3/3)

IEnumerable<double> CDF(PINQueryable<int> input, int maximum, double epsilon)
{

if (maximum == 0)
yield return input.Count(epsilon);

else
{

var parts = input.Partition(new int[] { 0, 1 }, x => x / (maximum / 2));
foreach (var count in CDF(parts[0], maximum / 2, epsilon)

yield return count;

var cache = parts[0].Count(epsilon);

parts[1] = parts[1].Select(x => x - maximum / 2);
foreach (var count in CDF(parts[1], maximum / 2, epsilon)

yield return count + cache;
}

}

12

Example: CDFs, eps = 0.1

 50 100 150 200 250

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Blue = CDF1, Green = CDF2, Red = CDF3

13

Example: CDFs, eps = 0.1

20 2 4 6 8 10 12 14 16 18

20,000

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

Blue = CDF1, Green = CDF2, Red = CDF3

14

Another Tool: Strings

Given a collection of strings, list the frequently occurring strings.

Sounds like bad privacy, but +/- one record is still hidden.

aa// enumerates frequently occurring strings in input starting with prefix
aaIEnumerable<string> Strings(PINQueryable<string> input, string prefix)
aa{
aaaaa// split input into those equal to prefix, and those that are prefixes
aaaaavar exact = input.Partition(new bool[] {true, false}, x => x == prefix);
aaaaa
aaaaa// if we have enough records equal to prefix, return it
aaaaaif (exact[true].Count(epsilon) > confidence / epsilon)
aaaaaaaayield return prefix;
aaaaa
aaaaa// other records contribute to each possible extension of prefix
aaaaavar parts = exact[false].Partition(keys, x => x[prefix.Length]);
aaaaaforeach (var key in keys)
aaaaaaaaif (parts[key].Count(epsilon) > confidence / epsilon)
aaaaaaaaaaaforeach (var result in Strings(parts[key], prefix + key))
aaaaaaaaaaaaaayield return result;
aa}

15

Example: Strings, eps = 0.1

Finding frequent hex strings in (hashes of) packet payloads:

aaStrings(trace.Select(packet => packet.Payload), "", 0.1);

Top 10 payload recovered, in order, with relatively small error.

hash(payload) true count est. count % err
2D2816FECDCAB780 3038504 3038500.005 -0.000
F389B84545A38BAF 92494 92505.050 0.012
E41903DCF7D86F2F 41600 41606.893 0.017
6F7E03DC833D6F2F 40279 40287.970 0.022
CD4F03DCE10E6F2F 40084 40087.437 0.009
B68503DCCA446F2F 37431 37448.584 0.047
58B403DC6C736F2F 36526 36537.877 0.033
41EA03DC55A96F2F 29625 29624.397 -0.002
9FBB03DCB37A6F2F 20715 20711.169 -0.018
7EEEB845D1088BAF 18976 18980.823 0.025

16

Worm Fingerprinting: Redux

Actually enumerating payloads with significant src/dst counts:

aa// enumerates actual payloads with high src/dst dispersal
aaIEnumerable<string> FindWorms(PINQueryable<Packet> trace)
aa{
aaaaavar loads = Strings(trace.Select(packet => packet.Payload), "");
aa
aaaaavar parts = trace.Partition(loads, packet => packet.Payload);
aa
aaaaaforeach (var load in loads)
aaaaa{
aaaaaaaavar srcCount = parts[load].Select(packet => packet.SrcIP)
aaaaaaaavar srcCount = parts[name].Distinct()
aaaaaaaavar srcCount = parts[name].Count(epsilon);
aa
aaaaaaaavar dstCount = parts[load].Select(packet => packet.DstIP)
aaaaaaaavar dstCount = parts[name].Distinct()
aaaaaaaavar dstCount = parts[name].Count(epsilon);
aa
aaaaaaaaif (srcCount > srcThreshold && dstCount > dstThreshold)
aaaaaaaaaaayield return load + " " + srcCount + " " + dstCount;
aaaaa}
aa}

17

Other Tools and Analyses

We wrote a few other tools and analyses as well.

Tools: CDFs, Frequent Strings, Frequent Itemset Mining.

Analyses: Several types of trace analyses, varying granularities.

Two Qs: can we write the analysis faithfully, and is it accurate?

Packet-level analyses Expressibility High accuracy
Packet size and port dist. faithful strong privacy
Worm fingerprinting faithful weak privacy

Flow-level analyses
Common flow properties connections vs. flows strong privacy
Stepping stone detection windows approximated medium privacy

Graph-level analyses
Anomaly detection faithful strong privacy
TTL Clustering used k-means weak privacy

18

Wrapping Up

Studying use of differential privacy for network trace analysis.
Seems promising. Formal privacy guarantees and good results.

http://research.microsoft.com/pinq/networking.aspx

Many open questions to tackle, discuss, follow up on:

1. Are DP guarantees for packets good enough / meaningful?
Can the traces / datasets be massaged to make them so?

2. Can we conduct research, rather than reproduce research?

3. Design analyses with PINQ in mind, improve priv/accuracy?
Many “expressibility” failures weren’t much different in spirit.

4. Can we augment PINQ with network-specific functionality?
Segmenting flows into connections would have helped, works.

19

