PacketShader: A GPU-Accelerated Software Router

Sangjin Han[†]

In collaboration with:

Keon Jang †, KyoungSoo Park‡, Sue Moon †

[†] Advanced Networking Lab, CS, KAIST [‡] Networked and Distributed Computing Systems Lab, EE, KAIST

PacketShader: A GPU-Accelerated Software Router

High-performance

Our prototype: 40 Gbps on a single box

Software Router

- Despite its name, not limited to IP routing
 - You can implement whatever you want on it.
- Driven by software
 - Flexible
 - Friendly development environments
- Based on commodity hardware
 - Cheap
 - Fast evolution

Now 10 Gigabit NIC is a commodity

- From \$200 \$300 per port
 - Great opportunity for software routers

Chelsio N320E Server Adapter - Network adapter - PCI Express x8 low profile - 10 Gigabit Ethernet - 2 ports

List Price: \$579.00

Price: \$543.99

You Save: \$35.01 (6%)

In Stock.

Achilles' Heel of Software Routers

- Low performance
 - Due to CPU bottleneck

Year	Ref.	H/W	IPv4 Throughput
2008	Egi et al.	Two quad-core CPUs	3.5 Gbps
2008	"Enhanced SR" Bolla et al.	Two quad-core CPUs	4.2 Gbps
2009	"RouteBricks" Dobrescu et al.	Two quad-core CPUs (2.8 GHz)	8.7 Gbps

Not capable of supporting even a single 10G port

CPU BOTTLENECK

Per-Packet CPU Cycles for 10G

Your budget

1,400 cycles

10G, min-sized packets, dual quad-core 2.66GHz CPUs

(in x86, cycle numbers are from RouteBricks [Dobrescu09] and ours)

Our Approach 1: I/O Optimization

Batch processing

Our Approach 2: GPU Offloading

- GPU Offloading for
 - Memory-intensive or
 - Compute-intensive operations
- Main topic of this talk

WHAT IS GPU?

GPU = **G**raphics **P**rocessing **U**nit

- The heart of graphics cards
- Mainly used for real-time 3D game rendering
 - Massively-parallel processing capacity

(Ubisoft's AVARTAR, from http://ubi.com)

CPU vs. GPU

CPU: Small # of super-fast cores

GPU: Large # of small cores

"Silicon Budget" in CPU and GPU

Xeon X5550: 4 cores

731M transistors

GTX480: 480 cores 3,200M transistors

GPU FOR PACKET PROCESSING

Advantages of GPU for Packet Processing

- 1. Raw computation power
- 2. Memory access latency
- 3. Memory bandwidth
- Comparison between
 - Intel X5550 CPU
 - NVIDIA GTX480 GPU

(1/3) Raw Computation Power

- Compute-intensive operations in software routers
 - Hashing, encryption, pattern matching, network coding, compression, etc.
 - GPU can help!

Instructions/sec

CPU: **43**×10⁹
= 2.66 (GHz) ×
4 (# of cores) ×
4 (4-way superscalar)

GPU: 672×10^9 = 1.4 (GHz) × 480 (# of cores)

(2/3) Memory Access Latency

- Software router → lots of cache misses
 - GPU can effectively hide memory latency

(3/3) Memory Bandwidth

CPU's memory bandwidth (theoretical): 32 GB/s

CPU's memory bandwidth (empirical) < 25 GB/s

(3/3) Memory Bandwidth

Your budget for packet processing can be less 10 GB/s

(3/3) Memory Bandwidth

Your budget for packet processing can be less 10 GB/s GPU's memory bandwidth: 174GB/s

HOW TO USE GPU

Basic Idea

Offload core operations to GPU (e.g., forwarding table lookup)

Recap

For GPU, more parallelism, more throughput

GTX480: 480 cores

Parallelism in Packet Processing

- The key insight
 - Stateless packet processing = parallelizable

Batching → **Long Latency?**

Fast link = enough # of packets in a small time window

- 10 GbE link
 - up to 1,000 packets only in 67µs
- Much less time with 40 or 100 GbE

PACKETSHADER DESIGN

Basic Design

Three stages in a streamline

Packet's Journey (1/3)

IPv4 forwarding example

Packet's Journey (2/3)

IPv4 forwarding example

2. Forwarding table lookup

Packet's Journey (3/3)

IPv4 forwarding example

Interfacing with NICs

Scaling with a Multi-Core CPU

EVALUATION

Hardware Setup

CPU:

Total 8 CPU cores

Quad-core, 2.66 GHz

NIC:

Total 80 Gbps

Dual-port 10 GbE

GPU:

480 cores, 1.4 GHz

Total 960 cores

Experimental Setup

Packet generator (Up to 80 Gbps)

PacketShader

Results (w/ 64B packets)

Example 1: IPv6 forwarding

- Longest prefix matching on 128-bit IPv6 addresses
- Algorithm: binary search on hash tables [Waldvogel97]
 - 7 hashings + 7 memory accesses

Example 1: IPv6 forwarding Bounded by motherboard IO capacity ■ CPU-only ■ CPU+GPU Throughput (Gbps)

(Routing table was randomly generated with 200K entries)

Packet size (bytes)

Example 2: IPsec tunneling

- ESP (Encapsulating Security Payload) Tunnel mode
 - with AES-CTR (encryption) and SHA1 (authentication)

Example 2: IPsec tunneling

3.5x speedup

Year	Ref.	H/W	IPv4 Throughput	
2008	Egi <i>et al</i> .	Two quad-core CPUs	3.5 Gbps]
2008	"Enhanced SR" Bolla <i>et al</i> .	Two quad-core CPUs	4.2 Gbps	- Kernel
2009	"RouteBricks" Dobrescu <i>et al</i> .	Two quad-core CPUs (2.8 GHz)	8.7 Gbps	
2010	PacketShader (CPU-only)	Two quad-core CPUs (2.66 GHz)	28.2 Gbps	User
2010	PacketShader (CPU+GPU)	Two quad-core CPUs + two GPUs	39.2 Gbps	

Conclusions

- GPU
 - a great opportunity for fast packet processing
- PacketShader
 - Optimized packet I/O + GPU acceleration
 - scalable with
 - # of multi-core CPUs, GPUs, and high-speed NICs
- Current Prototype
 - Supports IPv4, IPv6, OpenFlow, and IPsec
 - 40 Gbps performance on a single PC

Future Work

- Control plane integration
 - Dynamic routing protocols with Quagga or Xorp
- Multi-functional, modular programming environment
 - Integration with Click? [Kohler99]
- Opportunistic offloading
 - CPU at low load
 - GPU at high load
- Stateful packet processing

