NetFence: Preventing Internet
Denial of Service from Inside Out

Xiaowei Yang (Duke University)
with Xin Liu (Duke University)
Yong Xia (NEC Labs China)

Sigcomm 2010
Delhi, India

 Distributed attacks: many bots
send packet floods to exhaust
shared resources

— Bandwidth, memory, or CPU

Largest DDoS Attack
- 49 Gigabits Per Second

a0 49
- 45 -
5 : L Antici d Th
o 40 . =
3 argest Anticipate reat
= 35 - -
T
[
5 w - NexT 12 Mon’rhs
]
g} o8
@ a0 ost or Services DDoS B G
| I
@ - redantial /lder Theft . DMS e Poisaning
0 15
= 10 BiEP Route Hijacking system/Infrastructur
g 10 (Malicicus or Unintentional) _
b= . Worms
< 5

0.4 1.2
0
Fgre]'Lg st DDoS Aftack - 48 Gigabits Per Second 30—
5 or Networks, Inc. w
< -

2009 Survey results . .
by Arbor Networks, -
Inc. among 132 |
network operators Fore & Lt Ao Tt 1210

Largest DDoS Attack
- 49 Gigabits Per Second

50 o
o 45 _
5 40 L o« o d h
o 40 _
| argest Anticipated Threaf
CE 35]
- - Nex’r 12 MonThs
1 .
o #
(G ost or Services DDoS W Gotr
| 20
g8 - redential/Identity Theit Bl DNS Cache Paisaning
i 15
ﬁ 10 B cute Hijacking System/ Infrastructure Compromise
. (Malicious or Unintentional) [B
r Worms
ﬂ: [

0.4 1.2
(8]

Fgre]'LngDSAfk 49 Gigabits Per Second 30—
5 or Matworks, Inc.

| _
.+ 2009 5urvey results ff,ﬁﬁ
by Arbor Networks, - __
Inc. among 132 -

network operators e

Largest DDoS Attack
- 49 Gigabits Per Second

a0 49
o 45 =
= 0 Anticipated Th
g argest Anticipate reat
5 35 1 B
s = ~ NexT 12 MonThs
':—;:' " o5t or Services DDoS .r
@ ~ redantial /lder et W DHS 1e Poisaning
o 15
g 10 10 I:E1J\| 3 .t‘:,fuhv. f.:J. arall System/Inirastruchure Lompromise
g] (Malicious ar Unintentional) . Worms
| os 12
0

Fgre]'LngDSka 49 Gigabits Per Second 30—
5 or Matworks, Inc.

| _
.+ 2009 SU/"vey results ff,ﬁﬁ
by Arbor Networks, - __
Inc. among 132 -

network operators e

Largest DDoS Attack
- 49 Gigabits Per Second

W oos W coor 2008 2009

Largest Anticipated Threat
- Next 12 Months

Link, Host or Services DDaS l Boirets

Credential / Identity Thetl W DM5 Cache Paisaning

BiEP Route Hijacking system/Infrastructure Compromise
(Malicicus or Unintentional) _
. Worms

ijg::f Lljflriiiii?cfmfack 49 Gigabits Per Second J zz : _ D—D_Qé
2009 Survey results
by Arbor Networks,
Inc. among 132 oL
network operators ottt

Attack Size — Gigabits Per Second

Survey Respondents

Largest DDoS Attack
- 49 Gigabits Per Second

B oo W coo7 2008 2009

Largest Anticipated Threat
- Next 12 Months

Link, Host or Services DDoS . Botniets
Credential / Identity Thetl W DM5 Cache Paisaning
BGP Route Hijacking systemInfrastructure Compromise

(Malicicus or Unintentional)

Attack Size — Gigabits Per Second

. Worms

36

Figure 1: Largest DDoS Attack - 49 Gigabits Per Second 30% |

Source: Arbor Metworks, Inc. _
THL

2009 Survey results
by Arbor Networks,
Inc. among 132

network operators Fore & Lt Ao Tt 1210

Survey Respondents

Combating DoS is Difficult

A fundamental architecture problem

1. Open: Any to any communication, and
new applications

2. Robust: Non-disrupted communications
despite compromised hosts and routers

* DoS defense must be built inside out
— Rethinking the Internet architecture

Previous Work: Receivers as Victims

* Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0OS, SpeakUp, StopIt, TVA..

* Denial of Edge Service (DoES)

— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities

Previous Work: Receivers as Victims

Filter (A,V)

* Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0OS, SpeakUp, StopIt, TVA..

* Denial of Edge Service (DoES)

— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities

Previous Work: Receivers as Victims

Filter (A,V)

* Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0OS, SpeakUp, StopIt, TVA..

* Denial of Edge Service (DoES)

— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities

Previous Work: Receivers as Victims

Filter (A,V)

Victim

* Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0OS, SpeakUp, StopIt, TVA..

* Denial of Edge Service (DoES)

— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

New Threat: Denial of Network
Service (DoNS)

* Bots can collude to send packet floods
» Incapable of identifying attack traffic

DoS

DoS

Victim
Denial of Edge
Service (DoES)

| Victim
Denial of Edge
Service (DoES)

DoS

| Victim
Denial of Edge
Service (DoES)

Denial of Network
Service (DoNS)

| Victim
Denial of Edge
Service (DoES)

Denial of Network
Service (DoNS)

N

How can we design a network
architecture that can combat both

DoES and DoNS?
\ %

Solution: NetFence

« Design principle: inside-out, network-host
joint lines of defense

1. Network controls its resource allocation
« Combating DoNS

2. End systems controls what they receive
» Combating DoES

Key Idea

1. Hierarchical,

-+

2. Secure congestion policing in the network
4

3. Coupled with network capabilities

4

Goals: Scalable, Robust, Open

Hierarchical Congestion Policing

—& &

 Scalable: no per-flow state in the core

1. Aggregate flow policing placed at edge
routers [CSFQ]

2. AS-level policing in the core
Fair queuing or rate limiting

Hiemrchical Congestion Policing

& o8

 Scalable: no per-flow state in the core

1. Aggregate flow policing placed at edge
routers [CSFQ]

2. AS-level policing in the core
Fair queuing or rate limiting

)
""-""W—

r"vﬁ .

Hierarchical Congestion Policing
Y Slow down flooding senders
)

fﬁ/_

 Scalable: no per-flow state in the core

1. Aggregate flow policing placed at edge
routers [CSFQ]

2. AS-level policing in the core
Fair queuing or rate limiting

)
__”z/_

Hierarchical Congestion Policing
Slow down flooding senders

 Scalable: no per-flow state in the core

1. Aggregate flow policing placed at edge
routers [CSFQ]

2. AS-level policing in the core
Fair queuing or rate limiting

Secure Congestion Policing

* Robust to compromised routers and hosts
— Efficient symmetric key cryptography

— Packets carry secure tokens

« Source AS authenticators [Passport NSDIO8] >
AS Accountability

« Secure congestion policing feedback

Secure Congestion Policing

 Robust to compromised routers and hosts
— Efficient symmetric key cryptography

— Packets carry secure tokens

« Source AS authenticators [Passport NSDIO8] >
AS Accountability

« Secure congestion policing feedback

Secure Congestion Policing Feedback as
Network Capabilities

* Open
— Receiver explicitly authorizes desired traffic

e Return if wants to receive
* Not, otherwise

Secure Congestion Policing Feedback as
Network Capabilities

* Open
— Receiver explicitly authorizes desired traffic

e Return if wants to receive
* Not, otherwise

Secure Congestion Policing Feedback as
Network Capabilities

* Open
— Receiver explicitly authorizes desired traffic

e Return if wants to receive
* Not, otherwise

Secure Congestion Policing Feedback as
Network Capabilities

* Open
— Receiver explicitly authorizes desired traffic

e Return if wants to receive
* Not, otherwise

Now the Detalils...

How does NetFence Work?

* A sender sends two types of packets
Request Regular

[|

How does NetFence Work?

* A sender sends two types of packets

Request Regular
L] 4

NetFence Header

How does NetFence Work?

* A sender sends two types of packets

Request Regular
L] 4

NetFence Header

How does NetFence Work?

* A sender sends two types of packets
Request Regular

L] W4
e [e

NetFence Header

nop mg\n

No attack | | Attack]

How does NetFence Work?

* A sender sends two types of packets
Request Regular

L] W4
e [e

NetFence Header

nop mg\n

No attack | | Attack]

How does NetFence Work?

* A sender sends two types of packets
Request Regular

L] W4
e[e

NetFence Header

nop mg\n

No attack | | Attack]

How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—now 2> ts (timestamp), null = link, nop >
mode

— =7 = MACW(src, dst, ts, null, nop)

How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—now 2> ts (timestamp), null = link, nop >
mode

— =7 = MACM(src, dst, ts, null, nop)

How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—now 2> ts (timestamp), null = link, nop >
mode

— =7 = MACM(src, dst, ts, null, nop)

How does NetFence Work?

A sender first sends a request packet

» Its access router stamps nop

—now 2> ts (timestamp), null = link, nop >
mode

— =7 = MACM(src, dst, ts, null, nop)

How does NetFence Work?

| =
., 2 ‘ L
@ﬂ

A time-varying secret key

A sender first sends a request packet

* Its access router stamps

—now 2> ts (timestamp), null = link, nop >
mode

— =7 = MACM(src, dst, ts, null, nop)

How does NetFence Work?

L=l

» A router under attack replaces nop with L¥
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

L=l

» A router under attack replaces nop with L¥
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

L=l

o _se\ed ¢

» A router under attack replaces nop with L¥
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

LYl

g _oeroa ¢

» A router under attack replaces nop with L¥
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

Nira
#\ R
& &

» A router under attack replaces nop with L¥
— All traffic
— Signal congestion to access router
— L= link, ¥ 2 act, mon = mode
- 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)
— No downstream overwrite

How does NetFence Work?

LR

A shared time-varying secret key

via distributed Diffie-Hellman via BGP [Passport]
» A router under attack replaces nop with L¥

— All traffic

— Signal congestion to access router

— L= link, ¥ 2 act, mon = mode

— 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)

— No downstream overwrite

How does NetFence Work?

L
A\

A shared time-varying secret key

via distributed Diffie-Hellman via BGP [Passport]
» A router under attack replaces nop with L¥

— All traffic

— Signal congestion to access router

— L= link, ¥ 2 act, mon = mode

— 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)

— No downstream overwrite

.

How does NetFence Work?

L
A\

A shared time-varying secret key

via distributed Diffie-Hellman via BGP [Passport]
» A router under attack replaces nop with L¥

— All traffic

— Signal congestion to access router

— L= link, ¥ 2 act, mon = mode

— 3¢ = MAG(src, dst, ts, L, mon, ¥, —¢)

— No downstream overwrite

.

How does NetFence Work?

L&

o8 o

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

&

Rﬁ
(®
%

&

R

How does NetFence Work?

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

How does NetFence Work?

o8 o

L&

&

Rﬁ
(®
%

&

R

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

How does NetFence Work?

o8 o

L&

&

Rﬁ
(®
%

&

R

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

How does NetFence Work?

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

How does NetFence Work?
4
o od

* A receiver use the feedback as capabilities

 Sender sends reqgular packets that carry
the congestion policing feedback
— Could be when there is no attack

— Can't send if receiving no feedback from
receiver

Rﬁ
(®
%

&

R

How does NetFence Work?

&
« Access router validates feedback
« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

« Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

4
)

g /)

P

Rﬁﬁ

How does NetFence Work?

&
« Access router validates feedback
« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

« Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

4
)

g /)

P

Rﬁﬁ

How does NetFence Work?
(src, L)
S Irgs

& &
« Access router validates feedback
« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

« Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

Q-

How does NetFence Work?

(src, L)

& &
« Access router validates feedback
« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

« Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

/";A'\
[l
) —
\
L
\.

P

Q-

How does NetFence Work?

\=-/ (src, L)
(1]

S eve g e
&

« Access router validates feedback

« Starts congestion policing

— One leaky bucket per (src, L) limits sending rate
— Not distinguish legitimate/malicious senders

« Resets LN
—how = ts,* = act
— t¢= MACy (src, dst, 1s, L, mon, 1)

/";A'\
T .\
) —
\
L
\.

P

Rﬁﬁ

How does NetFence Work?

How does NetFence Work?

How does NetFence Work?

» Establishes a congestion policing loop

— Bottleneck router signals
- If congested, L* > LV
e Otherwise, L1

— Access router polices

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

» Establishes a congestion policing loop

— Bottleneck router signals
- If congested, L* > LV
e Otherwise, L1

— Access router polices

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

» Establishes a congestion policing loop

— Bottleneck router signals
- If congested, L* > LV
e Otherwise, L1

— Access router polices

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

» Establishes a congestion policing loop

— Bottleneck router signals
- If congested, L* > LV
e Otherwise, L1

— Access router polices

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

» Establishes a congestion policing loop
— Bottleneck router signals
- If congested, L* > LY
e Otherwise, L1 /M
— Access router polices L LY

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency

How does NetFence Work?

* Bottleneck router

1. Detect attack to start a policing cycle
Loss or load based

2. Signal congestion within a cycle
Random Early Detection (RED)

Recap: Why It Works

1. Secret keys to secure congestion policing
feedback

2. Periodic AIMD based on secure congestion
police feedback

ANV

L LY

3. Secure congestion feedback as network
capabilities

Properties

* Provable fairness

— Denial of Service > Predictable Delay of
Service

Theorem: Given & good and B bad senders sharing
a bottleneck link of capacity €, regardless of the
attack strategies, any good sender g with

sufficient demand eventually obtains a fair share

v, 0C
G+B

where pz1 andV, is a transport efficiency factor.

Properties

* Provable fairness

— Denial of Service > Predictable Delay of
Service

Theorem: Given & good and B bad senders sharing
a bottleneck link of capacity €, regardless of the
attack strategies, any good sender g with

sufficient demand eventually obtains a fair share

v, 0C
G

where pz1 andV, is a transport efficiency factor.

Properties

* Provable fairness

— Denial of Service > Predictable Delay of
Service

Theorem: Given & good and B bad senders sharing
a bottleneck link of capacity €, regardless of the
attack strategies, any good sender g with

sufficient demand eventually obtains a fair share

v, 0C
G+B

where pz1 andV, is a transport efficiency factor.

Now the Trickier Stuff

More Challenges

« A broad range of attacks
— Flood request packets (with no feedback)
— Hide LV
— Evade attack detection
— On/Off

« Multiple bottlenecks

* Practical constraints
— Low overhead
— Gradual deployment
— Incentive-compatible adoption

More Challenges

« A broad range of attacks
— Flood request packets (with no feedback)
— Hide LV
— Evade attack detection
— On/Off

« Multiple bottlenecks

* Practical constraints
— Low overhead
— Gradual deployment
— Incentive-compatible adoption

Limiting Request Packet Floods

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

. ¥

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

L 2k—1
k 1

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

_2k—1
k T} k1]

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

_2k—1
k T} k1]

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

Limiting Request Packet Floods

_ (& (2R

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

1. Eventual success
2. Efficient: waiting replaces proof of work

Making hiding LY ineffective

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

Bottleneck
Router

1:1 1:2 1:2 + 2 Ictrl

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

1:1 1:2 1:2 + 2 Ictrl

Bottleneck
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

1:1 1:2 1:2 + 2 Ictrl

Bottleneck
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

t t L+2lw Bottleneck
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

t t L+2lw Bottleneck
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

N
Ll

Bottleneck
Router

1:1 1:2 1:2 + 2 IctrI

e e ctrl Access
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

N
Ll

Bottleneck
Router

Access
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

N
Ll

Bottleneck
Router

Access
Router

* Robust signaling rate increase with L*
1. Treating the absence of L* as LV

2. Stamping no L™ for sufficiently long after
congestion ends

Making hiding LY ineffective

N
Ll

Bottleneck
Router

Access
Router

* Robust signaling rate increase with L*
1. Treating the absence of L as LV

2. Stamping no L* for sufficiently long after
congestion ends

Making hiding L¥ ineffective

_ S
rd

t t L+2lw Bottleneck
Router

Access
Router

* Robust signaling rate increase with L*
1. Treating the absence of L as LV

2. Stamping no L* for sufficiently long after
congestion ends

Making hiding L¥ ineffective

_ S
rd

t t L+2lw Bottleneck

Router
-

t, Tt

ctrl Access
Router

* Robust signaling rate increase with L*
1. Treating the absence of L as LV

2. Stamping no L* for sufficiently long after
congestion ends

Making hiding LY ineffective

_ S
rd

t t L+2lw Bottleneck

Router
-

te te+ Ictrl Access
| J

Router
|

* Robust signaling rate increase with L*
1. Treating the absence of L as LV

2. Stamping no L* for sufficiently long after
congestion ends

Making hiding L¥ ineffective

_ S
rd

t +*2la Bottleneck
router
fe et Lot Access
\ ’ Router
I
° ROl: > Te+Ic‘rr'l < TZ + 2]:c’rr'l “Th L'T’
1 T =>Asender can't present LT
> S.-) Rate limit is reduced ~ong affer

congestion ends

Performance

Implementation

« A software implementation in Linux
—XORP and Click
—AES-128 as the MAC function

* DeterlLab experiments
—Dual-core Intel Xeon 3GHz CPUs
—26B memory

Implementation

« A software implementation in Linux
—XORP and Click
—AES-128 as the MAC function

. DeterlLab Encrypting the Internet!

—Dual-core Ir'n‘el Xeon 3GHz CPUs
—26B memory

Implementation

« A software implementation in Linux
—XORP and Click
—AES-128 as the MAC function

* DeterlLab experiments
—Dual-core Intel Xeon 3GHz CPUs
—26B memory

Processing overhead

Packet Access Bottleneck
type router router

No Attack Request 546 ns/pkt 0
Regular 781 ns/pkt 0

Attack Request 546 ns/pkt 492 ns/pkt
Regular 1267 ns/pkt 554 ns/pkt

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request ~ 546 ns/pkt

Regular 781 ns/pkt
Attack Request 546 ns/pkt

Regular 1267 ns/pkt 554 ns/pkt

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request 546 ns/pkt “
Regular 781 ns/pkt :
Attack Request 546 ns/pkt

492 ns/pkt
54 ns/pk

Regular 1267 ns/pkt

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request 546 ns/pkt “
Regular 781 ns/pkt s
Attack Request 546 ns/pkt (492 ns/pkt
Regular 1267 ns/pkt Q54 ns/pk

One AES
computation
Tput ~ 2mpps

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request (546 ns/pkt) “
Regular 781 ns/pkt s
Attack Request 546 ns/pkt | (492 ns/pkt
Regular | 1267 ns/pkt) \Q54 ns/pK

One AES
computation
Tput ~ 2mpps

Processing overhead

Packet Access
type router

Bottleneck
routgf

No Attack Request (546 ns/pkt

Attack

Regular 781 ns/pkt
Request 546 ns/pkt

Regular \ 1267 ns/pki;

492 ns/pkt
54 ns/pk

< 3AES computation.
Parallelizable

One AES
computation
Tput ~ 2mpps

Processing overhead

Packet Access Bottleneck
type router router
No Attack Request (546 ns/pkt

492 ns/pkt
54 ns/pk

Regular 781 ns/pkt
Attack Request 546 ns/pkt

Regular \ 1267 ns/pki;

< 3AES computation. One AES

Parallelizable computation
Tput ~ 2mpps

NetFence is suitable for high-speed
implementation

Header overhead

1xxx: request packet
Oxoex: regular packet
00xx: regular packet w/ nop feedback
0lxx: regular packet w/ mon feedback
xxx1: w/ returned feedback

—

Common VER(4) [TYPE(4)] PROTO(8) [PRIORITY(8) FLAGS(8)
Header TIMESTAMP (32)
nop
Feedback Common Header (64)
LINK-ID (32)
MAC (32)
mon Common Header (64)
Feedback
LINK-ID (32)
MAC (32)
TOKEN-NOP (32)
Returned
MAC reurn (32)
Feedback
May be omitted{ LINK-ID,e1urn (32)
FLAGS field: Lxooorexx: the action is decr

x1xooxx: the returned action is decr
xxxxx1xx: LINK-IDreturn is present
w0ocxYY: YY is the timestamp of the returned feedback

Header overhead

1xxx: request packet

Oxoex: regular packet

00xx: regular packet w/ nop feedback
0lxx: regular packet w/ mon feedback
xxx1: w/ returned feedback

—N—
Common VER(4) [TYPE(4)] PROTO(8) [PRIORITY(8) FLAGS(8)
Header TIMESTAMP (32)
nop
Feedback Common Header (64)

LINK-ID (32)
MAC (32)

Header overhead: 20 - 28 bytes

LINK-ID (32)
MAC (32)
TOKEN-NOP (32)

Returned
MAC e (32)
Feedback
May be omitted{ LINK-ID,e1urn (32)
FLAGS field: 1xxooexx: the action is decr

x1xooxx: the returned action is decr
xxxxx1xx: LINK-IDreturn is present
xoooxxYY: YY is the timestamp of the returned feedback

Simulations

 Extensive ns-2 simulations

« Systems compared: more state in core
— Per-sender Fair Queuing (FQ)
— TVA+: capability + per-sender/receiver FQ
— StopIt: filter + per-sender FQ

NetFence
« Enables receivers to suppress unwanted traffic
» Effectively polices malicious flows

=> A robust and scalable DoS solution

A Subset of Results

Expr 1: DoES Attacks

AS, 0 < Victim

10Gbps

 Tn each source AS
— 1 user sends a 20KB file to a victim via TCP

— 99 attackers each send 1Mbps UDP traffic
to the victim

NetFence Limits DoES

[
-

— FQ

z 8 NetFence

2 TVA+

i 6 Stoplt

% 4

=

e T — e R — +
2 0 l 1 1 J

- 25K 50K 100K 200K

Number of Simulated Senders

* All fransfer finishes despite attackers >> users
* No per-sender queues

NetFence Limits DoES

[
-

F S—
2 TVA+ acceptable
i 6 Stoplt
S 4
=
e T — e R — +
2 0 l 1 1 J
- 25K 50K 100K 200K

Number of Simulated Senders

* All fransfer finishes despite attackers >> users
* No per-sender queues

Expr 2: DoNS Attacks

: 10Gbps :

* Ineach source AS
— 25% legitimate users and 75% attackers

 Tn each destination AS

— One legitimate receiver or one colluding
attacker

NetFence Limits DoNS

o 1 A | | |
52 0.8
2 06 |
"on . NetFence —+
= 0.4 FQ
< 0.2 Stoplt
0 - TVA+ | | |
25K 50K 100K 200K

Number of Simulated Senders

» Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

g 7 7 ’ | |
< 0.8 .
5 06 | NetFence provides
o, Y- .
"on . NetFence —+ fairness
= 04 FQ
< 0.2 Stoplt
X TVA+ | | |
25K 50K 100K 200K

Number of Simulated Senders

» Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

o 1 A | | |
52 0.8
2 06 |
"on . NetFence —+
= 0.4 FQ
< 0.2 Stoplt
0 - TVA+ | | |
25K 50K 100K 200K

Number of Simulated Senders

» Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

1+ | | |
o !
S 08 Per-receiver queuing. Topology
S 06 | dependent performance.
(- .
"o . NetFence —+
= 0.4
2 FQ
= 02 r Stoplt
0 - TVA+ | | |
25K 50K 100K 200K

Number of Simulated Senders

» Throughput ratio = avg(user)/avg(attacker)

NetFence Limits DoNS

< 1 F = YL

L

<

S 0.8

S 0.6 |

= 04 NetFence —+

o Y FQ

—

2 02 Stoplt

- 0 | | - TVA+ |
25K S0K 100K 200K

Number of Simulated Senders

* Fairness index among legitimate users

(Z X;)Z/HZ:Xi2

NetFence Limits DoNS

< 1 F = |

QL

-

S 08 ¢t

S 0.6 | .

g NetFence provides NetFence -

o 041 fairness FQ

2 02 Stoplt

> L | TVA+ <
25K 50K 100K 200K

Number of Simulated Senders

* Fairness index among legitimate users

(Z X;)Z/nZXiZ

Conclusion

Victim

 NetFence

— First comprehensive solution combating DoES
and DoNS attacks scalably

— Design principle: inside-out, network-host
joint lines of defense

—Goals: Scalable, robust, and open

— Key idea: Hierarchical, secure congestion
policing coupled with network capabilities

Thank you!

* Questions
— xwy@cs.duke.edu
— Xinl@cs.duke.edu
— Xia_yong@nec.cn

mailto:xwy@cs.duke.edu
mailto:xwy@cs.duke.edu
mailto:xinl@cs.duke.edu
mailto:xia_yong@nec.cn

