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 Distributed attacks: many bots
send packet floods to exhaust
shared resources

— Bandwidth, memory, or CPU
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Combating DoS is Difficult

A fundamental architecture problem

1. Open: Any to any communication, and
new applications

2. Robust: Non-disrupted communications
despite compromised hosts and routers

* DoS defense must be built inside out
— Rethinking the Internet architecture



Previous Work: Receivers as Victims

* Much work: AIP, AITF, CenterTrack, dFence, Defense-by-
Offense, FastPass, Flow-Cookies, Kill-a-Bot, LazySusan, Mayday,
OverDoSe, PacketSymmetry, Phalanx, Pushback, Portcullis, STFF,
S0OS, SpeakUp, StopIt, TVA..

* Denial of Edge Service (DoES)

— Enable receivers to suppress unwanted traffic
— Network filters, network capabilities
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How can we design a network
architecture that can combat both

DoES and DoNS?
\ %




Solution: NetFence

« Design principle: inside-out, network-host
joint lines of defense

1. Network controls its resource allocation
« Combating DoNS

2. End systems controls what they receive
» Combating DoES




Key Idea

1. Hierarchical,

-+

2. Secure congestion policing in the network
4

3. Coupled with network capabilities

4

Goals: Scalable, Robust, Open
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* Open
— Receiver explicitly authorizes desired traffic

e Return if wants to receive
* Not, otherwise
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A sender first sends a request packet
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How does NetFence Work?

» Establishes a congestion policing loop
— Bottleneck router signals
- If congested, L* > LY
e Otherwise, L1 /M
— Access router polices L LY

* Periodic Additive Increase Multiplicative Decrease
(AIMD, TCP-like) for fairness and efficiency




How does NetFence Work?

* Bottleneck router

1. Detect attack to start a policing cycle
Loss or load based

2. Signal congestion within a cycle
Random Early Detection (RED)



Recap: Why It Works

1. Secret keys to secure congestion policing
feedback

2. Periodic AIMD based on secure congestion
police feedback

ANV

L LY

3. Secure congestion feedback as network
capabilities



Properties

* Provable fairness

— Denial of Service > Predictable Delay of
Service

Theorem: Given & good and B bad senders sharing
a bottleneck link of capacity €, regardless of the
attack strategies, any good sender g with

sufficient demand eventually obtains a fair share

v, 0C
G+B

where pz1 andV, is a transport efficiency factor.
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— Gradual deployment
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Limiting Request Packet Floods

_ (& (2R

1. Separate request packet channel
2. Per-sender request packet policing
3. Priority-based backoff

Emulate computational puzzles

1. Eventual success
2. Efficient: waiting replaces proof of work
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Packet Access Bottleneck
type router router
No Attack Request (546 ns/pkt

492 ns/pkt
54 ns/pk

Regular 781 ns/pkt
Attack Request 546 ns/pkt

Regular \ 1267 ns/pki;

< 3AES computation.  One AES

Parallelizable computation
Tput ~ 2mpps

NetFence is suitable for high-speed
implementation



Header overhead

1xxx: request packet
Oxoex: regular packet
00xx: regular packet w/ nop feedback
0lxx: regular packet w/ mon feedback
xxx1: w/ returned feedback

—

Common VER(4) [TYPE(4)] PROTO(8) [PRIORITY(8) FLAGS(8)
Header TIMESTAMP (32)
nop
Feedback Common Header (64)
LINK-ID (32)
MAC (32)
mon Common Header (64)
Feedback
LINK-ID (32)
MAC (32)
TOKEN-NOP (32)
Returned
MAC reurn  (32)
Feedback
May be omitted{ LINK-ID,e1urn (32)
FLAGS field: Lxooorexx: the action is decr

x1xooxx: the returned action is decr
xxxxx1xx: LINK-IDreturn is present
w0ocxYY: YY is the timestamp of the returned feedback



Header overhead

1xxx: request packet

Oxoex: regular packet

00xx: regular packet w/ nop feedback
0lxx: regular packet w/ mon feedback
xxx1: w/ returned feedback

—N—
Common VER(4) [TYPE(4)] PROTO(8) [PRIORITY(8) FLAGS(8)
Header TIMESTAMP (32)
nop
Feedback Common Header (64)

LINK-ID (32)
MAC (32)

Header overhead: 20 - 28 bytes

LINK-ID (32)
MAC (32)
TOKEN-NOP (32)

Returned
MAC e (32)
Feedback
May be omitted{ LINK-ID,e1urn (32)
FLAGS field: 1xxooexx: the action is decr

x1xooxx: the returned action is decr
xxxxx1xx: LINK-IDreturn is present
xoooxxYY: YY is the timestamp of the returned feedback



Simulations

 Extensive ns-2 simulations

« Systems compared: more state in core
— Per-sender Fair Queuing (FQ)
— TVA+: capability + per-sender/receiver FQ
— StopIt: filter + per-sender FQ

NetFence
« Enables receivers to suppress unwanted traffic
» Effectively polices malicious flows

=> A robust and scalable DoS solution



A Subset of Results



Expr 1: DoES Attacks

AS, 0 < Victim

10Gbps

 Tn each source AS
— 1 user sends a 20KB file to a victim via TCP

— 99 attackers each send 1Mbps UDP traffic
to the victim



NetFence Limits DoES

[
-

— FQ

z 8 NetFence

2 TVA+

i 6 Stoplt

% 4

=

e T — e R — +
2 0 l 1 1 J

- 25K 50K 100K 200K

Number of Simulated Senders

* All fransfer finishes despite attackers >> users
* No per-sender queues
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Expr 2: DoNS Attacks

: 10Gbps :

* Ineach source AS
— 25% legitimate users and 75% attackers

 Tn each destination AS

— One legitimate receiver or one colluding
attacker



NetFence Limits DoNS
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» Throughput ratio = avg(user)/avg(attacker)
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NetFence Limits DoNS
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NetFence Limits DoNS
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NetFence Limits DoNS
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Conclusion

Victim

 NetFence

— First comprehensive solution combating DoES
and DoNS attacks scalably

— Design principle: inside-out, network-host
joint lines of defense

—Goals: Scalable, robust, and open

— Key idea: Hierarchical, secure congestion
policing coupled with network capabilities



Thank you!

* Questions
— xwy@cs.duke.edu
— Xinl@cs.duke.edu
— Xia_yong@nec.cn
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