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(a) Mean BW 100 Mbps
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(b) Mean BW 500 Mbps
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(c) Mean BW 900 Mbps

Figure 13: Percentage of rejected tenant requests with varying datacenter load and varying mean tenant
bandwidth requirements. At load>20%, virtual networks allow more requests to be accepted.

scheme in which a request is rejected if it cannot be im-
mediately allocated. For today’s setup, requests are rejected
if there are not enough available VMs when a request is
submitted. For our virtual networks, instead, even if enough
VMs are available, a request can still be rejected if the band-
width constraints cannot be satisfied. We simulate the ar-
rival and execution of 10,000 tenant requests with varying
mean bandwidth requirements for the tenant jobs.
Rejected requests. Figure 13 shows that only at very low
loads, Baseline setup is comparable to virtual abstractions
in terms of rejected requests, despite the fact that virtual ab-
stractions explicitly reserve the bandwidth requested by ten-
ants. At low loads, requests arrive far apart in time and
thus, they can always be allocated even though the Base-
line setup prolongs job completion. As the load increases,
Baseline rejects far more requests. For instance, at 70% load
(Amazon EC2’s operational load [3]) and bandwidth of 500
Mbps, 31% of Baseline requests are rejected as compared to
15% of VC requests and only 5% of VOC-10 requests.
Tenant costs and provider revenue. Today’s cloud
providers charge tenants based on the time they occupy their
VMs. Assuming a price of k dollars per-VM per unit time,
a tenant using N VMs for time T pays kNT dollars. This
implies that while intra-cloud network communication is not
explicitly charged for, it is not free since poor network per-
formance can prolong tenant jobs and hence, increase their
costs. Figure 12 shows the increase in tenant job completion
times and the corresponding increase in tenant costs (upper
X-axis) today. For all load values, many jobs finish later and
cost more than expected– the cost for 25% tenants is more
than 2.3 times their ideal cost had the network performance
been sufficient (more than 9.2 times for 5% of the tenants).

The fraction of requests that are accepted and the costs
for accepted requests govern the provider revenue. Figure 14
shows the provider revenue when tenants use virtual net-
works relative to Baseline revenue. At low load, the pro-
vider revenue is reduced since the use of virtual networks
ensures that tenant jobs finish faster and they pay signifi-
cantly less. However, as the load increases, the provider rev-
enue increases since virtual network allow more requests to
be accepted, even though individual tenants pay less than
today. For efficiency, providers like Amazon operate their
datacenters at an occupancy of 70-80% [3]. Hence, for prac-
tical load values, virtual networks not only allow tenants to
lower their costs, but also increase provider revenue! Fur-
ther, this estimation ignores the extra tenants that may be
attracted by the guaranteed performance and reduced costs.
Charging for bandwidth. Providing tenants with vir-
tual networks opens the door for explicitly charging for net-
work bandwidth. This represents a more fair charging model
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Figure 14: Provider rev-
enue with virtual net-
work abstractions. Mean
BW = 500Mbps.
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Figure 15: Relative ten-
ant costs based on band-
width charging model
while maintaining pro-
vider revenue neutrality.

since a tenant should pay more for a virtual cluster with
500Mbps than one with 100Mbps. Given the lack of a refer-
ence charging model, we use a simple model to explore the
economic benefits that the use of virtual networks would
provide. Apart from paying for VM occupancy (kv), ten-
ants also pay a bandwidth charge of kb

$

bw*unit-time
. Hence,

a tenant using a virtual cluster <N, B> for time T pays
NT (kv + kbB).

Such a charging model presents an opportunity to redress
the variability in provider revenue observed above. To this
effect, we performed the following analysis. We used current
Amazon EC2 prices to determine kv and kb for each vir-
tual network abstraction so as to maintain provider revenue
neutrality, i.e., the provider earns the same revenue as to-
day.4 We then determine the ratio of a tenant’s cost with the
new charging model to the status quo cost. The median ten-
ant cost is shown in Figure 15. We find that except at low
loads, virtual networks can ensure that providers stay rev-
enue neutral and tenants pay significantly less than Baseline
while still getting guaranteed performance. For instance, with
a mean bandwidth demand of 500 Mbps, Figure 15 shows
that tenants with virtual clusters pay 68% of Baseline at
moderate load and 37% of Baseline at high load (31% and
25% respectively with VOC-10).

The charging model can be generalized from linear band-
width costs to NT (kv + kbf(B)), where f is a bandwidth

4For Amazon EC2, small VMs cost 0.085$/hr. Sample esti-
mated prices in our experiments are at 0.04$/hr for kv , and
0.00016$ /GB for kb.
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charging function. We repeated the analysis with other band-

width functions (B
3

2 , B2), obtaining similar results.

5.4 Implementation and Deployment
Our Oktopus implementation follows the description in

Section 4. The NM maintains reservations across the net-
work and allocates tenant requests in an on-line fashion. The
enforcement module on individual physical machines imple-
ments the rate computation and rate limiting functionality
(Section 4.3). For each tenant, one of the tenant’s VMs (and
the corresponding enforcement module) acts as a controller
and calculates the rate limits. Enforcement modules then
use the Windows Traffic Control API [4] to enforce local
rate limits on individual machines.
Scalability. To evaluate the scalability of the NM, we
measured the time to allocate tenant requests on a data-
center with 105 endhosts. We used a Dell Precision T3500
with a quad-core Intel Xeon 5520 2.27 GHz processor and
4 GB RAM. Over 105 requests, the median allocation time
is 0.35ms with a 99th percentile of 508ms. Note that this
only needs to be run when a tenant is admitted, and hence,
the NM can scale to large datacenters.

The rate computation overhead depends on the tenant’s
communication pattern. Even for a tenant with 1000 VMs
(two orders of magnitude more than mean tenant size to-
day [31]) and a worst-case scenario where all VMs commu-
nicate with all other VMs, the computation takes 395ms
at the 99th percentile. With a typical communication pat-
tern [20], 99th percentile computation time is 84ms. To bal-
ance the trade-off between accuracy and responsiveness of
enforcement and the communication overhead, our imple-
mentation recomputes rates every 2 seconds. For a tenant
with 1000 VMs and worst-case all-to-all communication be-
tween the VMs, the controller traffic is 12 Mbps (∼1 Mbps
with a typical communication pattern). Hence, the enforce-
ment module imposes low overhead.
Deployment. We deployed Oktopus on a testbed with 25
endhosts arranged in five racks. Each rack has a Top-of-Rack
(ToR) switch, which is connected to a root switch. Each in-
terface is 1 Gbps. Hence, the testbed has a two-tier tree
topology with a physical oversubscription of 5:1. All end-
hosts are Dell Precision T3500 servers with a quad core Intel
Xeon 2.27GHz processor and 4GB RAM, running Windows
Server 2008 R2. Given our focus on quantifying the bene-
fits of Oktopus abstractions, instead of allocating VMs to
tenants, we simply allow their jobs to run on the host OS.
However, we retain the limit of 4 jobs per endhost, resulting
in a total of 100 VM or job slots.

We repeat the experiments from Section 5.2 on the testbed
and determine the completion time for a batch of 1000 ten-
ant jobs (mean tenant size N is scaled down to 9). As before,
each tenant job has a compute time (but no actual computa-
tion) and a set of TCP flows associated with it. Figure 16(a)
shows that virtual clusters reduce completion time by 44%
as compared to Baseline (57% for VOC-10). We repeated
the experiment with all endhosts connected to one switch
(hence, no physical oversubscription). The bars on the right
in Figure 16(a) show that virtual clusters match the Base-
line completion time while VOC-10 offers a 9% reduction.
Since the scale of these experiments is smaller (smaller topol-
ogy and tenants), virtual networks do not have much oppor-
tunity to improve performance and the reduction in com-
pletion time is less significant. However, tenant jobs still
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Figure 16: Testbed experiments show that virtual
networks provide performance gains and validate
our simulator.

get guaranteed network performance and hence, predictable
completion times.
Cross-validation. We replayed the same job stream in
our simulator and for each tenant request, we determined
the ratio of the completion time on the testbed and the
simulator. Figure 16(b) shows that for the vast majority
of jobs, the completion time in the simulator matches that
on the testbed. Some divergence results from the fact that
network flows naturally last longer in the live testbed than
in the simulator which optimally estimates the time flows
take. We note that jobs that last longer in the testbed than
the simulator occur more often with Baseline than with vir-
tual networks. This is because the Baseline setup results in
more network contention which, in turn, causes TCP to not
fully utilize its fair share. Overall, the fact that the same
workload yields similar performance in the testbed as in the
simulator validates our simulation setup and strengthens our
confidence in the results presented.

6. RELATED WORK
The increasing prominence of multi-tenant datacenters

has prompted interest in network virtualization. Seawall [31]
and NetShare [22] share the network bandwidth among ten-
ants based on weights. The resulting proportional bandwidth
distribution leads to efficient multiplexing of the underlying
infrastructure; yet, in contrast to Oktopus, tenant perfor-
mance still depends on other tenants. SecondNet [15] pro-
vides pairwise bandwidth guarantees where tenant requests
can be characterized as <N, [Bij ]N×N>; [Bij ]N×N reflects
the complete pairwise bandwidth demand matrix between
VMs. With Oktopus, we propose and evaluate more flexible
virtual topologies that balance the trade-off between tenant
demands and provider flexibility.

Duffield et al. [12] introduced the hose model for wide-
area VPNs. The hose model is akin to the virtual cluster
abstraction; however, the corresponding allocation problem
is different since the physical machines are fixed in the VPN
setting while we need to choose the machines. Other alloca-
tion techniques like simulated annealing and mixed integer
programming have been explored as part of testbed map-
ping [29] and virtual network embedding [37]. These efforts
focus on allocation of arbitrary (or, more general) virtual
topologies on physical networks which hampers their scala-
bility and restricts them to small physical networks (O(102)
machines).
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7. CONCLUDING REMARKS
This paper presents virtual network abstractions that al-

low tenants to expose their network requirements. This en-
ables a symbiotic relationship between tenants and providers;
tenants get a predictable environment in shared settings
while the provider can efficiently match tenant demands to
the underlying infrastructure without muddling their inter-
face. Our experience with Oktopus shows that the abstrac-
tions are practical, can be efficiently implemented and pro-
vide significant benefits.

Our abstractions, while emulating the physical networks
used in today’s enterprises, focus on a specific metric– inter-
VM network bandwidth. Tenants may be interested in other
performance metrics, or even non-performance metrics like
reliability. Examples include bandwidth to the storage ser-
vice, latency between VMs and failure resiliency of the paths
between VMs. In this context, virtual network abstractions
can provide a succinct means of information exchange be-
tween tenants and providers.

Another interesting aspect of virtual networks is cloud
pricing. Our experiments show how tenants can implicitly
be charged for their internal traffic. By offering bounded
network resources to tenants, we allow for explicit and fairer
bandwidth charging. More generally, charging tenants based
on the characteristics of their virtual networks eliminates
hidden costs and removes a key hindrance to cloud adop-
tion. This, in effect, could pave the way for multi-tenant
datacenters where tenants can pick the trade-off between
the performance of their applications and their cost.
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