










 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 

 0.001  0.01  0.1  1  10

R
el

at
iv

e 
M

P
T

C
P

 T
hr

ou
gh

pu
t

Connections per host

MPTCP on FatTree
MPTCP on VL2

MPTCP on VL2-40Gb/s
TCP

(a) Permutation, all

 0.5

 1

 1.5

 2

 2.5

 3

 

 0.001  0.01  0.1  1  10

R
el

at
iv

e 
M

P
T

C
P

 T
hr

ou
gh

pu
t

Connections per host

MPTCP on FatTree
MPTCP on VL2

MPTCP on VL2-40Gb/s
TCP

(b) Permutation, slowest 25%

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 

 0.001  0.01  0.1  1  10

R
el

at
iv

e 
M

P
T

C
P

 T
hr

ou
gh

pu
t

Connections per host

MPTCP on FatTree
MPTCP on VL2

MPTCP on VL2-40Gb/s
TCP

(c) Random, all

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0.001  0.01  0.1  1  10

R
el

at
iv

e 
M

P
T

C
P

 T
hr

ou
gh

pu
t

Connections per host

MPTCP on FatTree
MPTCP on VL2

MPTCP on VL2-40Gb/s
TCP

(d) Random, slowest 25%

Fig. 8: Relative MPTCP performance as a function of load when running Permutation or Random traffic matrices for differing topolo-
gies. Mean performance and the performance of the slowest quarter of flows are shown.

minimum load level to fill a 4:1 oversubscribed topology. The av-
erage throughput improvement depends on the topology used; the
maximum for oversubscribed Fat-Tree is 65%, while VL2-40 and
VL2 improve by 15% and 11% respectively.

It is also instructive to look at the speeds of the slower flows in
these experiments, as these dictate when jobs finish. The average
improvement again depends on topology and load, but the gains are
bigger: MPTCP improves throughput for the slowest flows by 1.5x
to 3x for medium to moderately high load levels.

There is one exception for a highly loaded VL2 where the slower
flows have lower throughput with MPTCP. On closer inspection,
in turns out that the slow flows have very small windows on each
of their subflows, which leads to repeated timeouts and reduced
throughput for those flows; this is despite total network throughput
being higher for MPTCP compared to TCP. For VL2-40 and Fat
Tree the same effect does not apply, as there is more heterogeneity
in the speeds of the individual subflows; at least one or a few of
these have a big enough window to avoid timeouts. A very simple
heuristic can be applied to avoid VL2 throughput degradation for
small flows: if the stack has many subflows with small windows, it
will close some of them to reduce until the remaining windows are
big enough to avoid timeouts.

Irrespective of whether MPTCP is used, we believe data center
designers will be likely to attempt to engineer their networks so that
the core is neither underloaded nor overloaded. An overloaded core
is a performance bottleneck; an underloaded core costs money that
would have been better spent elsewhere. So it appears likely that
the sweet-spot for MPTCP is close to the load level for which the
data center designer would provision.

4.3.4 Influence of the Traffic Matrix
The permutation traffic matrix is useful as a baseline for compar-

ison because it is easy to reason about how much throughput should
be available from the network. With a topology that provides full
bisectional bandwidth, the load is just sufficient to fully load the
network. It is however, not terribly realistic.

A random traffic matrix chooses randomly the sources and des-
tinations, allowing traffic concentrations on access links. Because
of this, traffic flowing through the core is much less than in a per-
mutation TM for the same number of flows.

Fig. 8(c) shows average throughput improvement with MPTCP
vs. TCP in the Fat Tree, VL2 and VL2-40 4:1 oversubscribed
topologies. The results are very similar to the permutation TM, but
the relative improvements are slightly smaller; this is the effect of
access link collisions. Fig. 8(d) shows the throughput improvement
for the slowest 25% of flows; MPTCP increases their throughput on
average by 1.3 to 1.8 times, for a wide range of loads.

We ran the same experiments with full-bisection topologies. Fat-
Tree improved by maximum of 30%, while BCube improved by
150% to 300%, depending on the load level. The BCube improve-

ments come from MPTCP’s ability to simultaneously use multiple
interfaces for the same flow.

Full-bisection VL2 and VL2-40 showed no improvement, which
was puzzling. To understand this effect, say we randomly allocate
n flows to n hosts. The probability that a host sends no flow is:

p[no flow] =

„
1 − 1

n

«n

→ 1

e

The number of hosts that do not send are then n
e

; this bounds the
total throughput. In fact the throughput is lower. For example, of
the hosts that send only one flow, many of these will be received by
a host receiving more than one flow, so the sender will be unable
to send at its full speed. Numerical analysis shows that when this
is taken into account, the maximum achievable throughput by any
load-balancing algorithm with random traffic is limited by collid-
ing flows on the sending and receiving hosts to less than 1

2
of the

bisectional bandwidth.
With such a workload, none of VL2’s 10Gb/s core links is ever

saturated, so it makes no difference if TCP or MPTCP is used.

Locality of Traffic The random and permutation traffic matri-
ces provide no locality of traffic. With a full bisection topology,
it should in principle not be necessary for applications to local-
ize traffic, although as we have seen, this is only really true under
very light or heavy loads, or when multipath transport uses suffi-
ciently many paths. However, with oversubscribed topologies, ap-
plications can always get better performance if they can localize
traffic to the rack, because that part of the topology is not oversub-
scribed. MPTCP provides no performance improvement within the
rack, because such flows are limited by their link to the top-of-rack
switch. Just how good does application-based traffic localization
have to be for the advantages of MPTCP to be nullified?

We simulated a 4:1 oversubscribed FatTree and generated a ran-
dom traffic matrix, with the constraint that a fraction of the flows
were destined for a random host with the sender’s rack, while the
rest were destined for an unconstrained random host. Every host
sends one flow, so without locality this corresponds to the 1 flow-
per-host data point from Fig. 8(a) - a rather heavily loaded network.
Fig. 7 shows the aggregate throughput as locality is increased. Un-
surprisingly, as traffic moves from the oversubscribed core to the
non-oversubscribed local hosts, aggregate performance increases.
However, MPTCP continues to provide approximately the same
performance benefits until around 75% of the flows are rack-local.
Above this point the network core is lightly loaded, and all flows are
limited by the sending or receiving hosts, so MPTCP provides no
improvement. We see similar benefit with a localized permutation
traffic matrix, though the absolute throughput values are higher.

Finally, we examined many-to-one traffic patterns; there the ac-
cess links are heavily congested, no alternative paths are available,
and so MPTCP and TCP behave similarly.

271



 0

 20

 40

 60

 80

 100

 20  40  60  80  100  120

T
hr

ou
gh

pu
t (

M
b/

s)

Rank of Flow

MPTCP
EWTCP

UNCOUPLED
Packet Scatter

Single Path

Fig. 9: Individual flow throughputs
with different algorithms

 0

 0.5

 1

 1.5

 2

 0  50  100 150 200 250

Lo
ss

 R
at

e

Rank of Link

Core Links

 0  50  100

Rank of Link

Access Links

MPTCP
EWTCP

UNCOUPLED
Packet Scatter

Single Path

Fig. 10: Individual link loss rates from
Figure 9

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120

T
hr

ou
gh

pu
t (

%
)

Rank of Flow

MPTCP
EWTCP

UNCOUPLED
Packet Scatter

TCP

Fig. 11: Effects of a hot spot on the dif-
ferent algorithms

4.3.5 Influence of Congestion Control
Do we need all of MPTCP’s mechanisms to get the performance

and fairness benefits above? MPTCP establishes multiple subflows
per connection, and links the congestion control behavior of these
subflows to achieve two goals:
• It is fair to single-path TCP flows, even when multiple subflows

of a connection traverse the same bottleneck.

• It explicitly moves traffic from the more congested subflows to
the less congested subflows.

To understand what is going on, we must tease apart the mecha-
nisms. We compare MPTCP with these algorithms:

Uncoupled TCP. Each subflow behaves independently, exactly as
if an application had opened multiple TCP connections and
striped data across them. An UNCOUPLED flow will be un-
fair to regular TCP; if it has n subflows through a bottleneck,
it will achieve approximately n times the throughput of a
competing TCP.

Equally-Weighted TCP (EWTCP). Each subflow runs TCP’s ad-
ditive increase, multiplicative decrease algorithm, but the in-
crease constant is decreased depending on the number of ac-
tive subflows. An EWTCP flow will be fair to regular TCP
at a bottleneck, even if all the EWTCP subflows traverse that
bottleneck. However, it will not actively move traffic away
from congested paths.

A rather different multipath solution would be to deploy per-
packet ECMP multipath routing, spreading the packets of a single
flow across multiple paths, as opposed to per-flow ECMP which
hashes the five-tuple to maintain a consistent path for each flow.
For this to work, a single-path TCP endpoint must be modified to
avoid unintentionally treating reordering as an indicator of packet
loss. Thus we also tested:

PACKETSCATTER. The switches perform per-packet load bal-
ancing across all the available alternative paths. The TCP
sender runs a more robust fast-retransmit algorithm, but re-
tains a single congestion window as it is unaware of the mul-
tiple paths.

Fig. 9 shows the throughputs of individual connections for each
algorithm. This is a packet-level simulation with 128 nodes in
a FatTree topology, running a permutation traffic matrix of long
flows. The result sugegsts that it does not matter whether multipath
transport is performed within TCP, or at the application level, and
that the load balancing aspects of MPTCP’s linked congestion con-
trol do not greatly affect throughput. In fact the best performance is

 50  100  150  200  250  300

p(
t)

Short Flow Completion Time (ms)

MPTCP
EWTCP

UNCOUPLED
Packet Scatter

Single-path TCP

Fig. 12: The effect of short flows competing with different
multipath congestion controllers

given by PACKETSCATTER, which spreads over all possible paths,
but as we shall see, this result is fragile and only applies to over-
provisioned networks with no hot spots.

It is clear that many of the performance benefits seen so far are
the results of spreading load over many paths. Given this result,
is there any reason to deploy MPTCP, as opposed to multipath-
capable applications running over regular TCP?

To understand the differences between these algorithms, we have
to look more closely. Fig. 10 shows the loss rates for all the links
of the FatTree topology used in Fig. 9. We show core links sepa-
rately from access links because congesting the core is qualitatively
different from self-congestion at the host’s own NIC.

UNCOUPLED TCP is clearly much more aggressive than single-
path TCP, resulting in much higher packet loss rates, both in the
core and access links. Although this does not directly impact per-
formance for long-running UNCOUPLED flows, it does affect com-
peting traffic.

MPTCP, EWTCP and Single-path TCP are equally aggressive
overall, and so congest the access links equally. In the core, MPTCP
performs as expected, and moves traffic from the more congested to
the less congested paths, relieving congestion at hot spots. EWTCP
lacks this active load redistribution, so although it does not increase
loss at hot spots, it doesn’t effectively relieve it either. EWTCP is
also not as aggressive as MPTCP on the less loaded paths, so it
misses sending opportunities and gets slightly lower throughput.

With per-packet round-robin ECMP, PACKETSCATTER cannot
congest the core links; consequently the losses required to constrain
its transmit rate are concentrated on access links.

Short Flows Fig. 12 examines how the algorithms affect com-
peting short flows. The topology is the 4:1 oversubscribed Fat-
Tree; each host sends to one other host; 33% send a continuous
flow using either TCP or one of the multipath algorithms, provid-

272



ing enough traffic to congest the core. The remaining hosts send
one 70 Kbyte file on average every 200ms (poisson arrivals) using
single-path TCP (ECMP sends each via a new path), and we mea-
sure how long these flows take to complete. The averages in these
experiments are:

Algorithm Short Flow Finish Network Core
Time (mean/stdev) Utilization

SINGLE-PATH TCP 78 ±108 ms 25%
PACKETSCATTER 42 ± 63 ms 30%
EWTCP 80 ± 89 ms 57%
MPTCP 97 ± 106 ms 62%
UNCOUPLED 152 ± 158 ms 65%

It is clear that UNCOUPLED significantly hurts the short flows.
Single-path TCP fails to spread load within the core, so while many
short flows complete faster, some encounter more congestion and
finish slower. MPTCP fills the core, but isn’t overly aggressive,
having much less impact than UNCOUPLED. Compared to TCP,
MPTCP increases mean completion time by 25% but decreases
the finish time of the slowest short flows by 10%. EWTCP has less
impact on short flows than MPTCP, which should not be surpris-
ing - while it does use multiple paths, it does not load-balance as
effectively as MPTCP, failing to use capacity quickly where it is
available.

PACKETSCATTER lets short flows finish quickest, but gets very
low network utilization, close to what TCP provides. This is be-
cause long flows back off on all paths as soon as one path looks
congested, despite congestion being transient due to short flows.
MPTCP achieves almost all of the performance that UNCOUPLED

can manage, but its lower aggressiveness and better load balancing
greatly reduce impact on competing traffic.

Robustness What happens when there is a hot spot in the net-
work? We drop a single link in the core network from 1Gb/s to
100Mb/s. Such a failure is quite common: Gigabit ethernet requires
two copper pairs in a Cat-5e cable; if one RJ45 conductor fails to
seat properly, it can fall back to 100Mb/s which only requires a sin-
gle pair. Similar results would be seen if a single unresponsive flow
saturated one link (e.g. a FCoE or UDP flow).

Results, shown in Fig. 11, show that MPTCP does what it de-
signed to do, moving traffic off the hot link onto alternative paths;
other flows then move some of their traffic off these alternative
paths, and so on, so the effect of the failure is negligible. EWTCP
and UNCOUPLED do not shift traffic away from congestion, giv-
ing less throughput to the flows that pass through the bottleneck.
PACKETSCATTER behaves worst: it has no way to separate the bad
link from the good ones. It just observes a high loss rate, and backs
off. Every single connection that has any available path through the
bad link achieves about 10% of the throughput it should achieve.

Network Efficiency The example below shows another difference
between EWTCP and MPTCP, and is taken from [14]. If there are
multiple different length paths to a destination, pathological traf-
fic matrices are possible where the network resources are wasted.
MPTCP will explicitly move traffic off the paths that traverse mul-
tiple congested links, avoiding such pathologies. Such examples
do not occur in FatTree-style topologies, but they can occur with
BCube.

To illustrate the issue, consider a many-to-one traffic matrix, as
in a distributed file system read from many servers. Typically the

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

ECMP 1s 500ms100ms 10ms MTCP

T
hr

ou
gh

pu
t (

%
 o

f m
ax

)

First Fit Scheduler
Fig. 13: First-fit scheduling compared to flow ECMP and
MPTCP

distributed file systems store the data on hosts close in the network,
to allow higher throughput writes. In our experiment each host
reads from 12 other hosts, chosen to be the host’s neighbors in the
three levels in BCube(4,3). The per-host total read throughputs are:

SINGLE-PATH 297 Mb/s
EWTCP 229 Mb/s
MPTCP 272 Mb/s
PACKETSCATTER 115 Mb/s

Due to the locality, single-path TCP can saturate all three of the
host’s 100 Mb/s NICs, and achieves maximum throughput. EWTCP
uses multiple paths and long paths congest short ones. MPTCP’s
linked congestion control mechanism moves almost all of the traf-
fic onto the shortest path, avoiding paths that traverse multiple con-
gested links, and so greatly reduces the self-congestion.

PACKETSCATTER suffers particularly badly in this case. It spreads
traffic across both short and longer paths, and with this regular traf-
fic matrix it actually succeeds in equalizing the loss rate across all
paths. However, most of the traffic takes multi-hop paths using the
network very inefficiently. If we wish to take advantage of multi-
path in the cases where it benefits flows and also avoid this scenario
and that of Fig. 11, it seems inevitable that each subflow must have
its own sequence space and congestion window[11]. These choices
dictate the core design of MPTCP.

4.4 Scheduling and Dynamic Flow Arrivals
With single-path TCP is it clear that ECMP’s randomized load

balancing does not perform sufficiently well unless the topology
has been specifically tailored for it, as with VL2. Even with VL2,
MPTCP can increase fairness and performance significantly.

ECMP however is not the only single path selection algorithm;
Hedera proposes using a centralized scheduler to supplement ran-
dom load balancing, with the goal of explicitly allocating large
flows to paths. Specifically, Hedera flows start off using ECMP,
but are measured by the centralized scheduler. If, during a schedul-
ing period, a flow’s average throughput is greater than 10% of the
interface speed, it is explicitly scheduled. How well does MPTCP
compare with centralized scheduling?

This evaluation is more difficult; the performance of a scheduler
can depend on lag in flow measurement, path configuration, and
TCP’s response to path reconfiguration. Similarly the performance
of MPTCP can depend on how quickly new subflows can slowstart.

We use a 128-host FatTree running a permutation traffic ma-
trix with closed loop flow arrivals (one flow finishes, another one
starts). Flow sizes come from the VL2 dataset. We measure through-
puts for single-path TCP with ECMP, MPTCP (8 subflows), and a
centralized scheduler using the First Fit heuristic Hedera [2].2

The total throughput is shown in Fig. 13. Again, MPTCP out-
performs TCP over ECMP. Centralized scheduler performance de-
pends on how frequently it is run. In [2] it is run every 5 sec-

2First Fit is much faster than Simulated Annealing; execution speed
is essential to get benefits with centralized scheduling.

273



onds. Our results show it needs to run every 100ms to approach the
performance of MPTCP; even if it runs every 500ms there is lit-
tle benefit because in high bandwidth data center even large flows
complete in around a second.

Host-limited Flows Hedera’s flow scheduling algorithm is based
on the assumption that it only needs to schedule long-lived flows
because they contribute most of the bytes. Other flows are treated
as background noise. It also assumes that a flow it schedules onto
an unused link is capable of increasing to fill that link.

Both assumptions can be violated by flows which are end-host
limited and so cannot increase their rate. For example, network
bandwidth can exceed disk performance for many workloads. Host-
limited flows can be long lived and transfer a great deal of data, but
never exceed the scheduling threshold. These flows are ignored by
the scheduler and can collide with scheduled flows. Perhaps worse,
a host-limited flow might just exceed the threshold for scheduling,
be assigned to an empty path, and be unable to fill it, wasting capac-
ity. We ran simulations using a permutation matrix where each host
sends two flows; one is host-limited and the other is not. When the
host-limited flows have throughput just below the 10% scheduling
threshold, Hedera’s throughput drops 20%. When the same flows
are just above the threshold for scheduling it costs Hedera 17%.

Scheduling App Limited Flows
Threshold Over-Threshold Under-Threshold

5% -21% -22%
10% -17% -21%
20% -22% -23%
50% -51% -45%

The table shows the 10% threshold is a sweet spot; changing it
either caused too few flows to be scheduled, or wasted capacity
when a scheduled flow cannot expand to fill the path. In contrast,
MPTCP makes no such assumptions. It responds correctly to com-
peting host-limited flows, consistently obtaining high throughput.

5. EVOLVING TOPOLOGIES WITH MPTCP
Our previous experiments showed that only a few workloads

saturate the core of full-bisection topologies; these workloads are
somewhat artificial. To justify full-bisection topologies requires:

• There is no locality to the traffic.

• There are times when all hosts wish to send flat-out.

• There is no concentration of traffic on any access link.

In practice, none of these assumptions seem valid, so building a
topology that provides full bisectional bandwidth seems to be a
waste of money.

In section 4.3.3, we examined an oversubscribed FatTree: one
where for the same core network we connected four times as many
hosts. This seems a more likely topology, and hits a better balance
between being bottlenecked on the core and being bottlenecked on
host access links. It also takes advantage of any locality provided
by the application. For example, HDFS places two out of three
replicas in the same rack, and map jobs in MapReduce are assigned
to servers in the same rack as the data. For such topologies, MPTCP
cannot help much with the local traffic, but it does ensure the core
is used to maximal effect.

If we now take a leap and assume all hosts in the data center
support MPTCP, then we should also ask whether different topolo-
gies enabled by MPTCP would perform even better. The obvious
place to start is to consider cases where the workloads we have
examined are bottlenecked on the access links between the hosts

Fig. 14: Dual-homing in the Fat Tree Topology

and the top-of-rack (ToR) switches. These cases can only be im-
proved by adding more capacity, but moving to 10Gb/s ethernet is
expensive. With single-path TCP, there is limited benefit from ad-
ditional 1Gb/s ethernet links to the ToR switches, because a single
flow cannot utilize more than one path. MPTCP does not have this
limitation. Almost all current servers ship with dual gigabit ether-
net onboard, so an obvious solution is to dual-home hosts to ToR
switches, as shown in Fig.14. Whether to overprovision the core
is then an additional question a data center operator must consider,
based on predicted workload.

For our experiments, we wish to keep the cost of the network
constant, so we can directly compare new and existing topologies.
To do so, we impose the artificial constraint that the number of
switch ports remains constant, but that we can move ports from
one place in the topology to another3.

Consider the following two topologies:

Perfect Switch . FatTree and VL2 both try to emulate a single
huge non-blocking switch. VL2 comes closer to succeeding
than FatTree does, but a perfect switch serves as a good con-
trol experiment, giving an upper bound on what any network
core might provide using single links to the hosts.

Dual-homed FatTree (DHFT) . A full FatTree requires five switch
ports per host; one is to the host and four connect the links
between the two layers of switches. If we remove one port
per host from the core and use it to connect the second inter-
face on each server, the network requires the same number
of switch ports.

To produce a regular DHFT topology with this ratio of core-to-
access capacity, we start with a k-port FatTree topology. We leave
the upper-pod switches and aggregation switches the same, and
replace each top-of-rack switch with two 11k/12 port switches.
With FatTree, each ToR switch had k/2 uplinks and connected k/2
hosts. With DHFT, each pair of DHFT ToR switches still has k/2
uplinks, but have 4k/3 downlinks, supporting 2k/3 hosts between
them. In total, there are still five switch ports per host.

For sensible values of k, we cannot produce fully regular DHFT
and FatTree networks with the same number of ports per host.
For this reason we compare DHFT with the Perfect Switch, which
should underestimate the benefits of DHFT.

5.1 Analysis

Effects of Locality It is not our aim to show that DHFT is in any
sense optimal; we cannot define optimality without knowing the
workload and which metrics are most important. Rather, we aim to
show that MPTCP creates new options for data center topologies;
DHFT is a simple example of such a topology.

DHFT presents opportunities single path TCP can’t exploit. If
the network is underutilized, any pair of communicating hosts should
be able to utilize both their NICs, reaching a throughput of 2Gb/s.
3In a real network, the ports per switch would be fixed, and the
number of hosts and switches varied, but this does not allow for a
fair comparison, independent of the prices of hosts and switches

274



 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100

T
ot

al
 N

et
w

or
k 

T
hr

ou
gh

pu
t (

G
b/

s)

Locality (percent)

Single-path region

Multi-path region

Perfect Switch
TCP

MPTCP

Fig. 15: Performance as a function of
locality in the DHFT topology

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.001  0.01  0.1  1  10

R
el

at
iv

e 
th

ro
ug

hp
ut

Connections per host

MPTCP DHFT
TCP DHFT

TCP Perfect Switch

Fig. 16: Relative performance as a
function of load in the DHFT

 0

 5

 10

 15

 20

 25

 30

 50  100  150  200  250  300  350  400

D
ow

nl
oa

d 
T

im
e 

(m
s)

File size (pkts)

MPTCP
TCP

Fig. 17: Time to transfer short files.

We wish to tease apart the effects of the topology from the effects
of running MPTCP over the topology. We compare:
• TCP over the Perfect Switch. This is the control experiment,

and is an upper bound on what TCP can do in any single-homed
topology. As there are no parallel paths, MPTCP cannot help
on a Perfect Switch. Locality also has no effect on the results.

• Single-path TCP over DHFT. Although DHFT is not ideal for
TCP, this provides a baseline for comparison.

• MPTCP over DHFT. We wish to understand when MPTCP
over DHFT outperforms any single-homed topology, and see
how much of this is due to MPTCP.

Our first experiment shown in Fig. 15 is a packet-level simula-
tion of the permutation traffic matrix, using long-lived flows with
varying degrees of intra-ToR traffic locality. The DHFT network
has k=12, giving 576 hosts, and 100Mb/s links, giving a maximum
throughput of 43 Gb/s if no traffic is local, and 115 Gb/s if all the
traffic is local to the rack and both links from each host are used.
The dark grey region shows throughputs that are feasible as locality
changes. If only one of the two interfaces on each host is used, as
is the case with single-path TCP, then the light grey region shows
the possible throughputs.

Our baseline for comparison is a perfect switch directly connect-
ing all 576 hosts via 100Mb/s links. This provides an upper bound
on what a regular FatTree with the same number of switch ports as
the DHFT could achieve with perfect traffic scheduling.

MPTCP using eight subflows achieves close to the theoretical
maximum for all degrees of locality. In contrast, due to flow col-
lisions on core links, single-path TCP does not even come close to
the theoretical single-path limits until most of the traffic is not us-
ing the core. If the traffic resembles a permutation traffic matrix,
building a DHFT topology without MPTCP makes little sense.

If no traffic is local, MPTCP on DHFT is outperformed by the
Perfect Switch. But to achieve no locality requires effort - even
with a random traffic, some flows stay local to the rack. In practice,
applications often adaptively arrange for processing to take advan-
tage of locality. MPTCP on DHFT outperforms the Perfect Switch
when at least 12% of traffic is local, and costs the same in switch
ports as a FatTree that is strictly worse than a Perfect Switch.

Effects of Load With a random traffic matrix, throughput can be
limited by access links collisions. For single-path TCP, a DHFT
can reduce this bottleneck, improving performance. Collisions in
the DHFT core remain an issue though. The benefits are much
greater for MPTCP, as it can utilize both access links even when
there are no collisions. Fig. 16 shows how performance depends

on load. At light-to-medium load, MPTCP achieves nearly twice
the performance of the perfect switch. At high load, the DHFT core
is the bottleneck, and the Perfect Switch core has higher bandwidth.

Interestingly, if we keep adding connections, we expect that around
20 connections per host MPTCP will again start to get more through-
put than the perfect switch as more hosts gain at least one rack-local
connection. In the extreme, an all-to-all traffic matrix will achieve
twice the throughput of the perfect switch, with most traffic being
rack-local flows. Such extreme workloads push the limits of our
packet-level simulator, and have no practical relevance.

5.2 Discussion
DHFT costs the same as a Fat Tree (same port count), but has

more links in the access. It provides benefits for traffic patterns
with hotspots, and those where the network core is underutilized.
Compared to an idealized Fat Tree (i.e. perfect switch), DHFT’s
worst case performance is 75% and best case is around 200%. If
all traffic matrices we analyzed are equally likely to appear in prac-
tice, DHFT trades a bit of worst-case performance for substantial
average-case gains.

Beyond performance, DHFT improves robustness: any lower-
pod switch failure does not cut-off an entire rack of servers. As
most racks have dual power supplies, switch redundancy eliminates
the biggest single cause for correlated node failures. In turn, this
will likely increase application locality; for instance HDFS could
choose to store all three replicas of each block in the same rack.

DHFT is not optimal by any measure, but it shows that we can
create topologies with better performance if we assume MPTCP is
the transport protocol. DHFT makes little sense with TCP, as most
of the benefits vanish either due to collisions in the core or TCP’s
inability to use multiple interfaces for a single connection.

With MPTCP as transport, a wider range of topologies are cost-
effective. Multipath TCP allows us to linearly scale bisection band-
width for the same increase in cost. For instance, to create a topol-
ogy with 2Gb/s full bisection bandwidth, we could use a k-port Fat
Tree with k3/8 dual-homed hosts. Transport flows would need to
be split across different host interfaces to reach 2Gb/s. Single path
TCP can’t effectively utilize such a topology.

For really large data centers with hundreds of thousands of hosts,
Fat Tree may not be feasible to deploy. We expect there will be is-
lands of Fat Trees, connected to a super core with 10Gb/s uplinks.

6. EXPERIMENTAL VALIDATION
Simulation is only as good as our ability to predict which prop-

erties of the environment we are modeling will turn out to be im-

275



 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100

T
ot

al
 N

et
w

or
k 

T
hr

ou
gh

pu
t (

G
b/

s)

Locality (percent)

Single-path region

Multi-path region

MPTCP
Perfect Switch

Fig. 18: Performance as a function of
locality in the DHFT testbed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  1  2  3  4  5  6  7  8  9

T
hr

ou
gh

pu
t (

M
b/

s)

Time (s)

Core Link Fails

to 100Mb/s

Fig. 19: Robustness to Link Failures in
the DHFT testbed

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0  500  1000 1500 2000 2500 3000

T
hr

ou
gh

pu
t (

M
b/

s)

Flow Rank

MPTCP, 4 subflows
MPTCP, 2 subflows

TCP

Fig. 20: 12 hours of throughput, all
paths between forty EC2 nodes.

portant. Ideally we would cross-validate results against the full im-
plementation. We had two opportinities to do this.

First, we built several small FatTree-like topologies in our lab,
with 12 hosts and 7 switches. Although this is too small to see
various statistical multiplexing effects, it does provide a controlled
enviroment for experimentation. We primarily use this for mi-
crobenchmarks to validate aspects that cannot be accurately mod-
eled in simulation.

Our second opportunity was to rent virtual machines on Ama-
zon’s Elastic Compute Cloud (EC2). This is a real large-scale pro-
duction data center, but we can only infer topology and we cannot
control or even measure competing traffic.

6.1 Microbenchmarks
Our Linux implementation is still research-grade code; it has not

been optimized and mature code should perform better. All the
same, it is important to verify that the implementation is capable of
the performance indicated in the simulations. In particular, if eight
subflows per connection are needed, can the implementation cope?

 0

 10

 20

 30

 40

 50

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17

C
P

U
 L

oa
d 

(%
)

Number of Subflows

Client Server

The histogram above shows host CPU load as the client sends to
the server saturating a Gigabit link. Both machines are 2006-era,
with 2.2GHz single-core Opteron CPUs. Even on old machines,
growing beyond two subflows only increases CPU load by 10%.

Should MPTCP be enabled for all TCP connections in a data
center? We connected two dual-interface machines to a gigabit
switch, and measured the time to setup a connection and transfer
a short file. TCP can only use one interface; MPTCP can also use
the second, but only after the first subflow has negotiated the use
of MPTCP and the second subflow has been established. Figure 17
shows that TCP is quicker for files of less than about 10 packets,
but much slower thereafter. To avoid penalizing short flows, the
code just needs to wait two RTTs after data transmission starts (or
until the window of the first subflow is big enough) and only then
start a second subflow.

6.2 DHFT Testbed Experiments
We built a small DHFT network with 12 hosts in two racks. Each

host connects to the two ToR switches in its rack, which are dual
homed to two aggregation switches, giving four static-routed paths

between hosts in different racks. The switches are soft switches
running Linux on PCs. ToR-to-core links are oversubscribed 3:2.

Our aim is to validate some of the simulations, and to see how
well our Linux MPTCP implementation behaves with multiple paths.
To compare with Fig. 15 we ran the permutation locality traffic
matrix, varying the fraction of rack-local connections. A traffic
pattern quite similar to this is generated by HDFS writes, where
2/3 of the traffic is rack-local. The throughput curve, shown in
Fig. 18, is close to the theoretical value; if 15% of traffic is lo-
cal, DHFT equals the throughput of a perfect switch; with more
local traffic, the improvements are bigger. Aggregate throughput
levels off at 21Gb/s; although MPTCP could send more, the Linux
soft-switches are saturated.

To validate MPTCP’s robustness to link failures we ran the ex-
periment from Fig. 11, downgrading a core link’s speed from 1Gb/s
to 100Mb/s. Single-path TCP cannot avoid this link as such a fail-
ure will not trigger re-routing. We ran a zero-locality permutation
matrix to maximally load the core. Fig. 19 shows a time series of
flow throughputs. Approximately 4 minutes into the experiment,
we downgrade one of the core switches’ links to 100Mb/s. MPTCP
copes well: its congestion control fairly distributes the remaining
core capacity between the flows. When the link returns to 1Gb/s,
MPTCP flows increase to fill the capacity.

6.3 EC2
Amazon’s EC2 compute cloud allows us to run real-world ex-

periments on a production data center. Amazon has several data
centers; their older ones do not appear to be have redundant topolo-
gies, but their latest data centers (us-east-1c and us-east-1d) use a
topology that provides many parallel paths between many pairs of
virtual machines.

We do not know the precise topology of the US East data cen-
ter. Compared to our simulations, it is complicated slightly because
each instance is a virtual machine, sharing the physical hardware
with other users. Background traffic levels are also unknown to us,
and may vary between experiments.

To understand the variability of the environment and the po-
tential for MPTCP to improve performance, we ran our MPTCP-
capable Linux kernel on forty EC2 instances, and for 12 hours
sequentially measured throughput with iperf between each pair of
hosts, using MPTCP with 2 and 4 subflows and TCP as transport
protocols. The resultant dataset totals 3,000 measurements for each
configuration, and samples across both time and topology.4

Fig. 20 shows the results ordered by throughput for each config-
uration. Traceroute shows that a third of paths have no diversity; of

4We also ran the same experiment for 24h with ten machines; re-
sults are qualitatively similar.

276



these paths 60% are local to the switch (2 IP hops), while the others
have four IP hops. They roughly correspond to the right-hand 35%
of the flows in the figure; they achieve high throughput, and their
bottleneck is most likely the shared host NIC. MPTCP cannot help
these flows; in fact some of these flows show a very slight reduction
in throughput; this is likely due to additional system overheads of
MPTCP.

The remaining paths are four IP hops, and the number of avail-
able paths varies between two (50% of paths), three (25%) up to
nine. Traceroute shows all of them implement load balancing across
a redundant topology. MPTCP with four subflows achieves three
times the throughput of a single-path TCP for almost every path
across the entire 12-hour period.

7. RELATED WORK
Multipath TCP spans routing, path selection and congestion con-

trol, offering a general solution to flow scheduling in data center
networks. Our design of the MPTCP congestion controller was
presented in [14]; there we also briefly analyzed the applicabil-
ity of MPTCP to current data centers, and the effect of different
congestion controllers. This paper provides a much more detailed
analysis of MPTCP in existing data centers, as well as exploring
new topologies enabled by MPTCP.

There has been much work on scheduling for Clos networks [10,
13, 8]. m = n Clos networks are rearrangeably non-blocking:
there is an assigment of flows to paths such that any source-destination
traffic pattern can be satisfied at maximum speed. However, map-
ping flows to paths is difficult; random path selection can give less
than 50% of the possible throughput. Many heuristic algorithms
have been proposed to utilize Clos networks, but most have draw-
backs either in convergence time or performance [8]. More re-
cently, Hedera provided such a solution for data center networks us-
ing a centralized coordinator and programmable switches to place
flows on paths in the Fat Tree topology [1].

VL2[6] sidesteps the scheduling issue by using 10Gb/s links in
the core and per-flow Valiant Load Balancing (ECMP). The speed
difference between core and access links reduces the effect of colli-
sions. With BCube [7], sources probe congestion on all paths then
use source routing. Unfortunately congestion varies rapidly, and
the initial choice may quickly become suboptimal.

Spreading each connection over multiple paths makes the schedul-
ing problem tractable. Geoffray [5] proposes striping packets across
multiple paths, coupled with layer two back-pressure. The limita-
tions of this solution stem from the limitations of back-pressure: it
is unclear how well this scheme works over multi-hop paths with
heterogeneous hardware, as found in todays data centers. In addi-
tion to changing the switches, the transport protocol must also be
changed to cope with frequent reordering.

Multipath TCP takes the next logical step, making the end-host
aware of the different paths, but not changing the network. MPTCP
is topology agnostic, completely distributed, and can react on the
timescale of a few round trip times to changes in load. MPTCP
finds free capacity in the network, increases fairness and is robust
to congested links or failures. Finally, it can cope with app-limited
flows; network-based solutions struggle here because they have in-
sufficient information. MPTCP gets these benefits because it com-
bines path selection, scheduling and congestion control.

8. CONCLUSIONS
In this paper we examined how the use of MPTCP could improve

data center performance by performing very short timescale dis-
tributed load balancing. This makes effective use of parallel paths

in modern data center topologies. Our experiments show that for
any traffic pattern that is bottlenecked on the network core rather
than on the hosts or their access links, MPTCP provides real per-
formance benefits. Due to cost, we expect network cores to be over-
subscribed in real data centers, so these benefits seem likely to be
common; certainly we observed them in Amazon’s EC2 network.

A surprising result is the need to use as many as eight subflows
for FatTree and BCube to achieve both good throughput and fair-
ness. Only then is the variance of load between core links reduced
sufficiently. The MPTCP protocol and our implementation handle
this without difficulty.

Multipath transport protocols such as MPTCP can change the
way we think about data center design. With the right conges-
tion control, they actively relieve hot spots, with no need for any
form of network scheduling other than simple random ECMP rout-
ing. More importantly, network topologies that make no sense with
TCP can be very effective with MPTCP. Even routing protocols
might benefit. In recent years switch vendors have put a great deal
of effort into reducing failure detection and routing reconvergence
times. But as data centers scale to hundreds of thousands of hosts,
this becomes increasingly difficult. In topologies with many redun-
dant paths and hosts running MPTCP, perhaps fast routing recon-
vergence after failures is less critical.

Acknowledgements
We thank Olivier Bonaventure and Christoph Paasch for their help
with improving MPTCP and the kernel implementation. We also
want to thank the anonymous reviewers and our shepherd Jitendra
Padhye for their suggestions that helped improve this paper. This
work was partly funded by Trilogy, a research project funded by
the European Comission in its Seventh Framework program.

9. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center

network architecture. In Proc. SIGCOMM 2010.
[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.

Hedera: Dynamic flow scheduling for data center networks. In Proc. Usenix
NSDI 2010.

[3] C. Clos. A study of non-blocking switching networks. Bell System Technical
Journal, 32(5):406–424, 1952.

[4] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for
Multipath Operation with Multiple Addresses. Internet-draft, IETF, 2011.

[5] P. Geoffray and T. Hoefler. Adaptive routing strategies for modern high
performance networks. In Proceedings of the 2008 16th IEEE Symposium on
High Performance Interconnects, pages 165–172, Washington, DC, USA, 2008.
IEEE Computer Society.

[6] A. Greenberg el al. VL2: a scalable and flexible data center network. In Proc.
ACM Sigcomm 2009.

[7] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu.
Bcube: a high performance, server-centric network architecture for modular
data centers. In Proc. SIGCOMM 2009.

[8] K. Holmberg. Optimization models for routing in switching networks of clos
type with many stages. AMO - Advanced Modeling and Optimization, 10(1),
2008.

[9] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul. Spain: Cots
data-center ethernet for multipathing over arbitrary topologies. In Proc. NSDI
2010.

[10] E. Oki, Z. Jing, R. Rojas-Cessa, and H. J. Chao. Concurrent round-robin-based
dispatching schemes for clos-network switches. IEEE/ACM Trans. Netw.,
10:830–844, December 2002.

[11] C. Raiciu, M. Handley, and A. Ford. Multipath TCP design decisions. Work in
progress, www.cs.ucl.ac.uk/staff/C.Raiciu/files/
mtcp-design.pdf, 2009.

[12] C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control for
Multipath Transport Protocols. Internet-draft, IETF, 2011.

[13] A. Smiljanic. Rate and delay guarantees provided by clos packet switches with
load balancing. IEEE/ACM Trans. Netw., 16:170–181, February 2008.

[14] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
implementation and evaluation of congestion control for multipath TCP. In
Proc. Usenix NSDI 2011.

277



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




