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ABSTRACT

HTTP video streaming, employed by most of the video-
sharing websites, allows users to control the video play-
back using, for example, pausing and switching the bit rate.
These user-viewing activities can be used to mitigate the
temporal structure impairments of the video quality. On
the other hand, other activities, such as mouse movement,
do not help reduce the impairment level. In this paper,
we have performed subjective experiments to analyze user-
viewing activities and correlate them with network path per-
formance and user quality of experience. The results show
that network measurement alone may miss important in-
formation about user dissatisfaction with the video quality.
Moreover, video impairments can trigger user-viewing ac-
tivities, notably pausing and reducing the screen size. By
including the pause events into the prediction model, we can
increase its explanatory power.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations –Network monitoring ; H.1.2 [Models and Prin-

ciples]: User/Machine Systems – Human factors; H.5.1
[Information Interfaces and Presentation]: Multime-
dia Information Systems – Evaluation/methodology

General Terms

Experimentation, Measurement, Human Factors

Keywords

QoE, HTTP Video Streaming, User-viewing activities

1. INTRODUCTION
The Quality of Experience (QoE) is a multi-dimensional

construct, consisting of subjective and objective parameters
[19, 23]. For video streaming applications, objective param-
eters are often the measure of traditional QoSes (Quality of
Services), such as Network QoS and Application QoS [11].
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Network QoS is a set of network path metrics, including
round-trip time (RTT), jitter, and packet loss rate. Appli-
cation QoS comprises application parameters of the video
playback, such as video bit rate, frame rate, and video res-
olution. Previous works have studied how these QoSes cor-
relate with the QoE [15, 21].

Subjective parameters, such as user expectation and satis-
faction, are difficult to evaluate, because of their subjective
nature. Although the MOS (Mean Opinion Score) [12, 13]
obtained from subjective assessments can provide an overall
measurement of the parameters, the assessments are often
costly, time-consuming, and not scalable. Moreover, users
usually lack the incentive to report accurate scores. There-
fore, in this paper we resort to indirect mechanisms for the
MOS measurement.

In UDP-based video streaming, poor network conditions
may result in frame blocking or even frame freezing, and
users do not have control knobs to mitigate the impact. In
contrast, HTTP video streaming ensures a reliable deliv-
ery of the video stream through TCP and enables playing
incompletely downloaded video using the progressive down-
load technology [3]. Although a low TCP goodput could still
destruct the temporal structure of the video playback [17],
users can mitigate the impact, for example, by pausing the
video to buffer more video data. We refer these user actions
to as user-viewing activities.

In this paper, we propose employing the user-viewing ac-
tivities to estimate the subjective parameters in the QoE of
HTTP video streaming. In particular, we evaluate based on
subjective measurement experiments whether user-viewing
activities are induced by temporal structure impairments or
they are just random actions. Our main findings include:

1. Network quality measurement alone may miss some
important information about user dissatisfaction about
the video quality.

2. Video impairments could induce user-viewing activi-
ties, notably pausing the video and reducing the view-
ing area.

3. In addition to the application performance metrics pro-
posed in [17], we also incorporate the pause and screen
size switching events into the MOS prediction. By
using logistic regression analysis, we obtain a better
model fit, and the explanatory power increases from
0.24 to 0.32 in terms of the Nagelkerke R2.

The remaining of this paper is organized as follows. Sec-
tion 2 describes the user-viewing activities and overall method-
ology used in this study. Section 3 details the experiment
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setup, whereas section 4 reports the experiment results. Af-
ter highlighting some related works in section 5, we conclude
the paper in section 6.

2. USER-VIEWING ACTIVITIES
User-viewing activities refer to the activities that a user

interacts with a player interface. We haved conducted a
survey on how users behave when the playback is smooth or
jerky. In the survey, we listed all the user-viewing activies
in Table 1 except the two mouse movement items. The sub-
jects were asked to rate their level of agreement on whether
they will perform the listed activities under a given scenario
(i.e., the playback is smooth/jerky). The level of agreement
is measured with a 5-point Likert scale from 1 (strongly dis-
agree) to 5 (strongly agree).

Two sets of ratings are obtained for each user-viewing
activity. We compare the two scenarios by subtracting the
mean rating of each activity as shown in Eqn. (1). The mean
rating difference of activity j, denoted by ∆r̄j , is given by

∆r̄
j = r̄

j

smooth − r̄
j

jerky , (1)

where r̄
j

smooth and r̄
j

jerky are the mean rating of the user-
viewing activity j given smooth and jerky playback scenar-
ios, respectively. Using paired samples t-test, we can obtain
the level of significance, p, for each activity.

The third column in Table 1 shows the mean rating differ-
ence of each user-viewing activity from a survey of 19 people.
The activities with positive mean rating difference, ∆r̄j > 0,
means that users prefer those activities when the playback
is smooth. Otherwise, users favor the activity in jerky play-
back scenario. The results show that users choose pausing,
switching to a lower picture quality, and watching with nor-
mal screen size under jerky playback scenario. In contrast,
for smooth playback scenario, only switching up the quality
and enlarging the screen size are significant. Users show no
significant preference for other activities, such as resuming
and time shifting.

On the other hand, some user-viewing activities can help
mitigate the temporal structure impairments [17]. Pausing
that can increase the time for buffering video data is an ex-
ample of positive technical impact (i.e., Tech. is +). Other
examples include refreshing the page which allows the player
to choose another video server from a content delivery net-
work and switching to a lower video quality by reducing the
video data size. In contrast, resuming and forward time
shifting have negative impact. Resuming the playback con-
sumes the buffered video, and forward time shifting gives up
the buffered video and sends a new HTTP GET request. The
effects of impact is shown in the second column of Table 1
represented by +, ◦, and −.

Table 1 also lists the possible user-viewing activities and
their effects of impact, explicit, and implicit meaning, par-
ticularly for HTTP video streaming.

2.1 The overall methodology
In this section, we describe the methodology for evaluat-

ing whether user-viewing activities are induced by temporal
structure impairments or just user’s random actions. Our re-
search hypothesis is given in Hypothesis 1. To testify against
the null hypothesis which claims that the activities are ran-
dom, we analyze the activities recorded before and after the
impairment events.

Hypothesis 1. The user-viewing activities are more likely
to be triggered after the presence of temporal structure im-
pairments.

We assume that an impairment event only affects the user-
viewing activities nearby. Therefore, we inspect the user-
viewing activities within a range around each impairment
event. Figure 1 shows an example of a video playback time
line. The video starts playing at t0 and ends at tend. Three
impairment events occur at times ti−1, ti, and ti+1. Two
user-viewing activities are recorded at times ta and ta+1. A
time period δ, computed by Eqn. (2), is half of the time
between the current impairment event and the nearest im-
pairment events or the start or the end of the video playback.
An upper bound for δ is arbitrarily set to 5 seconds to pre-
vent the inclusion of irrelevant activities far away from the
impairment event. Two other time periods dai and d(a+1)i

are the time displacements from the activities at ta and ta+1

to ti, respectively.

δ =
min(ti+1 − ti, ti − ti−1, ti − t0, tend − ti, 10)

2
. (2)

Since random activities occur independent of the impair-
ment events, they could occur before or after an impair-
ment with equal probability. For the activities involving
mouse clicks, the average time displacement to the impair-
ment events is zero (i.e., Di = 0), where Di is the summa-
tion of time displacement within the range between ti − δ

and ti+1 + δ and ni is the number of user-viewing activities
within the range as shown in (3).

Di =

ni
∑

j=0

d(a+j)i. (3)

On the other hand, the mouse movement at time t is quan-
tified by the speed of the cursor movement, vt, as shown in
(4), where (xt, yt) and (xt−1, yt−1) are the current and the
pervious recorded coordinates, respectively. The speed of
cursor movement is obtained by the Euclidean distance be-
tween the two coordinates over the difference in recorded
timestamps, ∆t. If the mouse movement is impairment-
driven, the speed of the cursor movement is expected to be
higher after the event.

vt =

√

(xt−1 − xt)
2 + (yt−1 − yt)

2

∆t
. (4)

t0 ti ti+1

 

ta ta+1ti-1

dai d(a+1)i

 

tend

Figure 1: A time line for a video viewing session

with impairment events and user-viewing activities.

3. EVALUATION
To validate our hypothesis, we have carried out experi-

ments to record the subjects’ video watching activities un-
der various scenarios. We describe the experiment setup in
this section and the results in the next.
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Table 1: A list of possible user-viewing activities with the effect of technical impact, mean rating difference,

explicit and implicit meaning.

Activities Tech. ∆r̄j Explicit Meaning Possible Implicit Meaning
Pause + −2.37*** Stop playing the video playback for a

short period of time.
More time is needed to buffer the video
data.

Resume − 0.26 Continue playing the paused video
playback.

Reach the tolerance limit.

Refresh + −1.79 Reload the page and video. The playback quality is unacceptable,
and reloading may help.

Switch to a lower video
quality

+ −1.79*** Watch the video with lower picture
quality.

Scarify the spatial qualify for the play-
back smoothness.

Switch to a higher video
quality

− 2.26*** Watch the video with better picture
quality.

The user thinks the current speed is
fast enough for watching with a better
quality.

Play with full screen ◦ 2.42*** Watch the video with a larger size. The playback is enjoyable.
Return to the normal-size
screen

◦ −0.74* Watch the video with a smaller size. The impairments are annoying.

Forward time shift − 0.53 Watch the content after the current
video position

The video content is not interesting.

Backward time shift + −0.58 Replay the content before the current
video position.

Replaying the buffered video can result
in a smoother playback.

Lost of window focus + −0.47 The browser window is covered or min-
imized.

The user may not be watching the
video.

Frequent mouse movement ◦ n/a The user moves the mouse over the
screen quickly.

The impairments are annoying.

Infrequent mouse move-
ment

◦ n/a The user does not use the mouse. The user is enjoying the video.

Note: +, ◦ and − represent positive, neutral, and negative effect, respectively. For ∆r̄j , *p <0.05, **p <0.01, ***p <0.001.

3.1 Experiment setup
Figure 2 shows the experiment setup which is a simple

video delivery system. The video server listening on multi-
ple TCP ports responds with the same content. The Click
modular router [16], placed in front of the video server, in-
troduces delay and packet loss to the TCP flows. Table 2
lists the path metrics setting used by the router. The router
emulates one of the 9 (3× 3) combinations of path metrics
on each TCP port. Therefore, connecting the video server
via different ports results diverse network path performance.
A mild level of cross-traffic with Pareto distributed inter-
departure time and fixed size packets is generated by the
distributed Internet traffic generator [5]. A workstation in-
stalled with a DAG card [1] captures all the traffic between
the click router and the video server. The logging server
is responsible for recording the information reported by the
customized video player (see section 3.2) during the experi-
ment. The traffic between the logging server and the video
player, however, will not be captured and manipulated by
the click router.

Video server

Click Router

Subject

Logging Server

Subject

Subject

DAG card Internet

Cross-traffic sourceCross-traffic sink

Figure 2: Experiment setup.

3.2 Client software
We have enhanced FlashTrack [17], a customized Adobe

Flash video player, to record the application events. The

Table 2: Path quality settings used in the Click mod-

ular router.

Path quality metrics Settings
Additional delay (ms) 0, 40, 80
Round-trip packet loss rate 0%, 2%, 4%

events include the current position of video playback, the
buffer status, the number of bytes loaded, buffer-full events,
and buffer-empty events. In addition to those events, we
record user-viewing activities listed in Table 1. Besides us-
ing Flash, we have employed Javascript to capture the cursor
coordinates and browser’s focus. All the events are logged
periodically every 0.25 seconds. The logs are then aggre-
gated and sent to a logging server every three seconds.

The video player provides all the basic functionalities of-
fered by commodity video sharing websites. Users can pause
and resume the video playback, changing the video quality,
watch in full screen mode and forward/backward shift along
the buffered video. Moreover, the downloading progress,
current video position, and the length of the video are vis-
ible to the subjects. When a buffer-empty event occurs, a
small screen is shown over the video displaying the percent-
age of buffer filled until the buffer is filled up. These visual
components help the subjects understand the status of the
playback.

3.3 Video materials
Three videos clips are chosen for the experiments. They

are labeled as speech, TVshow, and sports, in an ascending
order of temporal complexity. Video speech shows a person
delivering a speech with static background. Video TVshow
is a portion of a local TV comedy show. Video sports is a
highlight of basketball games. Table 3 shows the detailed
profiles of the video clips used in this experiment. The qual-
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ity of the source videos is equivalent to 720p. The source
videos are then down-sampled into three lower bit rate ver-
sions with H.264 codec according to the profiles of 480p,
360p, and 240p.

Table 3: Profiles of the video clips.

Parameters 720p 480p 360p 240p
Video width (pixel) 1280 854 640 400
Video height (pixel) 720 480 360 226
Video bit rate (Mbps) 2 1 0.5 0.25
Video frame rate (fps) 29.97 29.97 29.97 29.97
Audio bit rate (kbps) 128 96 80 32

3.4 Subjective assessment
After filling some basic information and answering ques-

tions on video-watching habits, each subject was given a list
of four videos to watch. They were first instructed to access
to a dedicated video to try the platform before starting the
experiment. Through this training process, the subjects be-
came more familiar with the testing environment and under-
stood clearly about the functionality provided by the video
player. After that, the subjects could freely select the watch-
ing sequence of the remaining 3 videos. To mitigate the or-
der effects, the display order and the choice of network path
performance of the remaining three videos were randomized,
and the initial quality of all the videos was 480p.

The subjects were first informed that they might experi-
ence dissimilar performance for different links. Besides, they
were also reminded to behave as usual and watch the entire
video clips. At the end of each video clip, the subjects could
immediately rate their perceived video-watching experience.
A 7-point Likert scale of MOS was adopted, from 1 (“Bad”)
to 7 (“Excellent”), for obtaining a higher granularity.

4. RESULTS AND ANALYSIS

4.1 User-viewing activities and network path
quality

A total of 22 subjects, 16 male and 6 female, participated
in the subjective assessment. All of them were non-experts
in assessing the video quality. Nine of them carried out
the experiment through the campus network, and others ac-
cessed the experiment platform through the public Internet.
All the subjects reported that they spent at least one hour
on surfing the Internet, and 20 of them watched at least one
video on the web in the week before performing the exper-
iment. Therefore, it is reasonable to assume that they are
familiar with video-watching applications.

Figure 3 shows the frequency distribution of the ratings
collected in the assessment. Although we observe very low
frequency for the two extreme ratings (1 and 7), unrealisti-
cally poor or good performance usually contain less informa-
tion. Another possible reason is that the subjects, who are
all Chinese, avoid giving extreme ratings because of stronger
central tendency bias [7]. However, we believe that the fre-
quency of the rating between 2 and 6 can already provide
enough variance.

Figure 4 depicts the user-viewing activities recorded from
one of the experiments. The bars shown along the x-axis
are the cursor speed. The “×”s and “◦”s are the points when
the buffer-empty and buffer-full events are triggered, respec-
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Figure 3: The overall distribution of MOS.

tively. The time that the subject pressed the pause button
and the resume button are denoted by the“+”s and the“�”s,
respectively. The “△”s and the “▽”s are the respective times
that the subject switched to full screen mode and normal
screen mode. The quality switching events are indicated by
the “⊳”s (for switching down) and “⊲”s (for switching up).
For a clearer illustration, the events are plotted in different
levels.

Figure 4 shows that the application-level events, such as
cursor movement, correlate with the user-viewing activities
to some extent. In the first 50 seconds, the subject was
still adapting to the network condition, and therefore the
viewing activities are relatively few. After feeling that the
playback is acceptable, she switched to a higher quality and
watched in full screen mode just before the second buffer-
empty event. However, after the second buffer-empty event
occurs, the subject seemed to be annoyed by the event,
switching back to the original quality quickly and return-
ing to the normal screen size. She clicked the pause button
and returned to normal screen mode until the end of the
playback. After 200 seconds, she paused the playback for ev-
ery buffer-empty event. Moreover, the cursor speed sharply
increased whenever some user-viewing activities were cap-
tured, because the subject had to move the mouse cursor to
press the pause buttons.

Figure 5, on the other hand, shows the round-trip time
(RTT) and packet loss rate (aggregated every second) mea-
sured from the same viewing session. To facilitate the com-
parison, the two time axes are perfectly aligned. The me-
dian RTT is about 80 ms and the average packet loss rate is
4%. Loss busts are occasionally observed, but the network
path was generally unchanged during the whole experiment
session. The video was completely downloaded about 10 sec-
onds before the video playback was finished. By comparing
Figures 4 and 5, we observe that using only network path
measurement could fail to capture the important informa-
tion about the user perceived QoE of the video, such as her
dissatisfaction after the second rebuffering event.

4.2 Hypothesis testing for user-viewing activ-
ities

To give a generalized view of the activities, we formulate
hypotheses for the user-viewing activities from Hypothesis
1 and test each hypothesis through statistical tests. Using
one-sample t test, we can obtain probability p that the null
hypothesis is true for given mean and standard error [20]. If
a user-viewing activity occurs after the impairment events,
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Figure 4: Time series of application-level events and
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the average time distance is positive (i.e., Di > 0). We
choose rebuffering (buffer-empty) events as the impairment
event, because it is the main factor affecting the perceived
quality. However, our method can also be applied to other
impairment events.

Table 4 shows the average time distance, Di, of three
user-viewing activities. The results show that the average
time distance for the pause activity is significantly larger
than zero, which means that users pause the video playback
around two seconds after she encounters rebuffering events.
Similarly, users change back to the normal-size screen from
full screen about three seconds after the occurrence of im-
pairment events.

The few seconds of delay between the impairment events
and the activities can be regarded as user’s reaction time.
The average time distance for reducing the screen size is
about one second more than pausing, implying that users
usually pause the playback before reducing the screen size.
As users know that pausing is functional, they regard it as
a more critical action than reducing the screen size.

Although the activities of switching to a lower quality have
a positive mean, it is not statistically significant due to small
sample size (N = 3). A small activity count reflects that the
subjects prefer pausing instead of switching the quality. The

results for mouse movement are also not significant in our
analysis, indicating that the average cursor speeds before
and after the impairments are very similar.

Table 4: Average time distance for different user-

viewing activities and impairment events.

Activities Di (seconds)
Pause 1.94***
Switch to lower quality 2.19
Reduce the screen size 3.10**

vt (pixel/ms)
Mouse movement -0.070

Note: *p <0.05, **p <0.01, ***p <0.001.

4.3 Correlating user-viewing activities with
QoE

In [17], we have showed that the rebuffering frequency is
the main factor affecting the QoE, in terms of the MOS. Our
results show that all three application performance metrics
(APMs) impacted the QoE, and we have also found that
using log transformation to correct the functional form of
the rebuffering frequency and the initial buffering time can
obtain a better model fit. As the MOS is ordinal in nature,
the ordinary least-square regression cannot be applied. We
have therefore adopted the ordinal logistic regression [6] by
using SPSS [2] in the analysis below.

The left column of βs in Table 5 shows the regression
results of solely using the APMs proposed in [17], where
frebuf is the rebuffering frequency, Tinit is the initial buffer-
ing time, and Trebuf is the mean rebuffering duration. The
model is significant with a χ2 of 14.3 on 3 d.f., meaning that
the original model better explains the variations in the MOS
than an intercept-only model. Among the three APMs, the
rebuffering frequency and the initial buffering time are sig-
nificant, while the mean rebuffering duration is marginally
significant. The negative β means that the odds (probabil-
ity) of obtaining higher MOS categories decrease with the
rebuffering frequency and/or the initial buffering time. This
implies that a higher rebuffering frequency or a longer ini-
tial buffering time has a lesser chance of obtaining higher
MOS categories. However, an increase in mean rebuffering
duration has a slightly higher chance of obtaining higher
MOS categories. We adopt one of the pseudo-R2 metrics,
Nagelkerke R2 [18], which ranges from 0 to 1, to represent
the goodness of fit of the model. The explanatory power is
moderate with a Nagelkerke R2 of 0.24.

Table 5: Regression results for the APM model and

modified model.

Predictors Estimates, βs
APM model Modified model

ln
(

frebuf
)

-0.54* -0.62*
ln (Tinit) -0.60* -0.54*
Trebuf 0.04 † 0.045*
Npause - -0.68†
Nscreen - 0.94
Nagelkerke R2 0.24 0.32
χ2 14.3** 19.5**
d.f. 3 5
Valid N 54 54

Note: †p <0.1, *p <0.05, **p <0.01.
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We further incorporate two of the user-viewing activities
which show significant results in section 4.1 (i.e., pausing
and reducing the screen size). We count the number of
pause and screen size reducing activities which are proba-
bly triggered by the impairments, denoted by Npause and
Nscreen, respectively. The right column of βs in Table 5
shows the regression results of the modified model which is
also significant with a χ2 of 19.5 on 5 d.f. The rebuffering fre-
quency which shows significant result in the original model
is still significant. For the new factors, we have obtained
a marginal significance for the pause activities. By adding
these two factors, the explanatory power, measured by the
Nagelkerke R2, increases from 0.24 to 0.32. The negative β

of Npause means that the probability of obtaining a higher
MOS category increases when less pauses are triggered by
impairment events. On the other hand, switching the screen
size has no effect to the odds of MOS categories.

5. RELATED WORK
Vilas and Paneda et al. modeled the user behavior of a

VoD website [22], but they did not correlate the behavior
with the QoE. In [24] and [10], a traffic analysis of a VoD
system and an IPTV system was performed. However, the
user behavior considered there was the access behavior, in-
stead of the video watching behavior in each session.

Apart from video quality assessment, other types of user
activities or responses had been investigated for inferring
user perceived quality or user satisfaction. For example,
Downing [8] used system usage behavior to infer the user
satisfaction of the system. Eyetracks was used in [9] to pre-
dict the image quality. Clickstream data could also used to
improve the ranking in web searching [4, 14].

In [17], we measured the QoE of HTTP video streaming
under different network QoS and application QoS. We pro-
posed three APMs, including the initial buffering time, re-
buffering frequency, and mean rebuffering duration, to quan-
tify the temporal structure impairments. We investigated
the correlation among network QoS, QoE, and the APMs,
and concluded that the rebuffering frequency was the main
factor affecting the QoE. In this paper, we improve the pre-
diction power of the model by including the pause events.

6. CONCLUSION
In this paper, we studied how the user-viewing activities

help evaluate the QoE of HTTP video streaming. We pro-
posed a new methodology of examining the user-viewing ac-
tivities around the occurrences of impairment events. From
our subjective measurement results, we found that the im-
pairments can trigger pause and screen size switching events
after two and three seconds, respectively. We then incorpo-
rated these triggered activities into the prediction model of
the QoE to improve its prediction power. We also found
that the pause activities are responsible for the variation of
the MOS.
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