Design Space Analysis for Modeling Incentives in Distributed Systems

by Rameez Rahman, Tamas Vinko, David Hales, Johan Pouwelse, and <u>Henk Sips</u>

Delft University of Technology

Incentives in Distributed Systems

Consider a P2P file sharing system, such as BitTorrent:

- *Collective interest*: upload to others so everyone gets the file quickly
- Individual interest: save bandwidth by only downloading and hence free-riding on others
 - Need to tackle <u>freeriding</u> in some way

How do we evaluate how good the incentive scheme is?

Traditional vs Our Approach

We consider BitTorrent like file swarming systems

A popular P2P file sharing system

- Hundreds of millions of users, and a large fraction of Internet traffic
- A key of BitTorrent's success: Tit-For-Tat (TFT) incentive policy

Peers exchanging file pieces with each other using a rate based TFT approach

Our Approach

- First, a game theoretic analysis of BitTorrent, based on heterogeneous bandwidth classes
- We model the repeated aspects of the protocol. Also, we use different abstractions than in previous work
 - heterogeneous bandwidth classes

modeling <u>optimistic unchokes</u>

Optimistically unchokes

Three Class Analysis

• Optimistic unchokes (not shown in the figure) are nearly uniformly distributed over all classes

Higher classes do not reciprocate to the "Fraction of regular Slots

- BT is not a Nash Equilibrium (unlike previous findings)
- Considering BT as a strategy in a game allows us to build a robust BT variant called Birds
 - Birds sorts on the basis of proximity to its own upload speed
 - Birds is a Nash Equilibrium
 - A recently released BT client called BitMate is very similar to Birds

And now?

- Game theoretic analysis (like most modeling techniques) needs a high level of abstraction
- Different abstractions may lead to different and even contradictory results.
- We should remember that the BT variants BitThief, BitTyrant came only after it had been proved that BT is a Nash!

Open Questions

- If we would include more details, would our Birds analysis still hold? Would we come up a variant "Bird Flu", that aims to exploit Birds.
- How robust is Birds anyway, or any protocol that one might devise?
- Did we model everything? What did we not model? Resource allocation, Candidate list, different Selection functions...

Maybe it is time for an approach that augments/complements game theoretic approach?

Our Approach: Design Space Analysis (DSA)

Apply Axelrod-like tournament approach to evaluate realistic P2P

protocol variants

Interesting bit is:

- Break down of protocols into a design space
- Evaluation of protocol variants (PRA)

Specific application to BitTorrent protocol variants

The Three Elements of DSA

- 1) Flexible behavioral assumptions
- 2) Specification of the Design Space
 - Parameterization
 - Actualization
- 3) Systematic analysis of the Design Space

Flexible Behavioral Assumptions

In DSA, protocols may, in the words of Axelrod:

"simply reflect standard operating procedures, rules of thumb, instincts, habits, or imitation".

This in contrast to the usual rational framework assumption of traditional game theoretic analysis

Design Space Specification (1)

Parameterization: identify salient dimensions

E.g. for gossip protocols:

- 1) Selection function for choosing partners
- 2) Periodicity of data exchange
- 3) Filtering function for data to exchange
- 4) Record maintenance policy in local db

Design Space Specification (2)

Actualization: specify values for the identified dimensions

E.g. for 'selection function' for gossip Protocols:

- 1) Choose partners randomly
- 2) Choose partners based on similarity
- 3) Choose partners who have given best service
- 4) Choose loyal partners...

And so on...

PRA characterization of a protocol π

- **Performance** the overall performance of the system when all peers execute π (where performance is determined by the designer)
- Robustness the ability of a majority of the population executing π to outperform a minority executing a protocol other than π
- Aggressiveness the ability of a minority of the population executing π to outperform a majority executing a protocol other than π

More detail on PRA

- **P** = average download time
- R = number of "wins" in round robin tournaments against all other protocol variants
- A = number of "wins" in round robin tournaments against all other protocol variants
- P,R,A values are normalized over the space

Parameterizing of a P2P protocol

- Peer Discovery
 - Timing and nature of the peer discovery policy
- Stranger Policy
 - How to treat newcomers
- Selection Function of known peers
 - E.g .past behavior (through direct experience or reputation system), service availability, and liveness criteria
- Resource Allocation
 - The way a peer divides its resources among the selected peers

Actualizing BT like file-swarming protocols

- Stranger policy (10 variants)
- Selection function:
 - Candidate list peers to consider (2 variants)
 - Ranking function order list (6 variants)
 - Selection number of peers to select (9 variants)
- Resource allocation (3 variants)

Gives a space of 3270 unique protocols

Methodology of conducting DSA

- 50 peers, that interact with each other for 500 rounds.
 - Bandwidth distribution taken from Piatek et al. [NSDI 2007]
- For Performance, 100 runs for each protocol π .
- For Robustness, each protocol π against all other 3269 protocols. 10 runs for each such encounter, 0.5 π and 0.5 π
- For Aggressiveness, same as above. But with 0.1 π and 0.9 π^{\slash}

This comes to **107 million** runs → 25 hours on a 50 dual node cluster

Salient Observations (1)

- Lower cluster (low P) all free rider variants who do not reciprocate with partners
- Upper cluster (high P) do reciprocate with partners but some defect with strangers
- Top P, low number of partners (1,2), Sort Loyal, When Needed
- Top R, high number of partners (6-9), Sort Fastest, When Needed, Prop. Share
- Sweet spot (P,R>0.8): Sort Loyal

Salient Observations (2)

- Highest performing protocols:
 - Defect on strangers
 - Sort Slowest!
 - Low number of regular partners (1-2)
- Highly robust protocols
 - -Use Propshare
 - -Sort Fastest
 - -Use When_needed stranger policy

Validation of Results with instrumented BitTorrent Clients

Based on client from Legout et al [Sigmetrics2007]

Related Work

- Mechanism design [Feigenbaum/Shenker 2002; Dash/Jennings/ Parks 2003]
- Game theory for system design [Majahan/Rodrig/Wetherall/ Zahorjan 2004]
- Evolutionary game theory to p2p [Feldman/Lai/Stoica/Chuang 2004]
- BitTorrent is a Nash [Qiu/Srikant, 2004]
- BitTorrent is an Auction [Levin/LaCurts/Sring/Bhattacharjee, 2008]

Conclusions

- Standard BT is not a Nash; Birds is a Nash
- Game theoretic models are focused on a single protocol and do not cover all aspects of a protocol
- DSA is a complementary simulation based approach that explores a larger protocol design space
- Future research
 - Other DSA dimensions: Fairness?
 - Other protocols than p2p
 - Heuristics to prune search space

Thanks for listening!

Performance of Various Protocols

