A Content Propagation Metric for Efficient Content Distribution

Ryan S. Peterson^{†*}, Bernard Wong^{‡*}, and Emin Gün Sirer^{†*}

† Department of Computer Science, Cornell University ‡ School of Computer Science, University of Waterloo * United Networks, LLC

August 18, 2011

Content Distribution

BW in Client-Server

BW in Peer-to-Peer

BW in Antfarm

Goal

Problem Definition

- The general multi-swarm content distribution problem
 - given: hosts, swarms, and swarm memberships
 - find: allocation of each host's upload bandwidth among its swarms that maximizes system-wide bandwidth

Approach

New metric that steers hosts toward a globally efficient allocation of resources

Enables each host to measure its impact on each swarm and adjust its bandwidth allocations accordingly

Approach

New metric that steers hosts toward a globally efficient allocation of resources

Content Propagation Metric

Outline

The CPM

V-Formation

Evaluation

Benefit of a Block

p's choice: upload the next block to s1 or s2?

Which swarm will benefit more?

Determining Benefit

- What block p uploads
- Distribution of blocks in the swarms
- Sizes of the swarms
- Network conditions among peers
- The direct recipient of p's block

Use history to predict the future

Intuition

Measure how "fast" p's blocks propagate in each swarm

Use the result as an estimate of the benefit that the swarms derive from p's blocks

Content Propagation Metric

Block propagation bandwidth: rate that an uploaded block propagates in a fixed time interval T

CPM: rolling average of a peer's recent block propagation bandwidths for a swarm

Using the CPM

- Each host measures random uploaded blocks to maintain a CPM value for each swarm
- Hosts upload to swarms with the largest CPM values when faced with competing requests
- Hosts proactively probe new swarms and swarms with stale CPM values

CPM Case Study

CPM Case Study

CPM Case Study

CPM Overview

- Identifies neediest swarms
- Easy to measure
- Can allocate bandwidth from a single server
- Accounts for interference from competing hosts

The CPM

V-Formation

Evaluation

V-Formation

- Based on our hybrid architecture
- A logically centralized coordinator provides efficient bookkeeping
- A token protocol enables the coordinator to track blocks and monitor peers

Coordinator

- Measures swarm dynamics
 - tracks block transfers based on spent tokens
- Computes peers' CPM values
 - periodically sends updates to peers
- Provides accountability
 - detects and blocks misbehaving peers

Wire Protocol Goals

- Track block transfers among peers
- Disseminate CPM values and peer lists
- Enforce peer behavior

coordinator

Coordinator Design

stores membership info, propagation data, and CPMs

processor

processor

distributed, shared state

web server

web

continuously process block propagation data

handle peer requests, record block propagation data

Coordinator State

- Soft state stored in memcached
 - Swarm: peers, number of blocks
 - Peers: addr, swarms, block propagation bandwidths, CPMs
 - Blocks: swarm, propagation graph with timestamped, peer-identified nodes
- Updated via atomic CAS operations

Outline

The CPM

V-Formation

Evaluation

Evaluation

- Built and deployed V-Formation as a videosharing service called FlixQ
- Uses the CPM to achieve high performance
- Coordinator scales to large deployments

Experimental Setup

- Coordinator on Amazon EC2
- 380 peers on PlanetLab with realistic bandwidth capacities
- 200 swarms based on IMDb movie popularities and sizes
- 20% of peers belong to multiple swarms
- 2 caches with different subsets of content

End-to-End Performance

Performance of Heuristics

Scalability

Related Work

- Content Distribution Networks
 - Antfarm, Akamai, CoBlitz, CoDeeN, ECHOS, Coral, Slurpie, YouTube, Hulu, GridCast, Tribler, Joost, Huang et al. 2008, Freedman et al. 2008, ...
- P2P Swarming
 - BitTorrent, BitTyrant, PropShare, BitTornado, BASS,
 Annapureddy et al. 2007, Guo et al. 2005, Pouwelse et al. 2005, Zhang et al. 2011, OneSwarm, ...
- Incentives and microcurrencies
 - Dandelion, BAR Gossip, Samsara, Karma, SHARP, PPay, Kash et al. 2007, Levin et al. 2009, iOwe, ...

Conclusions

- New hybrid approach for efficient bandwidth allocation
- Decentralized metric enables hosts to measure their global benefit
- Centralized implementation drives hosts toward globally efficient use of resources

http://flixq.com