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ABSTRACT

Because of rapidly growing subscriber populations, advances in
cellular communication technology, increasingly capable user ter-
minals, and the expanding range of mobile applications, cellular
networks have experienced a significant increase in data traffic, the

dominant part of which is carried by the http protocol. Understand-
ing the characteristics of this traffic is important for network design,
traffic modeling, resource planning and network control. In this
study we present a comprehensive characterization study of mo-
bile http-based traffic using packet level traces collected in a large

cellular network. We analyze the traffic using metrics at packet
level, flow level and session level. For each metric, we conduct a
comparison between traffic from different applications, as well as
comparison to traffic in a wired network. Finally, we discuss the
implications of our findings for better resource utilization in cellu-
lar infrastructures.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Network Operations

General Terms

Measurement
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1. INTRODUCTION
Because of the emergence of user-friendly smartphones and the

advances in cellular data network technologies, the volume of data
traffic carried by cellular networks has been experiencing a phe-
nomenal rise. One large cellular operator has reported a growth of

8000% of cellular data traffic over the past four years [2] and it is
expected to grow to 10.8 exabytes per month by 2016, an 18-fold
increase over 2011. To cope with this explosive growth and best
serve their customers, operators need to have a better understand-
ing of the nature of traffic carried by cellular networks.
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Among all the cellular data traffic, different “web services” (in
the sense that they are carried over http) is the dominant cate-
gory due to the increasing popularity of video streamimg (e.g.,
YouTube), social networking (e.g., Facebook) and file sharing (e.g.,
Sourceforge). Web traffic in this sense has thus undergone a signif-
icant change over the last few years, from static displays of simple

html pages to rich and complex media applications. As a conse-
quence, the nature of the web traffic has changed as well.
Thus, although a large amount of work on traffic characteris-

tics [4, 5, 14, 19] was done a decade ago, they apply techniques
developed for static pages which may no longer be suitable. More-
over, there are few and limited studies for cellular networks. Prior

work on understanding cellular data traffic is largely dated, e.g.,
[11], or limited to flow level statistics, e.g., [21, 18] with an em-
phasis on on understanding traffic patterns from different device
types or applications.
In contrast, the goal of this paper is to provide an initial under-

standing and categorization of cellular data traffic, with emphasis
on basic traffic statistics, differences between wireline and wireless
accesses, and user behavior patterns. We seek answers to questions
like “Are there any significant differences in traffic patterns across
different services?", "What are the unique characteristics of cellu-
lar data traffic compared to fixed data traffic?", and "Are the us-

age pattern different across applications and across network access
types?". This paper is the first study to provide answers to these
types of questions about web traffic in large cellular networks. The
answers to these and similar questions can be used for modeling
traffic, improving performance, optimizing distribution and design-
ing systems such as firewalls and intrusion detectors.

We report on a set of comprehensive studies of traffic collected in
a large cellular network and in a small fixed network. We make the
following three contributions. First, we study traffic characteris-
tics for a wide range of services and find that different applications
impose different demands on network resources on packet level,
flow level and session level. Second, we compare these results to

those in a fixed network with a focus on uncovering the unique
patterns induced by the different network accesses. Third, we ana-
lyze the usage behavior with comparisons both across applications
and across network types. Comparing wireless and wireline ses-
sions, it is found that the former typically contain less data in more

but shorter flows, and that they typically consist of smaller packets
with burstier arrival patterns.
The remainder of this paper is organized as follows. We first

introduce the metrics we use for characterizing traffic patterns in
Section 2. We also present the methodology we have developed to
identify these metrics as well as the analysis techniques. Section 3

describes our data sets and presents our results. Related work is
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discussed in Section 4. Section 5 outlines some implications and

conclude our study.

2. METHODOLOGY
In this section, we will describe the metrics we use and the data

analysis methodologies.

2.1 Metrics
The list of possible features one could consider is very large. We

can broadly classify these into three categories:
Packet level statistics: Examples of packet level features in-

clude sizes and inter-arrival times of packets. Such characteristics
are simple to compute as they can be gleaned directly from a trace.
Moreover, they offer a characterization of the application that is
independent of the notion of flows, sessions or other higher level
aggregations.
Flow level statistics: A flow is defined as a unidirectional se-

quence of packets that have some common property, typically the
values contained in the 5-tuple (source IP, destination IP, source
port, destination port, IP Protocol type). Examples of flow level
features include the distributions of durations, data volumes and
packet numbers of flows. We can also compute the packet level

statistics of packets within flows. In particular, we can characterize
the burstiness of a flow by the relative variance of the inter-arrival
times between packets of the flow in question.
Session level statistics: Some interesting characteristics can be

captured only by considering statistics across multiple flows. For
example, many http objects embed other objects with different URLs

also from different sites which may be downloaded over different
TCP connections. Therefore, considering a set of flows belonging
to the same session allows a closer representation of user experi-
ence.

2.2 Extracting Sessions
Sophisticated web services today often include many static and

dynamic objects. For example, in response to a request, a browser
typically first downloads a main html object that defines the struc-
ture of the page, followed by a cascading style sheets object that

describes the presentation of the page and a number of embedded
objects such as images or advertisements which in turn also may
contain embedded objects.
To extract complete sessions (“web pages”) from a packet trace

we first parse the dump and extract the http related packets to con-
struct http flows. Then we group flows that belong to the same page

download process to form sessions.
In more detail we first parse the packet payload to obtain in-

formation related to the http protocol itself such as the url, agent,
objects, and response code. We then apply two rules to group flows
that belong to the same service request.

• The first rule is based on content. By parsing html pages, we

gather lists of objects embedded in the current page. Then,
we search for these objects among subsequent flows and,
once a match is found, the flow is grouped with the other
flows of that request.

• The second rule is based on time. In some cases, requests are
generated by locally executed Java scripts and in other cases
http pages are encrypted. To handle these and other, similar
scenarios, we use a heuristic timeout to group flows as fol-
lows. If two flows between two specific IP addresses are seen
within a short time interval, it is likely that they belong to the

same http request. We have tested different thresholds and

found that the results are not that sensitive to the exact value

and settled for 0.5 seconds in our experiments.

Our algorithm was compared to another, independently designed

and implemented one, and it was found that the two produced very
similar results. Nevertheless, it is clear that the results will contain
errors due to, e.g., encryption and dynamically generated requests.

2.3 Clustering Applications
Next, we identify similarities and differences across different ap-

plications.

Identify similarities using clustering: In order to group appli-
cations with similar traffic patterns, we choose clustering, an un-
supervised learning mechanism wherein unlabelled training data is
grouped based on similarity. We selected the K-means algorithm
[12] because it is one of the quickest and most simple. The al-
gorithm partitions objects in a data set into a fixed number K of

disjoint clusters. A small distance between two objects implies a
strong similarity whereas a large distance implies a low similarity.

Identify difference using statistical tests: To determine differ-
ences between distributions we use MWU, the Mann-Whitney U -
test [13]. MWU is a non-parametric method that measures whether

two distributions are equal based on the ranks of the samples, i.e.,
the relative location in a merged, ordered vector. It determines if the
two distributions are equal or there exists significant differences.
We choose the U -test because it is efficient and accurate when the
number of samples is relatively small.

2.4 Analysis Steps
In summary, our analysis contains three dimensions: access me-

dia types, comparison metrics, and applications, cf. Figure 1. To
conduct our analysis systematically, we are first guided by the two
goals, i.e., comparing access media types and identifying differ-
ences between cellular and wireline web traffic. To this end, we
apply the same filter on both cellular and wireline data. The filter

first selects a target metricMi to evaluate, and then picks an appli-
cation or a group of applicationsAi. Finally, we use statistical tests
to detect differences between the two distributions.
To detect difference across wireless apps, we first cluster applica-

tions into groups using both an automatic clustering algorithm and
manual grouping based on service type. The purpose is to examine

if there exist any groups of applications with similar performance
properties. After creating groups, we select one pair of applica-
tions from the same group and one from a different group. Next we
examine each metric with respect to distribution differences. The
logic behind this analysis is to first identify high level differences

such as performance differences. Then we search for explanations
by detailed low level traffic characteristics using different metrics.
At the last step, we also verify the explanation by checking that
other cases where these low level differences occur exhibit similar
high level differences.

3. EXPERIMENTAL RESULTS

3.1 Data Sets
We have used two data sets collected during approximately the

same period. The wireless data set was collected on a Gn interface
between a Gateway GPRS Support Node (GGSN) and a Serving
GPRS Support Node (SGSN) in a cellular network. It contains
168 hours of data with 3.9 million sessions from 50k IP addresses.
The wireline data set was collected at the head end of a munic-
ipal network. It contains 31 hours of data with 19 million ses-

sions from 21k IP addresses. Both sets contain full-size packets
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Metric

Application

Access media

Wireline   WirelessFacebook

Google

YouTube

Packet

Flow

Session

...

Volume

Duration

Burstness

Usage

...

Select application Ai

Wireline packet trace Wireless packet trace

What are the unique characteristics 

of wireless traffic?

What are the differences between 

wireless applications?

Wireless packet trace

Compute difference in distribution

Select metric Mi, Compute 

statistics for Mi

Cluster applications to groups

Select application Ai, Ai’, and Aj 

(Ai, Ai’ in same group, Aj in different group)

Select and compute metric Mi for Ai, Ai’ and Aj

Compute difference in distribution

Figure 1: Analysis logic.
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Google.
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Figure 6: Average inter-packet gaps for

Facebook, Google Video and Worldpress.
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Figure 7: Average packet size packet sizes

for Blogspot, Flickr and YouTube

to enable reconstruction of all http transactions, but we have only
had direct access to anonymized results where individual users can-
not be traced. While both sets are very large, the results may not
be representative of other networks, countries or time period, de-
pending on, e.g., the combinations of devices, applications, tariffs

and preferences. We start by using the two-level domain identifiers
to identify an origin; e.g., the two URLs profile.facebook.com and
www.facebook.com are considered to be the same two-level domain
identifier facebook.com.

3.2 Differences between Cellular andWireline
Traffic

3.2.1 Content Differences

Because of the limited bandwidth of wireless links and the ca-
pacity of mobile devices, one may expect that the content sent to
mobile devices is different from the content sent to PCs; mobile
content may, e.g., fit a more compact device, consume less band-
width or require less computation. We first examine the correctness

of this hypothesis.

For each application, we compute the average flow size Φ in
bytes for both types of access, Φwire and Φcell respectively, after
which we compute their relative difference:

∆(Φ) =
Φwire − Φcell

Φwire
.

Similarly, we compute the average session size S in bytes per ap-

plication for both types of access, Swire and Scell respectively, and
then their relative difference ∆(S).
Figure 2 shows the distributions of the relative differences. We

observe that for the majority of applications, about 70%, the amount
of data indeed is larger for wireline than for wireless. However, for
around 15% of the applications we note that the amount of data is

the same for both accesses (the relative differences are zero) and
for the last 15% of the applications the amount of data volumes is,
in fact, larger for wireless than for wireline. Wireline traffic tends
to use larger flows but this may be deceiving since the differences
are smaller when measured over complete sessions.
To further highlight these observations, we consider two exam-

ple applications viz.. the photo sharing site Flicker in Figure 3 and
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the search engine Google in Figure 4. Both figures show the distri-

butions of the amount of data per flow and session. Flicker shows
expected results: more data is delivered per flow and per session
with wireline access than with wireless access, and this difference
is more obvious for flows. For Google, however, we observe two
opposite trends; more data per flow with wireline access but more
data per session with wireless access. This is because Google uses

more flows per session in wireless, as can be seen in Figure 5.
Among the 100 applications we test, 82 have similar observations,
suggesting that it is quite common to use more flows in parallel
for wireless access. This may be an attempt to provide resilience
against single TCP time outs caused by variable delays due to link
layer retransmissions.

3.2.2 Traffic Differences

Besides customizing the content and the presentation for mobile
users, service providers can also optimize other traffic characteris-

tics for mobile access. Below we focus on packet inter-arrival times
and packet sizes.
For each flow, we compute the average of the inter-arrival time

between any two consecutive packets, and then plot the distribu-
tion per application. Three examples are given in Figure 6, viz.
Facebook, Google Video, and Worldpress, as they are among the

most popular web sites and at the same time exhibit different traf-
fic characteristics. Google Video and Facebook both exhibit much
larger packet gaps over wireless access compared to wireline ac-
cess, but this difference is negligible for Worldpress. In particular
we note that the gaps for Facebook are surprisingly large (50% of

them are larger than 1 second). We calculated the network delay
from TCP SYN/ACK pairs at the same time as these delays were
noted and found that this indeed is significantly less. The cdf of
inter-packet gaps would be step shaped for “smooth” traffic (pack-
ets being equally spaced) but gently sloping for “bursty” traffic
(some packets close to each other and other packets far apart) and

conclude that traffic in cellular networks tends to be more bursty.
This may be an inevitable result of the radio access but it has con-
sequences for the required margins in the transmission network.
As for packet sizes, we note that links are associated with max-

imum transfer units (MTUs) and packets which exceed the MTU
of a link will be fragmented or dropped by the router depending

on the setting of the IP fragmentation flags. Noting that traffic in
cellular networks is tunnelled between GGSNs and SGSNs/RNCs
using the GTP protocol, and that this adds overhead (i.e., the GTP
layer and the outer IP layer) to the packets, it may be suspected
that packets the size of which is close to the MTU of, e.g., Eth-
ernet, could exceed this size when tunnelled in cellular networks.

We examined this problem and found that 87% of the applications
have the “Don’t Fragment” bit set in the IP header. Moreover, Fig-
ure 7 shows the packet size for three applications, viz. Blogspot,
Flickr and Google Video. For the two former, wireline packets are
much larger than wireless packets while for the later packet sizes

are about the same. We noted that Blogspot does not set the “Don’t
Fragment” bit while Google and Flickr does, but found no fragmen-
tation at all irrespective of these settings and we conclude that this
may be the desired result of a deliberate choice by service providers
to use smaller packets in wireless networks.

3.2.3 Usage Differences

Understanding the diurnal patterns of cellular traffic is important
for the operators to better provision both network and computa-
tional resources. In this analysis, we compare the traffic volumes

and access times at different hours of the day, aggregated over all

applications and separated for the two most popular applications,

Facebook and Google.
We investigate the diurnal patterns by aggregating all applica-

tions. For this analysis, we map each flow to the local time, and
compute the traffic volume seen at each time interval and normal-
ize the result by the total volume. Figure 8 shows clear diurnal pat-
terns of traffic volumes. In general, users are more active during the

daytime than at night but this pattern is strikingly less pronounced
for wireless traffic compared to wireline traffic. Noting that the
wireline peak co-insides with office hours, a possible explanation
for this is that wireline devices are used for working and that web
based services are more popular for work related issues. (The wire-
line devices may be used for other services at other times.) Wire-

less devices, on the other hand, are used more outside work and
relatively more often for web based services than for other services
with possibly higher data volumes. In Figure 9 we examine the
most popular web sites and see similar patterns over the day for
both applications. An important conclusion from these findings is
that cellular networks may offer less potential for handling growth

by moving traffic in time through, e.g., nightly pre-caching of pop-
ular content or low night time tariffs.

3.3 Differences across Wireless Applications
Next, we identify the differences between wireless applications

by examining if applications can be categorized to different groups,

if they are different along certain metrics, and if the grouping im-
plies different QoS requirements.

3.3.1 Resource Utilization of Different Categories

Two important optimizations are the times to keep a bearer up
and the time until idle state. These are set by silence period time-
outs hence the more they vary, the more difficult it is to choose

timeouts. We quantify this resource utilization by examining the
period between any two consecutive packets. We consider the met-
ric of the average packet inter-arrival time for each flow (inter-
packet gap).
To examine the difference, we group applications based on their

types based on the domain knowledge. In particular, we study

three groups: video streaming (YouTube, GoogleVideo, RTVE,
Vimeo, Youku), social web (Tuenti, Facebook, Twitter, Linked-
In, MySpace, LiveJournal) and news (CNN, BBC, washingtonpost,
wikipedia). For each application group, we show the distribution
of inter-packet gap per flow in Figure 10. We indicate the spread
within each group (in terms of the standard deviation) by vertical

bars. As can be seen in the figures, the different groups exhibit dif-
ferent packet inter-packet gaps and these differences could be used
to support advanced optimizations, e.g., application dependent han-
dling of bearer and terminal states.
Finally, we demonstrate the difference using two examples. Fig-

ure 11 shows the corresponding CDFs for the two most popular

web sites. It is seen that, in general, the next packet of a flow will
arrive no more than a few seconds after its predecessor but that this
varies between applications. This means that, e.g., silence periods
are easier to detect for apple than for facebook; for apple a few
seconds of silence means that the flow is over with a probability of

about 0.9 while the same figure for facebook is about 0.5.

3.3.2 Differences between Apps in the Same Cate-
gory

Applications of the same type, e.g., social networks, may be dif-
ferently implementated and optimized. Next, we apply K-means
clustering to special subsets of applications and add Principal Com-

ponent Analysis (PCA) [16] to investigate the impact of the differ-
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popular sites.
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ent variables on the clusters. Figure 14 shows the results for the top

10 most popular social websites. The first component is dominated
by flow size, session size and inter-packet gap, while the second
component reflects different packet size. For example, Facebook
and Tuenti are in different clusters because their flows and sessions
are quite different hence they are far apart in the first component.
Similarly, Tuenti and twitter are in separate clusters as their packet

sizes differ significantly.
We examined all metrics of social applications but, due to the

limited space, we focus on one metric, the number of flows in ses-
sions of the same size, using Tuenti and Twitter from different clus-
ters as examples. To deliver the same amount of data, some appli-
cations may use a few long flows while others may use multiple

small flows. Figure 12 shows that for Twitter the number of flows

tend to grow with the session size whereas for Tuenti the number of
flows appears to be relatively independent of the session size. That
is, larger sessions correspond to more flows in Twitter but to longer
flows in Tuenti.
The same volume of data can be delivered by a variable number

of flows, similar volumes of data can also be delivered with differ-
ent delays. Figure 13 compares the duration of sessions of similar
sizes from the same example, and it is seen that the former tends to
produce longer delays with shorter sessions. The delay can be very
high, probably because of different application implementation de-
signs.

4. RELATED WORK
There are numerous studies of web workloads from the perspec-

tive of proxies [5, 20], browsers [7, 3], and servers [1]. Different
models have been studied to capture web traffic dynamics [4, 14,
19, 6]. Most studies are, however, limited to wired networks while
there are few and limited studies related to wireless networks. A

group of studies attempted to understand cellular traffic from dif-
ferent perspectives. [21] focuses on the diverse usage of smart-
phone apps in cellular networks. [18] studies the traffic dynamics
using flow-level data. They propose a Zipf-like model to capture
the volume distributions of application traffic and a Markov model
to capture the volume dynamics of aggregate Internet traffic. Paul

et al. [15] analyzed the radio resources usage. Other studies focus
on a specific application such as over-the-top video [8]. Also re-
lated are studies that proposed measurement tools for smartphone
devices characterizing either the device performance or the perfor-
mance of certain apps [10, 17, 22]. Our study is complementary, as
it focuses on the traffic pattern of web traffic, and it has implications

on resource consumption. The tool BLT [9] has some similarities
to our web page extraction but appears to handle neither embedded
documents nor HTML 1.1.
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5. CONCLUSIONS
In this paper, we have analyzed the characteristics of cellular

data traffic with respect to different applications and compared the

results to those obtained in fixed networks. We summarize our main
findings below.
1) We found that, for a majority of applications, wireless ses-

sions contain less data than wireline ones, but that for some others
there is either no difference or even larger volumes for wireless
networks. 2) We have also noted that a few long flows in fixed

networks often translate to many short flows in cellular networks.
Flow sizes can thus be deceiving since the number of flows varies
between the two accesses and between different applications. An
important conclusion is that traffic volumes only can be compared
on a session level.

3) Next we noted that packet arrivals are burstier in wireless
networks than in wireline ones. This may be because of the ra-
dio access (e.g.,, it may encourage batches of acknowledgements
which in turn may trig batches of user data etc.). In any case we
note that this means that higher margins are needed in, e.g., cel-
lular backhaul sthan in xDSL access networks. 4) We found the

packet sizes differ between the two accesses: wireless packets are
smaller. We believe that this is a deliberate optimization to prevent
the fragmenting that otherwise could occur as packets are subject
to additional tunnelling overhead in cellular networks.
5) The demand for these services vary less over time in cellu-

lar networks than in fixed ones. We believe that, to some extent,

this may be because the services we are looking at are more at-
tractive during office hours whereas other services are favoured at
other times. Another reason may be that the wireline data may in-
clude corporate traffic. In any case, suggests that cellular (core) net-
works reach a more even utilization than wired ones which means
that there is less room to handle growth by moving traffic in time

through, e.g., nightly pre-caching of popular content or low night
time tariffs. 6) Finally, we have seen that inter packet gaps differ
significanlty between different service types and we note that this
can be used to support advanced optimizations like, e.g., applica-
tion dependent handling of bearer and terminal states, without DPI.
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