
Exploring Mobile/WiFi Handover with Multipath TCP

Christoph Paasch†

christoph.paasch@uclouvain.be
Gregory Detal†

gregory.detal@uclouvain.be

Fabien Duchene†

fabien.duchene@uclouvain.be
Costin Raiciu‡

costin.raiciu@cs.pub.ro
Olivier Bonaventure†

olivier.bonaventure@uclouvain.be
†Université catholique de Louvain

‡University Politehnica of Bucharest

ABSTRACT
Mobile Operators see an unending growth of data traffic
generated by their customers on their mobile data networks.
As the operators start to have a hard time carrying all this
traffic over 3G or 4G networks, offloading to WiFi is being
considered. Multipath TCP (MPTCP) is an evolution of
TCP that allows the simultaneous use of multiple interfaces
for a single connection while still presenting a standard TCP
socket API to the application. The protocol specification of
Multipath TCP has foreseen the different building blocks to
allow transparent handover from WiFi to 3G back and forth.

In this paper we experimentally prove the feasibility of
using MPTCP for mobile/WiFi handover in the current In-
ternet. Our experiments run over real WiFi/3G networks
and use our Linux kernel implementation of MPTCP that
we enhanced to better support handover.

We analyze MPTCP’s energy consumption and handover
performance in various operational modes. We find that
MPTCP enables smooth handovers offering reasonable per-
formance even for very demanding applications such as VoIP.

Finally, our experiments showed that lost MPTCP con-
trol signals can adversely affect handover performance; we
implement and test a simple but effective solution to this
issue.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks—Internet ; C.2.6 [Computer-Com-
munication Networks]: Internetworking—Standards; C.4
[Performance of Systems]: Design Studies; Performance
attributes.

General Terms
Measurement, Performance

Keywords
MTCP, Vertical Handover, WiFi/3G, Energy Consumption

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CellNet’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1475-6/12/08 ...$15.00.

1. INTRODUCTION
Despite the huge investments, 3G mobile data networks

have difficulties in supporting the growing bandwidth con-
sumed by recent smartphones and tablets. Industry experts
expect that these bandwidth requirements will continue to
grow in the future and the deployment of new cellular tech-
nologies such as 4G or LTE may not be sufficient to sustain
the demand.

In parallel with cellular data networks, WiFi is being de-
ployed continuously: most enterprise and schools provide
WiFi services to their employees and students, some cities
have started to deploy WiFi services for their citizens, and
many homes use WiFi networks to connect to cable or ADSL
modems. Some operators, including BT in the UK or Bel-
gacom in Belgium, have deployed managed WiFi services on
most of their clients’ ADSL routers. This allows services like
FON to aggregate more than 3 million access points in the
UK alone [1].

The widespread availability of 3G and WiFi creates ob-
vious opportunities for end-users and operators alike. User
experience can be improved if devices use multiple links ei-
ther simultaneously or alternatively while moving. Mobile
network operators would like to be able to “steer” the net-
work their clients are using depending on 3G occupancy, etc.

Meanwhile, the devices themselves use either the 3G or
WiFi network at any given point in time, and any handover
between the two causes TCP connections to be restarted
which disgruntles users.

Multipath TCP (MPTCP) [10] is a TCP extension be-
ing standardized at the IETF that enables a single TCP
to use multiple interfaces on the client and/or the server.
MPTCP works with unmodified applications and runs over
today’s Internet. In our previous work, we have described
why MPTCP is a promising solution for mobility [9] and
used simulations to assess the possible benefits.

In this paper we describe our experimental study of MP-
TCP handover. Our aim is to understand how MPTCP will
behave in practice, on real wireless networks and with real
applications. To perform such evaluation we had to opti-
mize the Linux MPTCP stack in order to better support
WiFi/3G handover1.

A key concern for running MPTCP on mobiles is energy
usage: we measure energy consumption of MPTCP on the
Nokia N950 to understand this aspect. Our results show that
using multiple interfaces provides better throughput but at

1Our Linux Kernel Implementation of MPTCP is freely
available at http://mptcp.info.ucl.ac.be

31

higher energy cost (Section 4.4). To capture this tradeoff,
we first choose three handover modes and test their perfor-
mance in practice while handing traffic from WiFi over to
3G (Section 4). We then show that MPTCP allows smooth
handovers from WiFi to 3G while maintaining connectivity
for applications. Finally, we propose minor changes to the
MPTCP protocol that significantly reduce handover delays
in certain practical cases (Section 5).

2. MPTCP VERTICAL HANDOVER
Multipath TCP (MPTCP) spreads the traffic over differ-

ent interfaces of an end-host, moving traffic away from con-
gested links while being fair to single path TCP [14]. A key
design choice of MPTCP is its backward compatibility with
both the applications and the network; MPTCP preserves
the standard socket API that is used by most Internet ap-
plications.

An MPTCP connection contains one or more subflows,
each of which appears like a regular TCP connection to the
network. When the connection starts, MPTCP options are
included in the SYN segments to verify that the destina-
tion is MPTCP capable and to negotiate a token that will
uniquely identify this connection. Additional TCP subflows
can be associated to this MPTCP connection by carrying the
previously exchanged token in their three-way handshake.
MPTCP splits the application’s data stream among all the
established subflows to maximize the use of all the avail-
able resources. Only one subflow will typically be used on
each interface in order to improve the reaction to failures
and maximize throughput. In a mobile environment, mo-
bile nodes have usually one or more wireless connections to
the Internet using a WiFi, 3G and/or 4G interface. Such
mobile nodes can leverage Multipath TCP’s ability to use
multiple interfaces in order to increase the performance but
also to preserve established MPTCP connections while mov-
ing around. The later is not possible with standard TCP as
any change in the IP address of a host forces it to restart all
established TCP connections. With MPTCP, a change in
the IP address of a host does not force the MPTCP connec-
tion to be restarted. An MPTCP connection is associated
to a set of underlying TCP subflows. TCP subflows can be
added or removed from this set without impacting the MP-
TCP connection or the application. This ability to add and
remove TCP subflows is key in MPTCP’s ability to support
mobile nodes. We describe it in more detail below.

2.1 Adding and Removing TCP Subflows
Once an MPTCP connection is established, each endpoint

knows one of the IP addresses2 of its peer.
If a mobile client has an additional address, it will just

send a SYN packet with a JOIN option to the server’s known
address. The JOIN option tells the server which connection
this subflow belongs to. If the server has an additional ad-
dress, it cannot directly connect to the mobile client if the
latter is behind a NAT. In this case, the server sends an Add
Address option on an existing subflow indicating the avail-
ability of a new address. Upon reception of this option the
client will try to establish a new TCP subflow to the newly
received address.

2MPTCP supports both IPv4 and IPv6. In this paper, we
use IP address as the generic term for an IPv4 or IPv6 ad-
dress. Our implementation supports both IPv4 and IPv6.

Similarly, the Remove Address option can be used to in-
form the peer when one of its addresses has become unavail-
able (e.g., the mobile node is no more connected to a WiFi
access point). Upon reception of this option the destination
closes all TCP subflows that are using this address.

These two options are typically sent on separate TCP
ACKs3 and thus may get lost in the network. When los-
ing an interface, the Remove Address option is sent on the
remaining subflows, which can be none in some cases, e.g.,
when a node is moving from one WiFi access point to an-
other. Therefore a server might not always be aware of the
lost address on the mobile node which, as we will see later,
can impact the handover performances.

3. HANDOVER MODES
A mobile node should be able to adapt its protocol stack

to its user’s requirements. From the user’s viewpoint, there
are three important factors to be considered. The first fac-
tor is the performance of the data transfer. Some users will
probably prefer the fastest possible data transfer. The sec-
ond factor is the battery lifetime. Some users will probably
trade performance for longer battery lifetime. The third fac-
tor is traffic pricing. Some networks, typically 3G networks
are billed in function of the number of transmitted bits or
packets. Some users will favor cheaper networks.

An MPTCP implementation should take these factors into
account. In our current implementation, we have identified
and implemented three modes of operation for MPTCP that
correspond to most user needs.

Full-MPTCP Mode refers to the regular MPTCP operations
where all subflows are used, i.e., where a full mesh of TCP
subflows among the client’s and the server’s addresses is cre-
ated. Such mode is mostly intended for users who want to
obtain the best data transfer rates.

Backup Mode. MPTCP opens TCP subflows over all in-
terfaces, but uses only a subset of these to transport data
segments. The MPTCP protocol allows an endpoint to sig-
nal to its peer that it should avoid sending data on a specific
subflow by sending the MP PRIO option on this subflow.
This would enable MPTCP to optimize for cost or battery
lifetime by sending data segments over the cheaper inter-
faces. As we will see later, in today’s networks it makes
sense for MPTCP to prefer the WiFi interface when avail-
able and only use the 3G interface when there is no WiFi
connectivity.

Single-Path Mode allows a similar behavior as the Backup
mode, except that at any moment a single subflow is es-
tablished and used for each MPTCP connection. When the
interface goes down, Single-Path establishes a new TCP sub-
flow over the other interface. This is possible due to the
break-before-make design of MPTCP. It allows a short mo-
ment during which no subflow is active. MPTCP is able
to recover from this interruption by establishing a new TCP
subflow and continue the data transmission without disturb-
ing the application. Compared to the Backup mode, this
mode needs to wait two more round-trip times before the
new MPTCP subflow is established and data can be sent.

3MPTCP does not treat duplicate ACKs containing such
options as a signal of congestion. [4]

32

4. EVALUATION
In this section we provide a first evaluation of the per-

formance tradeoffs when using the three handover modes
presented in the previous section. We perform our measure-
ments in real networks. Using such networks is more difficult
than performing lab measurements, but is much more realis-
tic and shows the ability of MPTCP to function in deployed
networks. Our measurement setup consists of a client (i3
@2.5GHz 4GB RAM) connected to both a commercial 3G
network and through a WiFi interface to an ADSL broad-
band access provider. The 3G network offers a bandwidth
between 1 and 2 Mbps and suffers from huge bufferbloat4.
The ADSL bandwidth is around 8 Mbps upstream and 450
Kbps downstream with an RTT about 30ms. The client
connects to a server (Xeon @2.67GHz 4GB RAM) located
in a public-hosting server farm. Both client and server run
our MPTCP kernel implementation.

Our measurements focus on two distinct aspects of MP-
TCP usage: first, we explore the impact of a handover on
MPTCP connections using the different modes on both bulk
data transfers and a VoIP application. Second, we explore
the energy usage of MPTCP when using 3G or WiFi to un-
derstand how users might optimize for energy.

Our handover experiments start with a client connected
to both WiFi and 3G networks and then after five seconds
we disable the WiFi interface on the ADSL router. This
emulates a mobile user moving out of WiFi coverage: the
client discovers the failure of the WiFi network and switches
to only using its 3G connection. This vertical handover from
WiFi to 3G introduces an abrupt change in path qualities.

4.1 Download Goodput
We evaluate the evolution of goodput for a simple HTTP

application during vertical handover. Fig. 1 shows this good-
put averaged over 200ms intervals over 20 measurements for
the different handover modes. The x-axis shows the offset
compared to the time when the client lost its WiFi connec-
tion (the point 0).

For comparison purposes, Fig. 1 also shows the goodput
of an Application-level Handover which is a modified HTTP
client (running over regular TCP) that monitors the changes
in the routing table to detect the failure of the WiFi inter-
face. Upon detection of the failure, our application restarts
the HTTP download by using the HTTP Range header.
Supporting such handover requires significant changes to the
application, and is specific to the HTTP protocol; in con-
trast, MPTCP does not require any application-level mod-
ification. Further, even if all client applications use HTTP
Range, a brief study we performed shows that only 39% of
the top ten thousand Alexa websites support this feature.
Although feasible in theory, application-level handover can-
not always be used in practice.

We can see in Fig. 1 that when the WiFi network be-
comes unavailable, the Backup mode behaves similarly to
Full-MPTCP which is normal. The TCP subflow on the 3G
interface is already established in both cases. The difference
between the two modes comes from the fact that in Backup
mode only the three segments belonging to the three-way
handshake have been sent on the 3G interface while with the
Full-MPTCP mode data segments have also been transmit-

4We observed up to 2 seconds RTT when sending bursts of
data.

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Relative Time w.r.t the Wi-Fi loss [seconds]

0

1

2

3

4

5

6

7

8

9

G
o
o
d
p
u
t

[M
b
p
s]

Wi-Fi loss Full-MPTCP

Backup Mode

Single-Path Mode

Application Handover

Figure 1: It takes up to three seconds to recover from an
address loss when performing handover with MPTCP.

ted on this interface. Full-MPTCP recovers quickly because
the congestion window on the 3G subflow is larger than in
the Backup mode, where the congestion window still has the
initial value. The Single-Path mode and Application Level
Handover are impacted by the time the 3G interface takes
to go from idle to up. Without this impact they behave simi-
larly: they both need to perform a three-way handshake and
then respectively reinject and send data into this new sub-
flow/connection, starting with an initial congestion window.
After three seconds, all modes reach the average download
speed on our 3G network.

We also performed measurements where we forced the
3G interface to remain active, and found that there were
not much differences between the Backup and Single-Path
modes. In this case, the performance impact of the three-
way handshake is negligible on average.

4.2 Application Delay
Variation in application delay is an important metric for

streaming or VoIP applications. We measure the application
delay by sending blocks of data, tagged with a timestamp.
Upon reception of each block, we store the transmission
timestamp together with the timestamp at the receiver-side.
The evolution of the difference between these timestamps
gives us the variation in application delay.

We performed measurements during which the server was
transmitting at 500Kbps to the client. Initially WiFi and
3G are enabled and data segments are sent according to the
specified handover mode. After around 5 seconds, the WiFi
access-point is disabled and traffic has to switch over to the
3G interface.

Fig. 2a and 2b show the impact on the application delay
when handing the traffic over from WiFi to 3G. The Backup
mode is not shown since it is similar to Full-MPTCP . A
sending rate of 500Kbps does not fill the pipe over the WiFi
interface and since MPTCP prefers the WiFi path with its
higher bandwidth and lower RTT, no traffic is sent over the
3G network, even in Full-MPTCP mode.

As in Single-Path mode no subflow is established over 3G
prior to the vertical handover event, the 3G interface is idle
and thus first needs to come up before establishing the new
subflow. This takes up to 2 seconds and its impact on the
application delay can be seen in Fig. 2a. When the 3G inter-
face is forced to remain active, the impact of establishing the
new subflow over Single-Path is less important as can be seen

33

3 4 5 6 7 8 9 10
Time [s]

0

500

1000

1500

2000

2500

D
e
la

y
 d

if
fe

re
n
ce

 [
m

s]
Single-Path Mode

Full-MPTCP

(a) The 3G modem takes about two 2 sec. to switch from idle to
operational-state.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Time [s]

0

50

100

150

200

250

300

350

D
e
la

y
 d

if
fe

re
n
ce

 [
m

s]

Single-Path Mode

Full-MPTCP

(b) When forcing 3G to stay enabled, the impact of Single-Path
is less important.

Figure 2: Evolution of the application delay.

in Fig. 2b. Full-MPTCP has a slight peak during handover
due to two reasons: First, the client needs to announce the
lost WiFi-interface with the Remove Address option. Sec-
ond, because only a small number of data segments were
sent through the 3G interface, its congestion window is not
yet large enough to sustain a sending rate of 500Kbps. The
application delay is higher during the slow-start-phase until
the congestion window allows a steady rate of 500Kbps.

4.3 Impact on Existing Applications
Since MPTCP does not change the socket API, it can

be used transparently by any TCP application. Skype is a
commercial Voice over IP application that is able to operate
over both TCP and UDP. We experiment with Skype—that
has very tight constraints on packet-level delays—to show-
case a worst-case for MPTCP handover. We do not imply
that Skype should be run over TCP or MPTCP—it is much
better to run Skype over unreliable transports such as RTP
or UDP if possible.

For our experiment, we force Skype to pass through an
MPTCP-enabled HTTP-proxy by blocking UDP and other
TCP ports on the client’s firewall. Otherwise Skype will by
default try to use UDP or do regular TCP over the public
Skype-servers. We use the Skype API to play a recorded file
and record the received signal. Around the 7th second we
turn down the WiFi access point and MPTCP seamlessly
performs the handover to the 3G interface without any im-
pact on the application.

O
ri

g
in

a
l

Fu
ll-

M
PT

C
P

Wi-Fi loss

5 6 7 8 9 10 11 12
Time [s]

S
in

g
le

-P
a
th

M
o
d
e

Wi-Fi loss

Figure 3: During the failover to 3G a short moment of silence
happens during the Skype-call.

We compare the impact on the voice signal during han-
dover from WiFi to 3G with the different handover modes.
Fig. 3 shows the amplitudes of the original signal and the
signals impacted by the handover. When using MPTCP in
either handover modes, the Skype-session does not break
and the call continues. A short moment of silence follows
the loss of the WiFi interface. This is because MPTCP
needs to detect the failure and then reinject the lost data
segments in another subflow (Full-MPTCP) or in a newly
established subflow (Single-Path). Hence, Skype plays the
received voice signal with some additional delay but resyn-
chronizes the call after some time.

4.4 Energy Consumption
Smartphones have a limited battery lifetime, it is therefore

important to understand the impact of using MPTCP on en-
ergy consumption of a smartphone over WiFi and/or 3G and
compare it to regular TCP. Early works have already shown
the potential opportunities to improve a smartphone’s en-
ergy consumption by using Multipath TCP [8, 9]. These
evaluations were solely based on simulations; we fill this gap
here.

We have ported our Linux Kernel implementation of MP-
TCP on a Nokia N950 smartphone and have been able to
accurately measure its energy consumption thanks to a mod-
ified battery. We measure the total number of Joules con-
sumed during a measurement period and divide it by the
number of bits transmitted by the application. This allows
us to take into account the impact of the MPTCP overhead
on the energy consumption.

To evaluate MPTCP’s impact on smartphone energy con-
sumption we download a file from a public MPTCP-enabled
web server by using either regular TCP over WiFi or 3G
and by using MPTCP simultaneously over WiFi and 3G. We
consider two representative scenarios [3]. Our first scenario
is the repeated download of one file of 1MB. The second
scenario is the repeated downloads of a small file (100KB)
with 5 seconds idle time between each download. This two
scenarios correspond to large file download and web brows-
ing [3].

At very low speeds, we observed in the first scenario that
regular TCP over WiFi consumes roughly half of the energy
per bit compared to regular TCP over 3G (Fig. 4). This
is because the WiFi interface of the Nokia N950 is able to
quickly switch in energy-saving mode. If few packets are

34

0 100 200 300 400 500 600 700 800
Throughput on each link [Kbps]

0

5

10

15

20
E
n
e
rg

y
 c

o
n
su

m
e
d
 [

µ
-J

o
u
le

s
p
e
r

b
it

]
Downloading 1MB

Regular TCP (3G)

MPTCP (WiFi & 3G)

Regular TCP (WiFi)

Figure 4: Especially on very slow links using the WiFi in-
terface has a benefit.

0 200 400 600 800 1000
Throughput on each link [Kbps]

0

5

10

15

20

25

E
n
e
rg

y
 c

o
n
su

m
e
d
 [

µ
-J

o
u
le

s
p
e
r

b
it

]

50 downloads of 100KB with 5s timeout

Regular TCP (3G)

MPTCP (WiFi & 3G)

Regular TCP (WiFi)

Figure 5: WiFi is much more flexible with respect to varying
traffic characteristics.

generated, the WiFi interface is able to save energy between
the individual packet bursts. On the other hand, the 3G
interface is not able to quickly change its operational mode
and thus its energy consumption is higher. As MPTCP uses
both interfaces at the same time, the download finishes twice
as fast as the other measurements, and thus its energy con-
sumption lays exactly between WiFi-only and 3G-only.

The second scenario, shown in Fig. 5, highlights the im-
pact of the tail-energy as described in [8]. When no more
packets are passing on the 3G interface, unlike the WiFi in-
terface, the 3G interface does not directly switch to energy-
saving mode. On the Nokia N950 this process may take up
to 7 seconds before the 3G interface goes into standby-mode.
During these 7 seconds the interface continues consuming en-
ergy, the so-called tail-energy. As in the scenario reported in
Fig. 5 the downloads are repeated every 5 seconds, the 3G
interface is unable to switch into energy-saving mode and
thus consumes more energy per bit. As MPTCP is using
both interfaces it is also influenced by the downsides of 3G’s
tail-energy.

4.5 Summary of Experiments
We have seen that MPTCP allows unmodified applica-

tions such as Skype to continue to function while a han-
dover from WiFi to 3G takes place. To our best knowledge,
this is the first time such handover has been tested on real
networks and with real applications.

Our energy evaluation on the Nokia N950 shows that using
the 3G interface is costly in terms of battery-lifetime, so us-
ing Full-MPTCP mode is not the best option for users will-
ing to save battery life5. On the other hand, Full-MPTCP
mode offers the smoothest handover. Using the Backup
mode brings modest performance improvements over Single-
Path mode during handover when the connection is long
enough that it allows the 3G interface to go to sleep. In
such cases the Single-Path mode uses less energy and is thus
preferable. If connections are shorter than 10 seconds and a
handover happens, the Backup mode is preferable as it gives
good performance at modest energy cost.

Given this initial exploration, an interesting question is,
how mobile operating systems can optimize user experience
and battery-lifetime simultaneously. One option is to always
use Full-MPTCP mode when the user is actively using the
phone (i.e. the mobile is in active mode). When the mobile
is sleeping, it makes sense to use less energy hungry modes
such as Single-Path mode.

5. IMPROVING MULTIPATH TCP
During our measurements we stumbled sometimes upon

bad results. In the Backup mode the second subflow ended
up unused after the first one was lost, and high application
delays were observed in Single-Path mode. Both issues orig-
inated from the loss of the Remove Address option which
is sent unreliably as explained in Sec. 2.1. In this section
we discuss these results and show how we can address them
by changing MPTCP to send the Remove Address option
reliably.

Observations.
Losing the Remove Address option has an impact on MP-

TCP’s performance. When receiving the Remove Address
option, the peer closes the affected subflow and reinjects all
unacknowledged data on the second subflow. However, if the
Remove Address option is lost, the peer continues to send
data on all existing subflows, i.e., in this case the first and
second subflow. Reinjection of data from the affected sub-
flow will only occur after a Retransmission TimeOut (RTO).
On congested wireless networks the RTO can easily shoot
up to a few seconds, which significantly affects the handover
process. Furthermore, the initial subflow will remain ac-
tive until the expiration of the maximum retransmission-
timeout (between 13 and 30 minutes), using precious server
resources.

We observed the impact on application delay when losing
the Remove Address option. We found as expected that in
the Backup mode, if the Remove Address option is lost, the
server is not aware that it has to start using the backup-
subflow and thus no data is ever received after losing the
WiFi interface. If the Remove Address option is lost in Full-
MPTCP mode, the server has to wait until the RTO on the
subflow passing by the WiFi-interface. And only after this
RTO the data will be reinjected over the second subflow.
This increases the handover delay.

The current MPTCP specification does not include any
mechanism to ensure a reliable delivery of the Remove Ad-
dress and Add Address options. In our current implementa-
tion, we use one spare bit in these options that serves as an

5Of course, other mobile devices might have different energy
consumptions, and the results might be different.

35

echo bit. We use it as follows. When a host loses an address
it sends the Remove Address option in a duplicate ACK as
described in Sec. 2.1 and starts its retransmission timer. The
Remove Address option is also automatically added to each
outgoing segment. When a host receives a segment contain-
ing the Remove Address option it then immediately replies
with a duplicate ACK that contains the same option with
the echo bit set. Upon reception of this ACK, the initiator
of the Remove Address is now certain it was received. We
implemented this design in our implementation which con-
sisted of around hundred lines of code; all the experiments
we have run use this optimization.

6. RELATED WORK
Over the last decade, multiple research efforts have been

conducted to enable end-hosts to deploy mobility for appli-
cations in a transparent manner. At the different layers of
the OSI-model, protocols such as the Stream Control Proto-
col (SCTP), Mobile IP and MIPv6 have been trying to allow
a mobile node to seamlessly perform vertical handover.

Mobile IP (and it’s IPv6 counterpart MIPv6) enables trans-
parent mobility at the network-layer [7]. Previous work how-
ever has shown that mobility and multipath provides better
performance when being plugged at the transport layer [13].

The addition of Concurrent Multipath Transfer (CMT)
into SCTP [5] was the first step to allow SCTP to split traf-
fic over multiple paths. mSCTP [12, 6] has been proposed
to dynamically update a peer’s address-list and thus allow
handover from one interface to the other, and is similar in
spirit to Multipath TCP mobility. Unfortunately SCTP has
seen very little deployment, as most applications today still
use TCP.

Snoeren et al. proposed Migrate TCP [11] that uses TCP
options and DNS updates to migrate the endpoint of a TCP
session to a different address; this could be readily used for
3G/WiFi offloading. As we have argued in [9], MPTCP is a
better solution because it can use all the interfaces at once
which provides increased performance and throughput.

Offloading 3G to WiFi is not a novel idea. Wiffler [2]
presents a study of 3G and WiFi coverage while driving and
shows how offload can be implemented by changing the ap-
plications. Our solution is more general as it enables un-
changed applications to benefit from offloading.

7. CONCLUSION AND FURTHER WORK
We have carried out an experimental investigation of Mul-

tipath TCP in presence of WiFi and 3G. We have proposed
and evaluated three handover modes : Full-MPTCP , Backup
and Single-Path. Our experiments in commercial wireless
networks demonstrate that MPTCP can play a role for mo-
bile users and also WiFi/3G convergence today. Our mea-
surements show that MPTCP can quickly recover from a
WiFi loss in presence of a 3G interface with only a small
impact on the application delay and goodput. Our experi-
ments with Skype demonstrate that existing unmodified ap-
plications already benefit from MPTCP.

Our further work will be to investigate the performance of
MPTCP in other mobility scenarios such as WiFi to WiFi,
3G to WiFi mobility as well as when both hosts are mobile.

Acknowledgement
This work was supported in part by the FP7 CHANGE
project and a grant from Google, Inc. Part of the work
of Christoph Paasch was performed while visiting Nokia Re-
search as part of the FI SHOK program.

8. REFERENCES
[1] FON WIRELESS, Ltd. FON website available at

http://www.fon.com, April 2012.

[2] A. Balasubramanian, R. Mahajan, and
A. Venkataramani. Augmenting mobile 3G using
WiFi. In Proc. Mobisys. ACM, 2010.

[3] H. Falaki, D. Lymberopoulos, R. Mahajan,
S. Kandula, and D. Estrin. A First Look at Traffic on
Smartphones. In Internet Measurement Conference
(IMC’10), pages 281–287, 2010.

[4] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
TCP Extensions for Multipath Operation with
Multiple Addresses. Internet-Draft
draft-ietf-mptcp-multiaddressed-06, Jan. 2012.

[5] J. R. Iyengar, P. D. Amer, and R. R. Stewart.
Concurrent Multipath Transfer using SCTP
Multihoming over Independent End-to-End Paths.
IEEE/ACM Transactions on Networking,
14(5):951–964, 2006.

[6] S. J. Koh, M. J. Chang, and M. Lee. mSCTP for Soft
Handover in Transport Layer. Communications
Letters, IEEE, 8(3):189 – 191, March 2004.

[7] R. Koodli. Mobile IPv6 Fast Handovers. RFC 5568,
RFC Editor, July 2009.

[8] C. Pluntke, L. Eggert, and N. Kiukkonen. Saving
Mobile Device Energy with Multipath TCP. In ACM
Workshop on MobiArch, pages 1–6, 2011.

[9] C. Raiciu, D. Niculescu, M. Bagnulo, and M. Handley.
Opportunistic mobility with multipath TCP. In ACM
Workshop on MobiArch, pages 7–12, 2011.

[10] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
Hard Can It Be? Designing and Implementing a
Deployable Multipath TCP. In Networked Systems
Design and Implementation (NSDI ’12), 2012.

[11] A. Snoeren and H. Balakrishnan. An end-to-end
approach to host mobility. In Proc. Mobicom, pages
155–166. ACM, 2000.

[12] R. Stewart, Q. Xie, M. Tuexen, S. Maruyama, and
M. Kozuka. Stream Control Transmission Protocol
(SCTP) Dynamic Address Reconfiguration. RFC
5061, RFC Editor, September 2007.

[13] D. Wischik, M. Handley, and M. B. Braun. The
Resource Pooling Principle. SIGCOMM Computer
Communication Review, 38(5):47–52, Sept. 2008.

[14] D. Wischik, C. Raiciu, A. Greenhalgh, and
M. Handley. Design, Implementation and Evaluation
of Congestion Control for Multipath TCP. In
Networked Systems Design and Implementation (NSDI
’11), 2011.

36

