
Using CPU as a Traffic Co-processing Unit in Commodity
Switches

Guohan Lu
Microsoft Research Asia

Beijing, China
lguohan@microsoft.com

Rui Miao
∗

Tsinghua University
Beijing, China

rm870725@gmail.com

Yongqiang Xiong
Microsoft Research Asia

Beijing, China
yqx@microsoft.com

Chuanxiong Guo
Microsoft Research Asia

Beijing, China
chguo@microsoft.com

ABSTRACT
Commodity switches are becoming increasingly important
as they are the basic building blocks for the enterprise and
data center networks. With the availability of all-in-one
switching ASICs, these switches almost universally adopt
single switching ASIC design. However, such design also
brings two major limitations, i.e, limited forwarding table
for flow-based forwarding scheme such as Openflow and shal-
low buffer for bursty traffic pattern. In this paper, we pro-
pose to use CPU in the switches to handle not only control
plane but also data plane traffic. We show that this design
can provide large forwarding table for flow-based forwarding
scheme and deep packet buffer for bursty traffic. We build
such a prototype switch on ServerSwitch platform. In our
evaluation, we show that our prototype can achieve over 90%
traffic offloading ratio, absorb large traffic bursts without a
single packet drop, and can be easily programmed to detect
and defend low-rate burst attacks.

Categories and Subject Descriptors
C.2.1 [COMPUTER-COMMUNICATION NETWORKS]:
Network Architecture and Design—Packet-switching networks

General Terms
Design

Keywords
Traffic Co-processing Unit, Commodity switch, Large for-
warding table, Deep buffer

∗This work was performed when Rui Miao was a visiting
student at Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

1. INTRODUCTION
Commodity switches are the basic building blocks of en-

terprise and data center networks (DCN). Usually with 48 or
64 Ethernet ports, thousands or even more of these boxes are
deployed as top of rack (ToR) switches in large scale data
centers. Moreover, these boxes are becoming increasingly
important as recent researches [1, 2] suggest that the entire
DCN can be built using these boxes for better scalability
and significant cost savings.

There are two design trends for these commodity switches.
First, most of ToR switches now adopt single switching ASIC
approach [3], i.e., using an all-in-one switching ASIC for the
data plane. The all-in-one Ethernet switching ASICs, from
the companies such as Broadcom, Intel and Marvell, greatly
simplify the data plane design. They perform everything
including packet parsing, lookup, buffering, scheduling and
modification, and all lookup tables and packet buffer are
embedded in the ASICs. Second, switch vendors such as
Arista and Force10 now use multi-core x86 CPUs and attach
gigabytes DRAM in their commodity switches for handling
complex control and management plane functionalities, e.g.,
Arista 7050S series use an AMD 1.5GHz dual core x86 CPU
plus 4G DRAM.

While the first design trend has greatly simplified the data
plane design of the switches, using these all-in-one ASICs
also brings two major limitations to the data plane. First,
these ASICs have limited number of forwarding entries for
flow-based forwarding schemes such as Openflow. For exam-
ple, the state-of-art Broadcom switching ASIC has only 2K
TCAM entries to match TCP/IP 5-tuple flows. Such limi-
tation makes it very challenging to support this fine-grained
forwarding scheme which gives lots of routing flexibilities but
requires large forwarding table in return. Second, the on-
chip packet buffer of these ASICs is fundamentally limited
to several megabytes by the chip die size and can be easily
overflowed by the traffic bursts, such as TCP incast [4], TCP
flash crowd and low-rate bursty attack traffic [5], resulting
in severely degraded TCP performance.

On the other side, as CPU is becoming more and more
powerful in packet processing [6, 7], it seems natural to
go further along the second trend by augmenting the CPU
in these commodity switches and letting it do traffic co-
processing, i.e., letting the CPU not only do control plane
but also participate in some data plane functionalities. While

31

the major portion of traffic are still processed by the switch-
ing ASICs, a small portion of traffic can now be processed
by the CPU.

Such design can address the previous two limitations nicely.
First, we can now put the whole forwarding table in software
and use the switching ASIC to offload traffic forwarding.
Since the traffic flows are widely known to be classified as
elephants and mice [8], we can offload the elephants to the
ASIC and onload the mice to the CPU, i.e., let the CPU for-
ward the mice. Second, since the DRAM for a CPU can be
orders of magnitude larger than the on-chip packet buffer,
we can direct the traffic bursts to CPU and use DRAM to
buffer them. Furthermore, once the traffic are processed
by the CPU, we can program the CPU to perform certain
tasks which are difficult for the ASICs. For example, we can
detect malicious traffic bursts and mitigate their effects.

We evaluate our design by prototyping such system on
ServerSwitch platform [9]. First, our prototype delivers 3.9Gb/s
software forwarding throughput for 100k flows and achieves
over 90% traffic offload ratio in our testbed setup. Second,
our system absorbs large temporary TCP traffic bursts per-
fectly without dropping a single packet. Last, we can easily
program our system to detect and defend distributed low-
rate traffic burst attacks.

The paper is organized as follows. We first elaborate our
design goals in the § 2 and describe the design in § 3. Then
we present the implementation and evaluation results in § 4.
We discuss related work in § 5 and finally conclude in § 6.

2. DESIGN GOALS
First of all, we would like to follow the merchant switch-

ing ASIC trend and adhere ourselves to this single switching
ASIC approach since it has greatly simplified the design of
current commodity switches. However, we would like to pro-
pose some modifications to current commodity switch design
to address its two major limitations. Specifically, we have
following two design goals.

Large forwarding table for flow-based forwarding
scheme: Flow-based forwarding schemes such as Openflow
provide very flexible routing control for better network secu-
rity [10], high network utilization [11], and power savings [12]
in the enterprise network and DCN. On the other side, such
fine-grained forwarding schemes require very large forward-
ing table. For example, at its finest granularity, OpenFlow
uses one forwarding entry to match one TCP/UDP flow us-
ing its exact match rule. Our measurement results (§3.1)
show that the number of active flows passing through a
switch can exceed 10K entries (with 60-second timeout), the
requirement for the forwarding table size could be very large.

Deep packet buffer for temporary traffic burst ab-
sorbing: When the switch packet buffer size is limited,
bursty traffic pattern such as TCP incast and a flash crowd
of TCP short flows can easily lead to packet drops and cause
throughput degradation. In TCP incast, tens of senders si-
multaneously send traffic to a receiver. When all the traf-
fic arrive at a switch and the switch does not have enough
buffer to hold them, packets are dropped which could cause
TCP timeouts and significantly enlarge the flow completion
times. On the other hand, long TCP flows always saturate
the switch buffer to cause packet drops. In a DCN environ-
ment where the bandwidth-delay-product (BDP) is small,
deep buffer for long flows is not desirable since it does not
increase their throughput but only leads to extra queueing

delays. Therefore, our goal here is to equip the commod-
ity switches with a deep packet buffer to absorb temporary
traffic burst only.

Sometimes, the traffic bursts can be malicious. In a multi-
tenant data center, it is highly possible that malicious ten-
ants can initiate distributed low-rate burst attacks [5] to
dramatically degrade the TCP throughput of other tenants.
In this attack, multiple malicious hosts send low-rate bursts
to a targeted switch to overflow its buffer. In response, the
data center operators should be able to detect such attacks
and find the attackers. Since the attack is distributed, the
most straightforward solution is to do traffic monitoring and
analysis on the targeted switch. Therefore, our subgoal here
is to detect these malicious traffic bursts and mitigate their
effects.

Unfortunately, current all-in-one switching ASIC cannot
meet these two design goals. They only have around several
thousands of flow entries [13] and several megabytes packet
buffer. There are some ASIC-based solutions. Some switch-
ing ASICs can have external lookup tables and packet buffer,
e.g., Broadcom switching ASIC BCM56440 can attach ex-
ternal DRAM to provide deep packet buffer. However, such
kind of chips is only available for certain product lines. To
our best knowledge, for those 10G switching ASICs which
are widely used in 10G ToR switches, no such chip is avail-
able in the market now or in the near future. Besides, since
ASICs have limited programmability, it will be difficult to
program them to detect burst attack traffic.

3. DESIGN
In our design, we equip the commodity switches with a

powerful CPU and setup a high bandwidth internal link be-
tween the CPU and the switching ASIC. We can program
the ASIC to direct a portion of traffic from the ASIC to the
CPU via the internal link. The CPU then processes these
traffic and sends them back to the ASIC afterwards.

Such design can achieve previous two goals. As for the
first goal, since the CPU has the complete forwarding table,
we can direct the packets to CPU for table lookup when
they miss in on-chip forwarding table. As for the second
goal, when traffic burst arrives and the queue in the ASIC
approaches its limit, we immediately direct the subsequent
traffic to CPU and use the DRAM to buffer them temporar-
ily. Meanwhile, we also detect long flows and use ASIC to
forward them directly. Once we redirect the traffic burst to
CPU, we can further program the CPU to detect the low-
rate burst attack traffic. Compared with the ASIC-based
solution, this design can be applied to any existing switch-
ing ASICs and can introduce more programmability in the
data plane easily.

Although CPU can now forward tens of Gb/s traffic, it is
still an order of magnitude lower than the switching capacity
of merchandised switching ASICs, e.g., 100Gb/s packet pro-
cessing rate for crystal forest platform v.s. 1.28Tb/s switch-
ing capacity for Broadcom Trident2 ASIC. However, fortu-
nately our CPU-based traffic co-processor does not have to
process all the data plane traffic to achieve our goals. In the
first case, the ASIC already has thousands of forwarding en-
tries or even more. As the traffic pattern is widely known
to be classified as elephants and mice, hopefully, we can of-
fload the elephant flows to the ASIC while leaving the mice
flows to be handled by the CPU. As for the second case,
only temporarily bursty traffic are processed by the CPU.

32

In the following sections, we will discuss how our design
achieves previous two design goals in detail.

3.1 Large forwarding table
We first show the flow statistics measured from a private

data center which is primarily used for running MapReduce-
style applications. The data center has 120 racks and around
5k servers. We instrumented all servers on 118 racks to
record flow data. We uniquely define a flow using TCP/IP
5-tuple. Similarly to previous measurements studies [14],
we use a long inactivity timeout of 60 seconds. However,
this is due to the limitation of our current instrumentation.
We plan to enable much shorter timeout value to have more
accurate flow counting in the future. We gathered the flow
data for two weeks starting from Feb 2, 2012.

We measured the number of active flows and calculated
traffic offloading ratio (TFOR) for each rack. Fig. 1 and 2
shows the statistics of these two metrics for all racks. Let’s
consider commonly used 10G switching ASICs Broadcom
Trident+ and its successor Trident2 which support maxi-
mum 2048 and 4096 TCP/IP 5-tuple flow entries. As shown
in Fig. 1, the number of active flows is more than 2048 for
99% of the time, and 4096 for 95% time. TFOR is the ra-
tio of the offloaded traffic to the total traffic. To study the
feasibility of using CPU to forward a portion of traffic, we
divided the flows into one-second intervals. For every sec-
ond, we rank all active flows based on their bytes transfered
in that second and count largest k flows as offloaded traffic.
As we can see from Fig. 2, the TFOR is more than 89%
for 90% of the time when k = 2048, and 92% for 95% of
the time when k = 4096. Since the forwarding through-
put of switching ASIC is about 10 times larger than that of
a CPU, it is reasonable to assume that the CPU only for-
wards less than 10% of the total traffic. The figure suggests
that we can potentially offload more than 90% of traffic for
90% of time even when the hardware can only support a
fraction of active flows, the hybrid approach makes a lot of
sense. As for the rest 5 ∼ 10% time, we further find that the
maximum onloaded traffic rate is below 4Gb/s which can be
easily handled by current CPU. One may ask what happens
if the onloaded traffic rate is too large and is indeed bottle-
necked by the CPU. In that case, since TCP traffic is elastic,
unless the all k offloaded traffic are bottlenecked somewhere
else, they alone can saturate the outgoing pipes. As a result,
some of them may run faster. Once an offloaded flow fin-
ishes, we can immediately offload another onloaded traffic.
As long as we can saturate the outgoing pipes, we will not
lose overall throughput in long run.

We note that the above measurements only represent a
specific type of data centers. The exact number of active
flows and TFOR may differ in different data centers, e.g.,
a virtualized data center may have much more active flows
since there could be hundreds of VMs under one ToR switch.
However, the above measurements do confirm our common
belief that the number of active flows can be much larger
than the flow table size in the state-of-art switching ASICs,
and that majority of traffic volume are carried by a small
portion of flows.

In our design, each flow i offloaded to the ASIC corre-
sponds to a rule Rflowi within the ASIC. When a new flow
arrives, we first deliver the flow to CPU. The CPU then
checks if there is any inactive flows in the ASIC. Here we
define a flow to be inactive if it does not transmit any pack-

 0

 20

 40

 60

 80

 100

 1000 10000 100000 1e+06

P
er

ce
nt

ag
e

(%
)

Number of flows

Figure 1: Complementary CDF for number of flows

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

(%
)

Traffic Offload Ratio (%)

k=1024
k=2048
k=4096
k=8192

Figure 2: CCDF for traffic offload ratio

ets within Tinactive period. Since the RTT in DCN is small,
we let Tinactive to be 1 second. If yes, we swap the inactive
flow with the new flow. If there is no inactive flow, the CPU
will forward the new flow temporarily.

To minimize the traffic volume forwarded by CPU, we
need to put the flows with larger rates into the ASIC. Sup-
pose the ASIC has k entries, the ASIC then needs to cover
the flows with the k largest traffic rates. As the flow rates
change dynamically, the on-chip forwarding table needs to
be adjusted accordingly. Thus, we periodically obtain the
rates for all flows, rank them based on their rates, and fi-
nally swap the k largest flows into the ASIC. As for the flows
forwarded by CPU, we can easily count the their bytes to
get their rates. As for the flows forwarded by the ASIC, it
is common that each TCAM flow entry is associated with
a byte counter in existing ASICs. Thus, we can read those
counters to calculate the flow rates. Currently, we set this
ranking interval to be 100 milliseconds.

3.2 Deep packet buffer
Our design uses the DRAM as the off-chip packet buffer

to achieve following three goals. First, we absorb temporary
traffic bursts such as TCP incast traffic and a flash crowd
of TCP short flows. Second, the long flows are forwarded
by the ASIC directly. Third, we detect and defend low-rate
burst attack traffic. In the next, we’ll describe these three
designs one-by-one.

3.2.1 Absorb temporary traffic bursts
Fig. 3 shows how the deep buffer absorbs traffic bursts.

Here, we define traffic bursts to be any traffic pattern that
can overflow the output queue. When traffic bursts come,
CPU first setups a rule on the switching ASIC to redirect
the bursts to CPU via the high bandwidth internal link,

33

Switching ASIC

CPU +
DRAM

1

2

3

4

Traffic burst
Long flows upward

traffic

downward
traffic

internal
link

Figure 3: Using deep buffer to absorb traffic bursts

Switching ASIC
8

MSS
CRdataout =)max(

MSS
CRdatain
2)max(=

7

6

51

2

3

4

S1

S2

S3

S4

R

MSS
CRackin =)max(

data
ack

Figure 4: Maximum incoming rate for TCP burst
traffic to one port

and uses DRAM to buffer them. Then, CPU paces these
packets to the output port without overflowing the output
queue on the switching ASIC. In the following paragraphs,
we’ll describe how to avoid packet drop in the above steps.

First, CPU monitors output queue length on every link.
Once an output queue length exceeds the redirection thresh-
old Qredirect, CPU setups a rule Rport in the ASIC to redi-
rect all the traffic which are destined to that output port to
the CPU. Practically, the rule setup time is usually tens of
microseconds. The incoming packets still accumulate in the
output port before the rule has been setup. Thus, we re-
serve some headroom between Qredirect and the queue limit
Qlimit, usually tens of packets, so that there will be no drop
during the rule setup period. When the burst finishes and
the DRAM is emptied, CPU then cancels the rule Rport. To
co-exist with large forwarding table in previous section, the
priority of Rport is higher than that of Rflowi setup by the
large forwarding table so that all the traffic will be redirected
once there is burst.

Second, we need to determine the minimum internal band-
width in order to move the traffic burst to CPU without
dropping any packet. Let’s first consider the traffic bursts
such as TCP incast and TCP flash crowd which are entirely
composed of TCP traffic. Consider the case when data traf-
fic all go to a same output port as shown in Fig. 4. Since the
maximum outgoing data rate is limited to the port speed C,
the maximum data packet rate on the output port (Rdata

out)
is C/MSS, where MSS is the maximum segment size. The
maximum of ack packet rate on the reverse direction (Rack

in)
is also C/MSS when delay ack is disabled at the receiver. In
TCP slow start phase, the senders increase their congestion
windows by one MSS for one received ack. Thus, each ack
will trigger one more data packet. The maximum incoming
data packet rate (Rdata

in) and data rate are 2×C/MSS and
2× C, respectively.

Above analysis suggests that once the internal bandwidth
is larger than 2× C, this design can fully absorb the traffic

burst that happens on one output. In practice, the inter-
nal bandwidth can be provisioned several times larger than
2×C in order to absorb bursts on several output links simul-
taneously. As traffic bursts are usually on small time scale,
e.g., millisecond level, it is unlikely that many bursts collide
at this time granularity. For the non-TCP bursty traffic, we
only give them maximum 2×C upward bandwidth because
we believe that no traffic should be more bursty than TCP
slow start.

Third, CPU caps the sending rate on the downward path
to the bandwidth of the output port. When there are no
other competing traffic, the sending rate matches the port
speed so that the output queue will not build up. No packet
will be dropped.

3.2.2 Forward long flows directly
In practice, there could be long flows on the same output

port of the traffic burst as shown in Fig. 3. The long flows
bring two issues. First, since TCP tries to saturate the link,
long flows will trigger the Qredirect threshold and will be
forwarded by CPU until they end. To solve this problem,
we need to treat long flows differently. CPU counts the
bytes for every flow. Once a flow j exceeds certain bytes,
e.g., 50KB, CPU inserts a high priority rule Rlflowj in the
ASIC which overrides the rule Rport. The rule also classifies
the packets into a specific type and the output queue length
for that packet type is limited to Qlflows, where Qlflows <
Qredirect. Once the rules are setup, the long flows will be
forwarded by the ASIC directly and will no longer trigger
traffic redirection. Second, the long flows compete with the
traffic burst from CPU for the output port, and may cause
the traffic burst to drop packets on its downward path. To
solve this problem, we put the traffic from the CPU into
high priority queue so that the ASIC will not drop them
when they are competing with the long flows.

3.2.3 Defend low-rate burst attacks
Low-rate burst attack traffic try to saturate the switch

queue to generate packet drops. Similarly, we also redirect
the bursts to CPU when the queue length exceeds Qredirect.
Once the bursts go to CPU, we program the CPU to detect
if the bursts are low-rate attacks or not. Once CPU has
detected the suspicious traffic, it uses a rate-shaper to limit
the outgoing rate of the suspicious traffic to BWattack and
thus defend normal TCP traffic from the attacks.

We use a very simple detection algorithm, since the algo-
rithm is not the major focus of this paper. More sophisti-
cated detection algorithm [15] can also be implemented in
our design. Our algorithm is as follows. We measure the in-
coming traffic rate to a port at 1ms granularity. When the
traffic rate is larger than the output port speed, we treat
that period as a busy period. During a certain time inter-
val, e.g., 3 seconds, if the busy periods contain more than
90% traffic volume, are less than 10% time span, and the
cycle of busy periods is around minimum TCP RTO, e.g.,
300ms for Windows TCP stack, we classify the burst traffic
as low-rate burst attacks.

4. IMPLEMENTATION AND EVALUATION
We build a prototype switch with 16 GbE ports on the

ServerSwitch platform. We install four ServerSwitch cards
into a HP z800 workstation (8 CPU cores and 48GB DRAM),
and connect them via their 10GbE XAUI ports to form a

34

non-blocking switching fabric with 16 GbE ports. We acti-
vate four internal GbE links between the switching ASICs
and the CPU, and thus the internal link bandwidth is four
Gb/s. We connect 16 servers to our prototype switch.

We implemented large flow-based forwarding table and
deep packet buffer on the ServerSwitch platform. The imple-
mentation consists of both userspace and kernel code. The
userspace code is for switching ASIC management such as
flow insertion/deletion and queue length monitoring. The
kernel code is mainly for packet forwarding.

Large flow-based forwarding table. Since part of
the TCAM table is reserved for other uses, we have 1,792
TCP/IP 5-tuple flow entries for this experiment. We first
benchmark the ASIC flow insertion, deletion and counter
read throughput. The ASIC can do 14,144, 9,524 and 86,956
operations per second respectively. As we will see in our 2nd
experiment, these numbers are enough for our dynamic flow
management.

In the first experiment, we generate 50k bidirectional (100k
uni-directional) TCP flows among four servers. We manu-
ally configure all traffic to be forwarded by the CPU. As
we measured, these 100k flows fully saturate the 4GbE in-
ternal links and the total forwarding throughput is 3.9Gb/s
with 14% CPU utilization (about 1 core). In the 2nd ex-
periment, we first get the average flow interval and extract
empirical flow size distribution from our previous DC mea-
surements, and then generate synthesized flows based on the
interval and the distribution among 8 servers. We run the
experiment for 10 minutes. It generates 103,200 TCP flows
and 33.6GB data. The maximum number of active flows is
10,644 and the TFOR is 96.1%. To further test our design,
we compress the average flow inter-arrival time to its 1/10
and re-run the experiment. The maximum number of active
flows is now 106,544 and the TFOR is 90.5%. In average,
there are 1,743 flow swaps per second in the latter test which
is far below the ASIC capability.

Deep packet buffer for traffic burst absorption. We
show how deep packet buffer can absorb temporary traffic
bursts caused by a flash crowd of TCP short flows. This
traffic pattern is to emulate a surge of requests sent to a web
server cluster while all the responses go through a bottleneck
link. We use one server to generate all the requests and
have the other 15 servers acting as the web servers. All
the responses go to the 1GbE bottleneck link to the client.
All responses are 256KB. The client continuously generate
requests for one second. We vary the number of requests
(NR) from 128 to 1,024 by tuning the interval between two
requests. When NR = 1, 024, the response throughput is
140Mb/s per server and the total throughput is 2Gb/s. We
test three experiment setups, i.e., TCP with deep buffer,
TCP w/o deep buffer, and DCTCP w/o deep buffer. For
all setups, Qlimit is set to 100 full-sized Ethernet packets,
Qredirect is 80 packets, and the ECN marking threshold is
20 packets.

Fig. 5 shows the 99 percentile of response finish times
(RFT). As we can see, RFT grows almost linearly when
deep buffer is used. This is because there is no single packet
drop in this case and the RFT growth is purely due to the
queue build-up. To note, when NR = 1, 024, deep buffer
uses maximum 16MB DRAM for packet buffering which is
much smaller than the total DRAM of the server. On the
contrary, a portion of flows experience very large RFT, i.e.,
3 seconds, when deep buffer is not used. This is because

SYNACK Data Pkt Avg.
TO TO drops RFT (s)

TCP with DeepBuf 0 0 0 0.65
TCP w/o DeepBuf 109 180 15962 0.82
DCTCP w/o DeepBuf 23 395 3302 0.78

Table 1: Packet losses, TCP timeouts and average
response finish time when NR = 1024

that there are lots of packet drops and TCP timeouts, espe-
cially the SYNACK timeouts (3 seconds). Table 1 compares
the packet losses and average RFT for NR = 1024. As we
can see, the average RFT for deep buffer is about 20% less
than the other two cases. TCP has much more SYNACK
timeouts than DCTCP because the queue is almost full when
ECN is not used. On the other hand, DCTCP has more data
packet timeouts than TCP even when DCTCP has much less
packet drops than TCP. This is because the congestion win-
dows of DCTCP is very small due to received ECN signals.
Thus, the packet drops are more prone to turn into timeouts
due to small number of in-flight packets.

TCP long flow performance. We show how our deep
buffer affects long TCP flows. We setup n long flows from
two senders to one receiver for 10 seconds, where the n is
set to 2, 4, 8, 16, 32 and 64. Qlflows is set to 50 packets.
We also do the same experiments with deep buffer disabled.
The aggregate throughputs for both cases can saturate the
1GbE link with 949 Mb/s. When deep buffer is used, we
observe 315 out-of-order arrivals (early arrivals) for all 126
flows when the flows are switched from CPU to the ASIC
(one switch per flow). The out-of-order arrivals only trigger
22 TCP fast recovery. This experiment shows that the deep
buffer has almost no effect on the TCP long flow throughput.

Defend low rate burst attacks. We setup one TCP
connection between one sender and one receiver, and let the
other 14 servers initiate low rate burst attacks to the re-
ceiver. Each attacker sends 200KB UDP bursts at 200Mb/s
peak rate. The interval between two bursts is 320ms. The
average throughput for each attacker is only 5.12Mb/s. All
attackers are synchronized. When deep buffer is used, we
detect and defend the low-rate attacks using the algorithm
in § 3.2.3. The BWattack is set to 200Mb/s.

Fig. 6 shows the average TCP throughput in 100 sec-
onds. When deep buffer is not used, the TCP throughput
decreases to 40Mb/s when there are 14 attackers. When
deep buffer is used, the TCP throughput only decreases by
around 70Mb/s, which is the average throughput of all at-
tack traffic. It shows that deep buffer can effectively protect
the TCP connection from the low rate burst attacks. Be-
sides, our kernel code for the algorithm plus the rate limiter
takes no more than 1,000 LoC which is very easy to imple-
ment.

5. RELATED WORK
OpenFlow (OF) defines a centralized architecture to man-

age the switches. Our design can provide better support for
OF in terms of large flow forwarding table. However, the
local CPU on the switches are dummy components in the
OF architecture, whereas it is much more intelligent in our
design as it swaps the flows, monitors the queues and de-
cides the traffic redirection. Our design does require a local
CPU to meet the needs of low-latency signalling and high

35

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 128 256 384 512 640 768 896 1024

R
es

po
ns

e
F

in
is

h
T

im
e

(s
)

Number of Requests

TCP with DeepBuf
DCTCP w/o DeepBuf

TCP w/o DeepBuf

Figure 5: Using deep buffer to Absorb TCP flash
crowd

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14

G
oo

dp
ut

 (
M

pb
s)

Number of Attacking Nodes

TCP w/o DeepBuf
TCP with DeepBuf

Figure 6: Defend low-rate burst attacks

throughput data transfer between the switching ASIC and
the CPU.

DevoFlow [13] also shows that the hardware limitations,
such as flow table size, table update rate and statistics gath-
ering rate, can limit the scalability of OpenFlow. The pa-
per proposes several in-ASIC enhancements to address these
problems as their design goal is to keep flows in the data
plane as much as possible. We take a different approach to
address these limitations by using software to forward large
number of short flows, thus the hardware does not have to
have large flow table. We view these two approaches are
complementary to each other. A switch can adopt both ap-
proaches to enable fine-grained forwarding scheme.

Nadi Sarrar et al propose a traffic offloading system which
uses both software and hardware for packet forwarding in
the Internet [8]. Our large forwarding table idea is similar
to theirs. However, we focus on enabling flow-based for-
warding scheme in DCN environment whereas they focus on
IPv4 forwarding scheme in the Internet environment. More
importantly, we propose to redesign the commodity switches
by using CPU as a traffic co-processor. Our design lets CPU
play a more generic role on the data plane than the previous
work, e.g., absorbing temporary traffic bursts.

6. CONCLUSION AND FUTURE WORK
Single switching ASIC design have greatly simplified the

design of commodity switches. In this paper, we propose to
use CPU as a traffic co-processor in these switches to address
the two major limitations of this design i.e., the limited for-
warding table size and shallow packet buffer. Our initial
experimental results show that we have achieved our de-
sign goals. Besides, putting CPU into the data plane makes

the network devices even more programmable. In longer
term, we believe that building SDN upon these more pro-
grammable nodes can offer more network functions.

While our initial results are encouraging, there are still
many questions to be addressed. In the future, we plan to
study how to protect the control plane unaffected since the
CPU are now occupied for the data plane. We will also in-
vestigate the CPU forwarding latency and out-of-order pack-
ets during the path switching phases, and understand how
they affect both short and long flows. Very recently, Open-
vSwitch [16] has adopted a similar idea of processing short
flows in user level and other flows in the kernel. We also plan
to compare this with our system. Our initial design begins
with single chip switches such as ToR switches and it would
be interesting to see if such design can also be applied to
multi-chip switches such as the aggregate or core switches.

7. REFERENCES
[1] R. N. Mysore et al., “PortLand: a Scalable Fault-tolerant

Layer 2 Data Center Network Fabric,” in Proc. of ACM
SIGCOMM, 2009.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. Maltz, P. Patel, and S. Sengupta,
“VL2: a Scalable and Flexible Data Center Network,” in
Proc. of ACM SIGCOMM, 2009.

[3] “Lippis Report 182: Top 10 Findings: The Cloud Network
Industry Test of 10/40GbE Fabrics.”
http://tinyurl.com/789t67a.

[4] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller,
“Safe and Effective Fine-grained TCP Retransmissions for
Datacenter Communication,” in Proc. of ACM SIGCOMM,
2009.

[5] A. Kuzmanovic and E. W. Knightly, “Low-Rate
TCP-Targeted Denial of Service Attacks (The Shrew vs. the
Mice and Elephants),” in Proc. of ACM SIGCOMM, 2003.

[6] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy,
“RouteBricks: Exploiting Parallelism to Scale Software
Routers,” in Proc. of ACM SOSP, 2009.

[7] “Intel’s Next-Generation Communications Platform Key to
Accelerated Network Services.”
http://tinyurl.com/84kwth4.

[8] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and
X. Huang, “Leveraging Zipf’s Law for Traffic Offloading,”
ACM CCR, Jan 2012.

[9] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong,
R. Gao, and Y. Zhang, “ServerSwitch: A Programmable
and High Performance Platform for Data Center
Networks,” in Proc. of USENIX NSDI, 2011.

[10] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker, “Ethane: Taking Control of
the Enterprise,” in Proc. of ACM SIGCOMM, 2006.

[11] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat, “Hedera: Dynamic Flow Scheduling for
Data Center Networks,” in Proc. of USENIX NSDI, 2010.

[12] B. Heller et al., “ElasticTree: Saving Energy in Data Center
Networks,” in Proc. of USENIX NSDI, 2010.

[13] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee, “DevoFlow: Scaling Flow
Management for High-Performance Networks,” in Proc. of
ACM SIGCOMM, 2011.

[14] T. Benson, A. Akella, and D. A. Maltz, “Network Trafffic
Characteristics of Data Centers in the Wild,” in Proc. of
ACM IMC, 2010.

[15] H. Sun, J. C. Lui, and D. K. Yau, “Defending against
low-rate tcp attacks: Dynamic detection and protection,” in
Proc. of IEEE ICNP, 2004.

[16] http://openvswitch.org.

36

