
Procera: A Language for High-Level Reactive Network Control

Andreas Voellmy
Yale University
51 Prospect ST

New Haven, CT, U.S.A.
andreas.voellmy@yale.edu

Hyojoon Kim
Georgia Tech

School of Computer Science
266 Ferst Drive

Atlanta, GA, U.S.A.
joonk@gatech.edu

Nick Feamster
University of Maryland

Dept. of Computer Science
College Park, MD, U.S.A.

feamster@cs.umd.edu

ABSTRACT

Our previous experience building systems for implementing net-
work policies in home and enterprise networks has revealed that
the intuitive notion of network policy in these domains is inher-
ently dynamic and stateful. Current configuration languages, both
in traditional network architectures and in OpenFlow systems, are
not expressive enough to capture these policies. As a result, most
prototype OpenFlow systems lack a configurable interface and in-
stead require operators to program in the system implementation
language, often C++. We describe Procera, a control architecture
for software-defined networking (SDN) that includes a declarative
policy language based on the notion of functional reactive program-
ming; we extend this formalism with both signals relevant for ex-
pressing high-level network policies in a variety of network set-
tings, including home and enterprise networks, and a collection of
constructs expressing temporal queries over event streams that oc-
cur frequently in network policies. Although sophisticated users
can take advantage of Procera’s full expressiveness by expressing
network policies directly in Procera, simpler configuration inter-
faces (e.g., graphical user interfaces) can also easily be built on top
of this formalism.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Centralized networks; C.2.3 [Computer-

Communication Networks]: Network Operations—Network

Management; C.3 [Special Purpose and Application-Based Sys-

tems]: []; D.3.2 [Programming Languages]: Language Classifi-
cations—Applicative (functional) languages, Haskell

Keywords

OpenFlow, Software-defined Networking, Network Configuration,
Functional Reactive Programming, Haskell

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

1. INTRODUCTION
Network operators and researchers have often discussed the need

for a network configuration language that can express high-level
network policies, in contrast to the status quo, whereby configura-
tion is low-level, mechanism-focused, and vendor specific [5,7,18].
Conventional methods result in systems that are complex, error-
prone, and hard to manage [6,9,14,19]. Software defined network-
ing (SDN) offers the opportunity to make networks easier to con-
figure by providing richer configuration methods, and indeed such
systems have been proposed. As an example, Flow Management
Language (FML) [13] provides a simple rule-based formalism for
controlling OpenFlow [21] networks.

Many network systems implement policies that are inherently
dynamic and depend on temporal conditions defined in terms of
external events such as measurements of bandwidth use of hosts,
intrusion detections, or specific time events. For example, intrusion
detection and prevention systems detect certain sequences of events
and trigger actions [23]; load balancing systems can choose a server
based on load [12]; and campus networks can deny access when
certain complex temporal bandwidth usage conditions occur [1].

We present Procera, a controller architecture and high-level net-
work control language that allows operators to express the kinds of
policies that we have described above, without resorting to general-
purpose programming of a network controller. We have designed
Procera to be reactive because many realistic network policies re-
act to dynamic changes in network conditions. Procera also in-
corporates events that originate from sources other than OpenFlow
switches, allowing it to express policy that reacts to conditions such
as user authentications, time of day, bandwidth use, or server load.
Procera is both expressive and extensible, so users can easily extend
the language by adding new constructs.

Procera has the following features:

• Procera controllers output flow constraint functions that a
lower-level network controller uses to constrain its own be-
havior, thereby allowing the high-level control to be simple
and to cleanly separate lower-level network issues, such as
routing and flow-table management.

• Procera applies the principles of functional reactive pro-

gramming (FRP) [26], which provides a declarative, expres-
sive, and compositional framework for describing reactive
and temporal behaviors. Procera includes a collection of
domain-specific temporal operators that allow users to eas-
ily express the values of time-varying sets and dictionaries in
terms of event histories.

• Procera can be customized with a collection of primitive
event streams, but does not by default have access to Open-
Flow events, such as flow request events. This func-

43

Sensors UIs · · · Config Files

Policy Layer (e.g., FML, Procera)

Network Controller (e.g., NOX, Floodlight, Frenetic...)

Programmable Switches (e.g., OpenFlow)

Figure 1: System Architecture.

tional division permits scalable implementations that pro-
cess OpenFlow events in parallel, even while processing non-
OpenFlow events sequentially.

This paper illustrates the need for a high-level, reactive policy
language; presents Procera, a language that permits operators to
express high-level, reactive network policies; and illustrates how
Procera can help operators express these policies through a series
of examples that are motivated from our experience with configu-
rations in both campus networks and home networks. We are de-
veloping a version of Procera that can instantiate policies in our
underlying Lithium controller [16].

The rest of this paper is organized as follows. Section 2 defines
the notion of a policy layer that enables a network controller to re-
spond to higher-level events, and explains Procera in the context
of existing network control technologies. Section 3 motivates the
need for a reactive policy layer with several examples and shows
that existing languages and control models do not allow network
operators to easily express even simple reactive network policies.
Sections 4 and 5 describe the Procera language and its use, through
a series of examples. Section 6 describes related work, and Sec-
tion 7 concludes with a summary and agenda for future work.

2. CONTROL SYSTEM ARCHITECTURE
Figure 1 shows our system architecture. The lowest layer con-

sists of programmable OpenFlow [21] switches that ultimately per-
form forwarding actions on the flows. On top of this layer, the net-
work control layer exchanges messages with OpenFlow switches
to configure flow tables and gather statistics. There are many ex-
amples of network controllers today, for example NOX [11], Mae-
stro [27], Floodlight [2], Nettle [25], and Frenetic [10]. This layer
is responsible for performing network-related tasks, such as routing
and topology discovery.

The policy layer resides above the network control layer and
is the focus on this paper. The policy layer acts as a supervisor,
reacting to signals about relevant network events and out-of-band
signals from users, administrators, and other sensors such as intru-
sion detection devices. In turn, the policy layer provides guidance
and directives to the network controller. This guidance should be
declarative to keep the supervisor simple and abstract so that the
network layer may implement the guidance efficiently and flexi-
bly. We envision that this policy layer may in fact be a policy en-
gine that can be customized with user-specified supervisor code.
FML is an example of a language that resides at the policy layer: it
generates a data structure used by the network controller to handle
flow requests. Similarly, Procera allows network operators to de-
fine how a network controller should react to higher-level network
events. Procera could act as a language and runtime component of
the Lithium event-based OpenFlow controller, which we describe
in an accompanying technical report [16].

3. THE NEED FOR REACTIVE POLICY
We describe some simple examples that illustrate the need for

a declarative, reactive, operator-facing network programming lan-
guage, We do this by highlighting the problems that arise when
using an existing policy language, FML, to specify and implement
policies that arise in real-world systems.

FML provides a high-level declarative policy language based on
logic programming. An FML program consists of a collection of
inference rules that collectively defines a function that assigns a
set of flow constraints to each packet. The constraints typically in-
clude “allow” and “deny” constraints, but may include others as
well. The logic is simple, permitting neither recursion nor arith-
metic constraints or functions. The FML engine maintains some
state, including the users associated with particular devices, and
FML policy may predicate packet constraints based on this state.
This state space is fixed by the FML implementation and therefore
not modifiable by the author of the network policy.

Consider the following examples, which illustrate the limitations
of FML’s logic. The first policy is “ban a device if its usage over
the last five days exceeds 10 GB”. Unfortunately, we cannot write
this policy in FML directly because FML does not provide device
usage data or allow arithmetic constraints. Assume for the moment,
though, that we have extended FML with arithmetic inequalities
and a predicate usage(D,T,B) which holds when device D has
consumed B gigabytes of bandwidth over the last T days. Then we
could write the above policy in FML as:

deny(Us, D, As, Ut, Ht, At, P, R) <- over(D).

over(D) <- usage(D,T,B), T=5, B > 10.

These rules should be read as implications from right to left. For
example, the first line, expresses the implication that whenever a
device D satisfies predicate over, then deny(...) holds with
device D in the source Ethernet address field of a packet; that is, all
packets from D should be denied.

Expressing even a minor variation on this policy, such as “per-

manently ban the device as soon as its usage over the last five
days exceeds 10 GB”, is much more difficult. The difficulty
arises from the fact that the policy requires that the violating user
to be banned from the network, even if later his five-day us-
age drops below the maximum allowed (which will certainly oc-
cur, since the user is banned). In other words, the policy re-
quires that when the condition becomes true, the policy itself must
change. We could try to work around this, by adding a predicate
usageOnceExceeded(Hs,Ds,Amt), so that we could write

over(D) <- usageOnceExceeded(D,T,B), T=5, B=10.

Such a function is fairly special-purpose for a general network pol-
icy language, but if it were the only such exception, we could
live with it. Unfortunately, another minor variation to the pol-
icy causes yet more difficulties: “ban a device as soon as its last
five-day usage exceeds 10 GB, and remove their ban when and
only when an adminstrator resets that device”. This time, a differ-
ent temporal condition changes the state of the system and affects
the desired policy. We could again extend FML with a predicate
usageOnceExceededAndNoResetSince(D,T,B), but it
should clear at this point that there is no end to these variations,
and that we need a more general notation for denoting any of these
variations.

The key feature missing from FML is the ability for the user-
defined policy logic to affect the state. Instead, in FML, the policy
logic is passive and can only observe the state. While there are ap-
proaches, such as McCarthy’s frame calculus [20] and Kowalski’s

44

event calculus [17], to enhance the logic programming approach
with state-changing actions, these models substantially complicate
the logic.

We instead pursue a different path, based on functional reac-

tive programming (FRP). Using this approach, users describe time-
varying values by describing how their current value depends on
event histories and current and prior values of other quantities. In
particular, we instantiate FRP with temporal operators that produce
event histories and define commonly occurring functions that deter-
mine the value of sets and dictionaries in terms of these event his-
tories. For example, we will be able to define a dictionary mapping
devices to their five-day usage simply by writing the following:

proc world → do

recent ← since (daysAgo 5)−≺ add (usageEvents world)
usageTable ← group sum −≺ recent

returnA−≺ usageTable

FRP is well-established and has been applied to a wide range
of domains, including user interfaces, robotics, and network con-
trol [10,25]; many efficient and practical FRP implementations ex-
ist. These languages allow the user to specify and invoke arbitrary
functions, so we can easily support policies that involve arithmetic
constraints and other functions, which would require substantial
extensions to FML.

4. PROCERA: REACTIVE POLICY
The key features of the Procera policy language are (1) a core

language based on functional reactive programming, (2) event com-
prehensions to manipulate event streams, (3) windowing and aggre-
gation signal functions, (4) the use of function values to represent
high-level policy. Each of these ideas borrows heavily from pre-
vious systems: the core reactive language is based on the ideas of
Yampa [8], a domain-neutral FRP language, event comprehensions
are inspired by list and monad comprehensions in Haskell, and the
windowing and aggregation constructs are inspired by streaming
database systems [4].

Procera is an embedded domain-specific language (EDSL) in
Haskell. This allows Procera to reuse various general-purpose
datatypes and constructs, such as numbers, lists, and functions. It
also allows users to mix Haskell expressions with Procera con-
structs, provided the expressions satisfy appropriate type con-
straints.

4.1 Signals, Signal Functions, and Events
The main reactive concepts of Procera are signals and signal

functions. A signal is conceptually a function of continuous time
into some range. Often the range of a signal is numeric, but in Pro-
cera signals can range over any data type. Although the domain of
a signal is conceptually continuous time, discrete time signals are
supported by allowing missing values. Values have an option type,
which is either present with a value or missing.

On the other hand, signal functions (also known as “systems” in
other contexts) transform signals. The name emphasizes the fact
that signal functions are in fact mathematical functions and there-
fore describe deterministic transformations of input signals to out-
put signals. By acting on signals, signal functions can implement
time-varying behavior, and in particular, can exhibit hysteresis. A
simple example of this behavior is an edge detector, which out-
puts an event whenever its boolean input signal rises from False

to True . This signal function exhibits hysteresis because the value
of the output signal does not depend solely on the value of input

signal at the same time; in other words, the signal function edge

has internal state.
In Procera, the programmer defines signal functions using the

arrow syntax [22], which provides a syntactic analog of signals and
systems diagrams consisting of boxes and wires. For example,

proc x → do

y ← integral −≺ x

z ← integral −≺ y

returnA−≺ z + y + 1

defines a signal function that integrates the input signal (named
x) twice and scales the result (this example is only illustrative:
integral is not in Procera). The notation allows users to bind vari-
ables to stand for instantaneous values of signals, as in x , y , and
z above, and these can be used in expressions to denote other in-
stantaneous values (e.g., z + y + 1 above) and to wire-up to signal
functions (e.g., y is fed into integral). Note that the instantaneous
values are all synchronous; for example, the output of the signal
function at time t above involves adding the values of z and y taken
at that same time t .

As we mentioned earlier, Procera supports discrete signals by
having the signals carry values of the Event data type. Procera
provides an event algebra that allows operations for filtering, trans-
forming, merging, and joining event streams. For example, merg-
ing of two event streams e1 and e2 is written e1 .|.e2 and denotes the
events that occur in either of the event streams. Most of this algebra
is accessed most conveniently using event comprehensions, a nota-
tion very similar to list comprehensions that supports transforming,
filtering and joining event streams. For example, if e stands for the
instaneous values of an event stream carrying natural numbers, we
could write:

[n + 1 | n ← e, prime n]

to stand for the instantaneous values of an event stream which keeps
just those events from e that carry prime numbers, and adds one to
the values of the filtered event stream.

4.2 Windowing and Aggregating
We introduce a collection of signal functions and abstract data

types that allow users to conveniently describe commonly occur-
ring reactive policies. Table 1 enumerates these constructs.

The constructs fall into two groups. The members of the
first group produce windowed event histories. In particular,
since dt , limit size , and limitBy attribute size implement time-
based, count-based, and partitioned-count-based windowing. The
clockResetWindow next construct accumulates a window until
the next clock event given by next , when the window is cleared.
Each of these constructs consumes and produces event histories,
and therefore can be composed. For example, since and limit can
be used together to define a windowed history that includes only
the last few events that occur within a given time window. We will
provide example uses of these constructs in Section 5.

The second group of constructs includes accumSet , accumList ,
and group . These signal functions take event histories as input and
compute some value of the input history. For example, the value of
the output signal of accumSet at any time is the set whose mem-
bers are currently in the input history. The group op construct out-
puts a time-varying dictionary from an event history of key-value
pairs using the given operation op to aggregate values of the same
key.

History signals carry their history incrementally, in the form
of additions and removals from the history. This design allows
window and aggregation operations to incrementally compute re-

45

since dt Windows a history to the past
dt seconds

limit size Windows a history to the last
size number of events.

limitBy attribute size Limits the input history by
keeping only the last size num-
ber of events for each value of
the attribute.

clockResetWindow next Windowed history that is
cleared at the time indicated
by next .

accumList Accumulates a sequence of
events from a windowed his-
tory.

accumSet Accumulates a set of events
from a windowed history.

group op Accumulates a dictionary from
a history of key-value pairs, us-
ing op to combine values for
the same key.

last1PerGroup Accumulates a dictionary from
a history, mapping keys to the
last occurring value for the key.

add e ,remove e , ar1 ⊕ ar2 Event additions, removals, and
combinations thereof.

Table 1: Key Procera constructs.

allow Allow the packet
deny Do not allow the packet
rateLimit rate Rate limit the flow to the given rate
redirect host Redirect the flow to the specified host
x ⊙ y Constrain according to both x and y

Table 2: Constraints.

sults. It also allows the same aggregation operations to act on
input signals of event additions and removals other than those
produced by window operators. Section 5 will show example
uses of these operations. Procera includes an abstract data type
AddRemoveEvent a , and functions add , remove , and ⊕ to in-
sert and remove events and to merge two AddRemoveEvent a

streams.

4.3 Input Signals & Flow Constraints
The input to the main Procera signal function is a world signal

whose instantaneous values have the abstract World type. While
the exact details of this data type are application-specific, it is typi-
cally a record of attributes of the environment, and includes compo-
nents that indicate the presence or absence of external events. For
example, in the following section we write authEvents world to
denote the authentication events that might be present in the current
world value.

The output of a Procera controller is a signal carrying flow con-

straint functions. A flow constraint function determines the con-
straints that are applied to a flow. The constraints will typically
include constructs to allow or deny flows, but may include other
constraints according to the needs of the particular system. Ta-
ble 2 lists some constraints useful in home and campus network
management systems. For convenience, we include a constraint

combination operation denoted with ⊙, which hides the detailed
representation of the constraint data type.

5. PROCERA IN ACTION
We now present several Procera controllers, beginning with sim-

ple ones that explain the syntax. We then proceed to describe more
complex examples that demonstrate the expressive power of the
language.

Example: Static Policy. Our first example is the “hello world”
of network access control examples. It simply allows all network
traffic flows.

proc world → do

returnA−≺ λreq → allow

Here we simply ignore the world signal and always output the
same flow constraint function (the expression λreq → allow is
a lambda-expression, i.e. an anonymous function, with parameter
req). The flow constraint function itself ignores its argument and
simply allows all requests. A variant of this example is one that
denies all flow requests:

proc world → do

returnA−≺ λreq → deny

Many networks use static access control policies which limit ac-
cess to some devices or services on the network. For example,
a policy might allow only http traffic to IP addresses in subnet
128.36.5.0 / 24:

proc world → do

returnA−≺
λreq → if destIP req ‘inSubnet ‘ ipAddr 128 36 5 0 // 24

then allow else deny

Many more static policies, for example accessing other packet
fields, can be written in Procera. We omit the details here due to
space limitations.

Example: Device registration. In many home and campus net-
works, network access is limited to some set of registered or au-
thenticated devices, and in many networks, the set of authenticated
devices varies over time, as a result both of administrative actions
(e.g., through user interface actions or configuration file edits), or
through user actions (e.g., authenticating with a portal).

To express policy related to administrative device authentication
events, we add these events to the World data type and add func-
tions authEvents and deAuthEvents to refer to authentication
events. Then we can, for example, define a set whose members
at any time are exactly those devices which have a more recent au-
thentication than deauthentication, and use that in our policy func-
tion:

proc world → do

authDevs ← accumSet −≺ add (authEvents world)⊕
remove (deAuthEvents world)

returnA−≺
λreq → if srcEthAddr req ‘member ‘ authDevs

then allow else deny

We feed a stream of AddRemoveEvent values into accumSet

which accumulates the set arising from the addition or removal of
values. We create the stream of AddRemoveEvent s using add ,
remove , and ⊕ functions. The policy function varies over time,
because it refers to the time-varying set of authenticated devices.

Example: Device Usage Caps. We now consider policies inspired
by the uCap system [15], which allows home network administra-
tors to limit the network access to devices and users based on max-
imum bandwidth usage settings, or caps. In uCap, users configure

46

monthly usage caps via a user interface and the system collects
device usage logs from routers every few seconds. A (simplified)
uCap controller ensures that any device whose usage for the current
month exceeds its monthly cap is barred from using the network
until the following month.

To express this logic, we add events to our World data type
for cap settings and usage reports. These events are denoted by
usageEvents world and capSetEvents world , respectively. We
can then track the cap settings by keeping track of the last setting
per device, using the last1PerGroup signal function, which out-
puts a dictionary mapping keys to the value of the last event for that
key:

capTableSF =
proc world → do

last1PerGroup −≺ add (capSetEvents world)

(The arrows notation allows the last statement to be either returnA

as in earlier examples, or a signal function, as in this example.)
The controller can then track the monthly usage by using the
clockResetWindow nextMonth signal function, which accumu-
lates events until the next month, and then groups by the key and
sums values for the same key:

useTableSF =
proc world → do

recent ← clockResetWindow nextMonth

−≺ add (usageEvents world)
group sum −≺ recent

nextMonth , whose straightforward definition we omit here, is a
function which maps a given date into the beginning of the month
following the date. Other functions could be used here to reset
usage in other ways, for example by week or by time of day.

We can then define our overall uCap controller by using the
above signal functions (we omit the straightforward definitions of
lookupUse and lookupCap):

proc world → do

useTable ← useTableSF −≺ world

capTable ← capTableSF −≺ world

let policy req =
let src = srcEthAddr req

use = lookupUse src useTable

cap = lookupCap src capTable

in if use < cap then allow else deny

returnA−≺ policy

Example: Per-User Usage Caps. A variant of the above controller
keeps track of usage by user rather than by device. Procera can
also accomodate this policy, despite the input signals only includ-
ing usage by device. The policy correlates the usage events with
the authentication table, by associating the device of each usage
event with the user id given in the authentication table. The follow-
ing example demonstrates how this can be done (we assume that
authTableSF , which provides the authentication table, has been
defined previously):

useTableByUserSF =
proc world → do

authTable ← authTableSF −≺ world

let evs = [(lookupUser ddev authTable , use)
| (dev , use)← usageEvents world]

recent ← clockResetWindow nextMonth −≺ add evs

group sum −≺ recent

In this example, the event comprehension attaches the usage
amount of each usage event to the user who is currently authen-
ticated at the device at the time of the event. These events are then
windowed and grouped as in the previous example.

Example: Usage Caps on a Campus Network. We return to the
policy mentioned in Section 3 and which is inspired by the publicly
available campus network policies from Carnegie Mellon [1]. A
simplified version of the policy states that a device is permanently
barred from the network if it exceeds a five-day sliding cap, until
an adminstrator reinstates the device. This policy differs from the
previous example in two ways: (1) usage is aggregated over a slid-
ing window and (2) devices can be explicitly reinstated. To express
this policy, we add another event source to the World data type
for administrative resets, letting adminResets world denote these
events. We then express the policy in two steps, first writing the
signal function to track usage over the sliding window and second
writing the signal function which tracks users that have exceeded
their cap and have not yet been reinstated:

useTableSF = proc world → do

recent ← since (daysAgo 5)−≺ add (usageEvents world)
group sum −≺ recent

overSetSF =
proc world → do

useTable ← useTableSF −≺ world

capTable ← capTableSF −≺ world

let devEv = usageEvents world .|. capSetEvents world

accumSet −≺
add [dev | dev ← devEv ,

let cap = lookupCap dev capTable ,
let use = lookupUse dev useTable,
use > cap]

⊙ remove (adminResets world)

In overSetSF we use the .|. operation, which merges two events
in order to let devEv stand for any event changing the usage or
cap setting of a device. We then use an event comprehension to
check whether the usage for any device for which an event oc-
curred now exceeds its usage cap. We omit the policy that simply
checks that the sender of a packet is not a member of set provided
by overSetSF .

6. RELATED WORK
We discuss related work in terms of the distinctions made in our

system architecture in Figure 1. There are many OpenFlow con-
troller frameworks available, such as NOX [11], Maestro [27] and
Floodlight [2], and POX [3]. These frameworks provide low-level
control over switch flow tables and are typically imperative and
object-oriented. Nettle [24,25] is also a network controller, but dif-
fers from the above systems by allowing the low-level control pro-
grams to be written in a domain specific language based on FRP
and embedded in a functional programming language.

Flow-based Management Language (FML) [13] is a policy lan-
guage for the NOX controller that allows operators to declaratively
specify network policies and therefore serves a similar purpose as
Procera. We compare Procera with FML in detail in Section 3.

Frenetic [10] is a network programming language built on NOX;
it has two sub-languages: (1) a declarative network query language,
and (2) a functional and reactive network policy management li-
brary based on FRP. Frenetic occupies a role somewhere between a
policy layer and a network controller: it deals with network details
such as routing and switch rules, but also introduces an abstraction
that allows multiple network management programs to compose

47

without interfering. Frenetic and Procera have some similar lan-
guage constructs, such as time windowing; While Frenetic applies
these operations only to packets, Procera allows these to be applied
to any event stream.

Declarative routing [18] is recursive query language for network
routing. It is designed to simplify distributed router programming,
rather than logically centralized controllers.

7. SUMMARY
We have introduced Procera, a language that allows network

operators to specify high-level, reactive network control policies
that cannot easily be expressed in today’s languages for software-
defined network control. Procera applies the principles of func-
tional reactive programming to provide a declarative, expressive,
and compositional framework that allows operators to express net-
work policies based on both reactive and temporal behaviors, which
are typically necessary to express common, simple network poli-
cies. In our ongoing work, we are implementing a scalable Procera
controller and exploring how the composability that FRP facilitates
might make it easier to compose orthogonal network policies (e.g.,
traffic load balance and access control) in a common policy con-
trol framework. We are also deploying Procera on BISmark home
routers; we plan to use it to enable home network users to express
policies such those we have described in this paper, either directly,
or indirectly via a graphical user interface.

Acknowledgments

This work was supported in part by a gift from Microsoft Research,
NSF Awards CNS-1018021, CNS-1040715, and a grant from the
GENI Project Office, “GENI OpenFlow Campus Buildout”.

REFERENCES
[1] CMU network bandwidth usage guildline.

http://www.cmu.edu/computing/network/connect/

guidelines/bandwidth.html.

[2] Floodlight, Java-based OpenFlow Controller.
http://floodlight.openflowhub.org/.

[3] POX, Python-based OpenFlow Controller.
http://www.noxrepo.org/pox/about-pox/.

[4] A. Arasu, S. Babu, and J. Widom. The cql continuous query
language: semantic foundations and query execution. The VLDB

Journal, 15(2):121–142, June 2006.

[5] H. Ballani and P. Francis. Conman: a step towards network
manageability. In Proceedings of the 2007 conference on

Applications, technologies, architectures, and protocols for computer

communications, SIGCOMM ’07, pages 205–216, New York, NY,
USA, 2007. ACM.

[6] T. Benson, A. Akella, and A. Shaikh. Demystifying configuration
challenges and trade-offs in network-based isp services. SIGCOMM

Comput. Commun. Rev., 41(4):302–313, Aug. 2011.

[7] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe. Declarative
configuration management for complex and dynamic networks. In
Proceedings of the 6th International COnference, Co-NEXT ’10,
pages 6:1–6:12, New York, NY, USA, 2010. ACM.

[8] A. Courtney, H. Nilsson, and J. Peterson. The yampa arcade. In
Proceedings of the 2003 ACM SIGPLAN workshop on Haskell,
Haskell ’03, pages 7–18, New York, NY, USA, 2003. ACM.

[9] N. Feamster and H. Balakrishnan. Detecting BGP Configuration
Faults with Static Analysis. In Proc. 2nd Symposium on Networked

Systems Design and Implementation, Boston, MA, May 2005.

[10] N. Foster, R. Harrison, M. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming
language. In International Conference on Functional Programming,
Sept. 2011.

[11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. NOX: towards an operating system for networks.
ACM SIGCOMM Computer Communication Review, 38(3):105–110,
July 2008.

[12] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and
R. Johari. Plug-n-serve: Load-balancing web traffic using openflow.
Sigcomm Demonstration, 2009.

[13] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker.
Practical declarative network management. In Proceedings of the 1st

ACM workshop on Research on enterprise networking, WREN ’09,
pages 1–10, New York, NY, USA, 2009. ACM.

[14] H. Kim, T. Benson, A. Akella, and N. Feamster. The evolution of
network configuration: a tale of two campuses. In Proceedings of the

2011 ACM SIGCOMM conference on Internet measurement

conference, IMC ’11, pages 499–514, New York, NY, USA, 2011.
ACM.

[15] H. Kim, S. Sundaresan, M. Chetty, N. Feamster, and W. K. Edwards.
Communicating with caps: managing usage caps in home networks.
In Proceedings of the ACM SIGCOMM 2011 conference on

SIGCOMM, SIGCOMM ’11, pages 470–471, New York, NY, USA,
2011. ACM.

[16] H. Kim, A. Voellmy, S. Burnett, N. Feamster, and R. Clark. Lithium:
Event-driven network control. Technical Report GT-CS-12-03,
Georgia Institute of Technology, 2012.

[17] R. Kowalski and M. Sergot. A logic-based calculus of events. New

Generation Computing, Vol. 4, No. 1, pages 67–95, Feburary 1986.

[18] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative routing: extensible routing with declarative queries. In
Proceedings of the 2005 conference on Applications, technologies,

architectures, and protocols for computer communications,
SIGCOMM ’05, pages 289–300, New York, NY, USA, 2005. ACM.

[19] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP
misconfiguration. In Proc. ACM SIGCOMM, pages 3–17, Pittsburgh,
PA, Aug. 2002.

[20] J. McCarthy. Situations, actions, and causal laws. Stanford University

Artificial Intelligence Project, Stanford University; reprinted in M.

Minsky (ed.), Semantic Information Processing, MIT Press, pages
410–417, 1968.

[21] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling innovation in campus networks. ACM Computer

Communications Review, Apr. 2008.

[22] R. Paterson. A new notation for arrows. In Proceedings of the sixth

ACM SIGPLAN international conference on Functional

programming, ICFP ’01, pages 229–240, New York, NY, USA, 2001.
ACM.

[23] V. Paxson. Bro: a System for Detecting Network Intruders in
Real-Time. Computer Networks, 31(23-24):2435–2463, 1999.

[24] R. Rocha and J. Launchbury, editors. Practical Aspects of

Declarative Languages - 13th International Symposium, PADL 2011,

Austin, TX, USA, January 24-25, 2011. Proceedings, volume 6539 of
Lecture Notes in Computer Science. Springer, 2011.

[25] A. Voellmy and P. Hudak. Nettle: Taking the sting out of
programming network routers. In Rocha and Launchbury [24], pages
235–249.

[26] Z. Wan and P. Hudak. Functional Reactive Programming from first
principles. In Proc. ACM SIGPLAN’00 Conference on Programming

Language Design and Implementation (PLDI’00), 2000.

[27] T. S. E. N. Zheng Cai, Alan L. Cox. Maestro: A System for Scalable
OpenFlow Control, December 2010. http://www.cs.rice.
edu/~eugeneng/papers/TR10-11.pdf.

48

