
VeriFlow: Verifying Network-Wide Invariants in Real Time

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, P. Brighten Godfrey
Department of Computer Science

University of Illinois at Urbana-Champaign
201 North Goodwin Avenue

Urbana, Illinois 61801-2302, USA
{khurshi1, wzhou10, caesar, pbg}@illinois.edu

ABSTRACT
Networks are complex and prone to bugs. Existing tools
that check configuration files and data-plane state operate
offline at timescales of seconds to hours, and cannot detect
or prevent bugs as they arise.

Is it possible to check network-wide invariants in real time,
as the network state evolves? The key challenge here is to
achieve extremely low latency during the checks so that net-
work performance is not affected. In this paper, we present a
preliminary design, VeriFlow, which suggests that this goal
is achievable. VeriFlow is a layer between a software-defined
networking controller and network devices that checks for
network-wide invariant violations dynamically as each for-
warding rule is inserted. Based on an implementation using
a Mininet OpenFlow network and Route Views trace data,
we find that VeriFlow can perform rigorous checking within
hundreds of microseconds per rule insertion.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management, Network monitoring

General Terms
Algorithms, Design, Experimentation, Management, Perfor-
mance, Security, Verification

Keywords
Software-defined networking, OpenFlow, forwarding, debug-
ging, real time

1. INTRODUCTION
Network forwarding behaviors are complex, including code-

pendent functions running on hundreds or thousands of de-
vices, such as routers, switches, and firewalls from different
vendors. As a result, a substantial amount of effort is re-
quired to ensure networks’ correctness and security. How-
ever, faults in the network state arise commonly in practice,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotSDN’12, August 13, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.00.

including loops, suboptimal routing, black holes and access
control violations that make services unavailable or prone
to attacks (e.g., DDoS attacks). Software-Defined Network-
ing (SDN) will ease the development of network applica-
tions, but bugs are likely to remain problematic since the
complexity of software will increase. Moreover, SDN allows
multiple applications or even multiple users to program the
same physical network simultaneously, potentially resulting
in conflicting rules that alter the intended behavior of one
or more applications [15].

One solution is to rigorously check network software or
configuration for bugs prior to deployment. Symbolic exe-
cution [7] can catch bugs through exploration of all possible
code paths, but is usually not tractable for large software.
Analysis of configuration files [8,18] is useful, but cannot find
bugs in router software and must be designed for specific
configuration languages and control protocols. Moreover,
using these approaches, an operator who wants to ensure
the network’s correctness must have access to the software
and configuration, which may not be true in an SDN net-
work where controllers can be operated by other parties [15].
Another approach is to statically analyze snapshots of the
network-wide data-plane state [5, 6, 11, 12]. These tools op-
erate offline, and thus only find bugs after they happen.

This paper studies the following question: Is it possible to
check network-wide invariants, such as absence of routing
loops, in real time as the network evolves? This would en-
able us to check updates before they hit the network, allow-
ing us to raise alarms, or even prevent bugs as they occur by
blocking problematic changes. However, existing techniques
for checking networks are not adequate for this purpose as
they operate on timescales of seconds to hours [6,11,12] 1. As
current SDN controllers are capable of handling around 30K
new flow installs per second while maintaining a sub-10ms
flow install time [16], rule verification latency in the order
of seconds is not enough to ensure real-time response, and
will affect controller throughput immensely. Delaying up-
dates for processing can harm consistency of network state,
and reduce reaction time of protocols with real-time require-
ments such as routing and fast failover. Moreover, check-
ing network-wide properties seems to require network-wide
state, and processing churn of a large network could intro-
duce scaling challenges. Hence, we need some way to per-
form this checking at very high speeds.

We present a preliminary design, VeriFlow, which demon-
strates that the goal of real-time verification is achievable.

1The average run time of reachability tests in [11] is 13 sec-
onds.

49

VeriFlow leverages SDN to obtain a picture of the network
as it evolves by sitting as a layer between the controller and
the devices, and checks validity of invariants as each rule
is inserted. However, SDN in isolation does not make the
problem easy. In order to ensure real-time response, Veri-
Flow introduces novel incremental algorithms to search for
potential violation of key network invariants — for example,
availability of a path to the destination, absence of routing
loops, access control policies, or isolation between virtual
networks.

Our prototype implementation of VeriFlow checks Open-
Flow [13] and IP forwarding rules. We microbenchmarked
VeriFlow by simulating a real IP network using real BGP
traces collected from Route Views [4]. We also evaluated
its overhead relative to NOX [10] in an emulated OpenFlow
network using Mininet [1]. We find that VeriFlow is able to
verify network invariants within hundreds of microseconds
as new rules are introduced into the network. VeriFlow’s
verification phase has little impact on network performance
and inflates TCP connection setup latency by a manageable
amount, around 7% on average. In summary, our key con-
tribution is to present the first tool that can check network-
wide invariants in real time.

2. DESIGN OF VERIFLOW
Checking network-wide invariants in the presence of com-

plex forwarding elements (such as routers, firewalls, packet
transformers) can be a hard problem to solve. For exam-
ple, in [12], it was shown that packet filters make reacha-
bility checks NP-Complete, and if arbitrary programs are
allowed in the data plane, then reachability becomes unde-
cidable. Aiming to perform these checks in real-time makes
the problem even harder. Our design tackles this problem
as follows. First, we monitor all the network update events
in a live network. Second, we confine our verification activ-
ities to only those parts of the network whose actions may
be influenced by a new update. Third, rather than check-
ing invariants with a general-purpose tool such as a SAT or
BDD solver [6, 12] (which are generally too slow), we use a
custom algorithm that is sufficient to verify many kinds of
invariants. We now discuss each of these design decisions in
detail.

VeriFlow’s first job is to track every forwarding-state change
event. For example, in an SDN such as OpenFlow [13],
a centralized controller issues forwarding rules to the net-
work devices to handle flows initiated by users. VeriFlow
has to intercept all these rules and verify them before they
reach the network. To achieve this goal, VeriFlow sits as
a shim layer between the controller and the network (sim-
ilar to FlowVisor [15]), and monitors all communication in
either direction.

For every rule insertion/deletion message, VeriFlow must
verify the effect of the rule on the entire network at very high
speeds. We solve this problem in three steps. First, we slice
the network into a set of equivalence classes of packets (Sec-
tion 2.1). Packets belonging to an equivalence class experi-
ence the same forwarding actions throughout the network.
Intuitively, each change to the network will typically only
affect a very small number of equivalence classes. There-
fore, we find the set of equivalence classes whose operation
could be altered by a rule, and verify network invariants
only within those classes. Second, VeriFlow builds individ-
ual forwarding graphs for every equivalence class using the

current network state (Section 2.2). Third, VeriFlow tra-
verses these graphs to determine the status of one or more
invariants (Section 2.3). The following subsections describe
these steps in detail. Figure 1 shows the placement and
operations of VeriFlow in an SDN.

Figure 1: VeriFlow sits between the SDN applica-
tions and devices to intercept and check every rule
that the network experiences.

2.1 Slicing the network into equivalence classes
One way to verify network properties is to prepare a model

of the entire network using its current data-plane state and
run queries on this model [5,12]. However, checking the en-
tire network’s state every time a new flow rule is inserted
is wasteful and fails to provide real-time response [12]. In-
stead, we note that most forwarding rule changes affect only
a small subset of all possible packets. For example, inserting
a IP longest-prefix-match rule will only affect forwarding for
packets destined for that prefix. However, there can be rules
in a network device that overlap with a newly inserted rule
and match the same set of packets. If this happens then it
is possible that the new rule may (inadvertently) alter the
path of a set of packets. In order to confine our verifica-
tion activities only on the affected set of packets, we slice
the network into a set of equivalence classes based on the
new rule and the existing rules that overlap with the new
rule. An equivalence class is a set P of packets such that for
any p1, p2 ∈ P and any network device R, the forwarding
action is identical for p1 and p2 at R. Separating the entire
packet space into individual equivalence classes allows Veri-
Flow to pinpoint the affected set of packets if a problem is
discovered.

Let us look at an example. Assume that a switch in an
OpenFlow network has two flow rules matching two disjoint
sets of packets. The first rule matches all packets whose des-
tination IP address falls within the range 11.1.0.0/16, and
the second rule matches all packets whose destination IP ad-
dress falls within the range 12.1.0.0/16. Now, if a new rule
with destination IP address prefix 11.0.0.0/8 is added into
the switch, it may affect packets belonging to the 11.1.0.0/16
range depending on the priority values of these two rules [2].
However, the new rule will never affect packets that be-
long to the 12.1.0.0/16 range. Therefore, VeriFlow will only

50

consider the new rule (11.0.0.0/8) and the existing overlap-
ping rule (11.1.0.0/16) while analyzing network properties.
These two overlapping rules will result in the following three
equivalence classes: (11.0.0.0 to 11.0.255.255), (11.1.0.0 to
11.1.255.255) and (11.2.255.255 to 11.255.255.255).

VeriFlow has to utilize an efficient data structure to quickly
store new network rules and find overlapping rules. We
achieve this goal with the help of a prefix tree or trie data
structure inspired by the packet classification algorithms
presented in [17]. A trie is an ordered tree data structure
that is used to store an associative array. We use the packet
header fields as keys in our trie. These include the MAC
and IP addresses (both source and destination) and trans-
port protocol ports. We use a single trie to store all the
rules present in the network. In the current version of Veri-
Flow, we only use the destination IP address to build the
forwarding state of the entire network. More details on our
trie implementation are presented in Section 3.2.

2.2 Modeling forwarding state with forward-
ing graphs

In order to determine the forwarding behavior of each
equivalence class, VeriFlow generates individual forwarding
graphs for all the equivalence classes computed in the pre-
vious step. This graph is a representation of how packets
within an equivalence class will be forwarded through the
network. It consists of nodes representing network devices
and directed edges representing forwarding decisions for that
equivalence class at each node. Hence, a node represents an
equivalence class at a particular device. We put a directed
edge from node A to node B if according to the forward-
ing table at node A, the next hop for the equivalence class
is node B. For each equivalence class, we traverse the trie
structure to find the devices and rules that match packets
from that equivalence class, and build the graph using this
information. A forwarding graph contains all the informa-
tion needed to answer queries posted by network operators.

2.3 Running queries
Above, we described how we model the network’s behav-

ior. Next, we need some way to answer queries (check invari-
ants), using this model. To do this, we provide an algorithm,
which takes as input an invariant to be checked, traverses
the forwarding graphs of the affected equivalence classes,
and outputs information about whether the invariant holds.

There exists a large diversity of queries that can be ex-
pressed as network reachability [6] (e.g., detecting black
holes and routing loops, ensuring isolation of multiple VLANs,
verifying access control policies). Hence, we focus on sup-
porting reachability queries. However, to support other types
of queries, it would be straightforward to extend VeriFlow to
accept user-provided modules that compute arbitrary prop-
erties, given access to the equivalence classes and their for-
warding graphs.

Basic reachability algorithm: Given a snapshot of the
network data-plane state and a set of new rules, network-
wide invariants can be verified by tracing the traversal paths
of all the affected equivalence classes. VeriFlow performs
this step by traversing every forwarding graph (computed
in the previous step) using depth-first search. During this
traversal, VeriFlow tries to detect violations of network-wide
invariants. The outcome of this traversal can be a set of
possible destinations, including none (black hole), or may

result in a routing loop. In particular, while traversing a
forwarding graph, if VeriFlow encounters a node twice, then
it concludes that insertion of the new rule will result in a
routing loop. On the other hand, if VeriFlow encounters a
node that does not have any outgoing edge and hence does
not lead to the intended destination, then it concludes that
there is a black hole in the network.

Verification actions: If VeriFlow determines that an in-
variant is violated, it executes an associated action that is
pre-configured for each invariant by the network operator.
Two obvious actions the operator could choose are dropping
the rule, or installing the rule but generating an alarm for
the operator. For example, the operator could choose to
drop rules that cause a security violation (such as packets
leaking onto a protected VLAN), but only generate an alarm
for a black hole.

3. IMPLEMENTATION
In this section, we describe three key implementation chal-

lenges of our design. We start with a description of our inter-
facing module that helps VeriFlow to intercept all network
events in an OpenFlow network in a transparent manner
(Section 3.1). Section 3.2 provides some details on the use
of our trie structure. Finally, in Section 3.3, we discuss a
graph-cache based strategy that we use to speed up the ver-
ification process.

3.1 Interfacing with OpenFlow entities
In order to ease the deployment of VeriFlow in any Open-

Flow network and use VeriFlow with unmodified OpenFlow
applications, we need a mechanism to make VeriFlow trans-
parent so that OpenFlow entities remain completely un-
aware of the presence of VeriFlow. We do this by imple-
menting VeriFlow as a proxy application that sits between
OpenFlow switches and the controller. OpenFlow switches
need to be configured to connect to VeriFlow instead of
the OpenFlow controller. The switches consider VeriFlow
as their controller. For every connection VeriFlow receives
from the OpenFlow switches, it initiates a new connection
towards the actual controller and simply copies all the bytes
sent from the switches to the controller and vice versa. How-
ever, simply copying all the bytes from one end to another
will not serve our main purpose, i.e., verification of newly
inserted rules. VeriFlow has to determine message bound-
aries within this stream of bytes and filter out rule inser-
tion/deletion messages. To achieve this, VeriFlow buffers
the bytes it receives from either end and checks whether it
received a complete OpenFlow message or not. Whenever
VeriFlow detects a Flow Modification message, it invokes its
rule verification module.

3.2 Performing rule verification
As we mentioned in Section 2, we maintain a trie data

structure to store all the forwarding rules present in all the
devices in the network. This allows us to quickly look-up
the existing rules that overlap with a newly inserted rule.
We consider each rule as a binary string and use individual
bits to prepare the trie. Each level in our trie represents a
single bit in a particular rule. For example, for traditional
destination prefix-based routing, there are 32 levels in the
trie. Each node in our trie has three branches – the first
branch is taken if the corresponding rule bit is 0, the second
is taken if the bit is 1, and the third is taken if the bit is

51

don’t care (i.e., a wildcard). The leaves in the trie store the
actual rules that are represented by the path that leads to
a particular leaf starting from the root of the trie. Once we
build the trie, searching for overlapping rules becomes pretty
simple and extremely fast. Given a new rule, we start with
the first bit of the rule and traverse the trie starting from
its root. We examine each bit and take the branch that the
bit value points to. For don’t care bits, we explore all the
branches of the current node, as a don’t care bit can take
any value. For the 0 (or, 1) bit, we explore both the 0 (or, 1)
branch and the don’t care branch. Once we reach the leaves
of all the paths that we explore, we get a list of rules that
overlap with the new rule. We use these rules to construct
the equivalence classes and forwarding graphs to be used for
verifying network properties.

3.3 Speeding up VeriFlow with a graph-cache
As the network experiences new updates, new equivalent

classes of packets will be produced due to the interactions
between existing and new rules. However, some equivalent
classes will remain common across multiple rule insertions
and their forwarding graphs can be reused by updating the
graphs with the new rules. Therefore, we maintain a cache of
forwarding graphs indexed by their equivalence classes. This
saves time and allows VeriFlow to perform rule verification
very quickly resulting in real-time response.

4. EVALUATION
In this section, we present performance results of our Veri-

Flow implementation. As VeriFlow intercepts every rule in-
sertion message whenever it is issued by an SDN controller,
it is crucial to complete the verification process in real-time
so that network performance is not affected and to ensure
scalability of the controller. We evaluated the overhead of
VeriFlow’s operations with the help of two experiments. In
the first experiment (Section 4.1), our goal is to microbench-
mark different phases of VeriFlow’s operations and observe
their contribution to the overall run time. This allows us to
focus on those parts of VeriFlow that can be further opti-
mized to reduce the verification latency.

The goal of the second experiment (Section 4.2) is to assess
the impact of VeriFlow on TCP connection setup latency as
perceived by end users of an SDN. This is important because
setting up an end-to-end TCP connection requires multiple
flow rules to be installed in a multi-hop network. As Veri-
Flow will be intercepting each of these rules and verify their
effects one by one, it is important to keep the overhead as
low as possible so that end users do not experience signif-
icant delay while setting up a new TCP flow. Both of our
experiments were performed on a Dell Optiplex 990 machine
with an Intel Core i7 2600 CPU with 4 cores at 3.4 GHz and
16 GB of RAM running 64 bit Ubuntu Linux 10.10.

4.1 Microbenchmarking VeriFlow run time
In this experiment, we simulated a network consisting of

172 routers following a Rocketfuel [3] topology (AS 1755),
and replayed BGP (Border Gateway Protocol) RIB (Rout-
ing Information Base) and update traces collected from the
Route Views Project [4]. We used an OSPF (Open Shortest
Path First) simulator to compute the IGP (Interior Gate-
way Protocol) path cost between every pair of routers in
the network. A BGP RIB snapshot consisting of 5 million
entries was used to initialize the network FIB tables. Then

we replayed a BGP update trace containing 90,000 updates
to trigger dynamic changes in the network. We randomly
mapped Route Views peers to border routers in our network,
and then replayed updates so that they originate according
to this mapping. Upon receiving an update from the neigh-
boring AS, each border router sends the update to all the
other routers in the network. Using standard BGP polices,
each router updates its RIB using the information present
in the update and updates its FIB (Forwarding Information
Base). We fed all the FIB changes into VeriFlow to measure
the time VeriFlow takes to complete its individual steps.
The results from this experiment are shown in Figure 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F

Time (microseconds)

Graph cache update
Equivalence class search

Graph build
Query

Total verification

Figure 2: Results from simulation using the Route
Views trace. Total verification time of VeriFlow re-
mained well below 1 millisecond for most of the up-
dates.

From Figure 2, we see that VeriFlow is able to verify most
of the updates within 1 millisecond. Please note that the X-
axis in Figure 2 is plotted in a log scale. The mean verifica-
tion time for the updates is only 108 microseconds and each
query takes only 21 microseconds on an average. By limit-
ing the verification latency within hundreds of microseconds,
VeriFlow ensures real-time response while processing rule in-
sertion messages. Moreover, this allows network operators
to run multiple queries (e.g., black hole detection, isolation
of multiple VLANs, etc.) within a millisecond time budget.

4.2 Effect on TCP connection setup latency
In order to evaluate the effect of VeriFlow’s operations on

user-perceived TCP connection setup latency, we emulated
a 20 node OpenFlow network using Mininet. Mininet cre-
ates a software-defined network (SDN) with multiple nodes
on a single machine. Our network consists of 10 OpenFlow
switches arranged in a chain-like topology with a host con-
nected to every switch. We ran a NOX controller along with
an application that provides the functionality of a learning
switch. It allows a host to reach any other host in the net-
work by installing flow rules in the switches. We imple-
mented a simple TCP server program and a simple TCP
client program to drive the experiment. The server program
accepts TCP connections from clients and closes the con-
nection immediately. The client program just connects to a
given server and closes the connection immediately. We ran
the server program at each of the 10 hosts and configured
the client programs at all the hosts to connect to the server

52

of a random host (excluding itself) as many times as possible
over a given duration (10 seconds in our experiment). We
set the rule eviction hard timeout to its minimum possible
value (1 second) so that VeriFlow experiences the maximum
number of new rules being sent by the controller at the ar-
rival of new connection requests. We measured the time it
takes to complete each connection.

While using VeriFlow, we encounter two types of over-
head. First, there is the overhead imposed by the proxy
module, including overhead to buffer bytes, re-assemble com-
plete rule messages, and kernel overheads of context switch-
ing and socket interfaces. In order to assess this overhead,
we first ran our experiment with VeriFlow placed between
the controller and the switches, but disabled the verification
module.

The second overhead is the overhead imposed by the ver-
ification module itself. To assess this overhead, we ran our
experiment a second time with the verification module en-
abled. This allows us to see the delta increase caused by
running our verification algorithms. As a comparison, we
ran our experiment a third time without placing VeriFlow
between the controller and the switches. In all the runs,
we varied the number of hosts and ran each combination
5 times. Figure 3 shows the results from this experiment
averaged over 5 runs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 6 8 10

T
C

P
 c

on
ne

ct
io

n
se

tu
p

la
te

nc
y

(m
ill

is
ec

on
ds

)

Number of hosts

Without VeriFlow
With proxy only

With VeriFlow

Figure 3: TCP connection setup experiment us-
ing Mininet and NOX. The verification phase of
VeriFlow incurs minimal overhead compared to the
proxy operations.

From Figure 3 we can see that in the presence of VeriFlow
the TCP connection setup latency is affected by a signifi-
cant amount (latency is increased by around 69% on aver-
age) compared to the case when VeriFlow is not in action.
However, we observe that a major share of this overhead is
actually contributed by the proxy module (increases latency
by around 62% on average). The overhead imposed by the
verification module is rather low and inflates the connection
setup latency by only 7% on average. From this observation,
we can conclude that implementing VeriFlow as a pluggable
module for SDN applications or controller frameworks (such
as NOX) will allow VeriFlow to verify network-wide invari-
ants with minimal increase in TCP connection setup latency.
Moreover, the overhead caused by proxy operations will be

present in any tool that acts as a proxy in an SDN, such as
FlowVisor [15].

5. DISCUSSION AND FUTURE WORK
Handling packet transformations: We can extend our
design to handle rules that perform packet transformation
such as Network Address Translation. A transformation rule
has two parts — the match part determines the set of pack-
ets that will undergo the transformation, and the transfor-
mation part represents the set of packets into which the
matched packets will get transformed. We can handle this
case by generating additional equivalence classes and their
corresponding forwarding graphs, to address the changes in
packet header due to the transformations. We leave a full
design and implementation to future work.

Deciding when to check: VeriFlow may not know when
an invariant violation is a true problem rather than an in-
termediate state during which the violation is considered
acceptable by the operator. For example, in an SDN, ap-
plications can install rules into a set of switches to build an
end-to-end path from a source host to a destination host.
However, as VeriFlow is unaware of application semantics,
it may not be able to determine these rule set boundaries.
This may cause VeriFlow to report the presence of tempo-
rary black holes while processing a set of rules one by one.
One possible solution is for the SDN application to tell Veri-
Flow when to check.

Handling queries other than reachability: We can
extend our design to answer queries that do not fall into
the reachability category. For example, in a data center,
the network operator may want to ensure that certain flows
do not use the same links, or that the number of flows on
a link always remains below a threshold. As mentioned in
Section 2.3, plug-in modules could check other properties;
performance may, however, depend on the property being
checked and its implementation.

Multiple controllers: VeriFlow assumes it has a com-
plete view of the network to be checked. In a multi-controller
scenario, obtaining this view in real time would be difficult.
Checking network-wide invariants in real time with multiple
controllers is a challenging problem for the future.

6. RELATED WORK
Recent work on debugging general networks and SDNs fo-

cuses on detecting network anomalies [6,12], checking Open-
Flow applications [7], ensuring data-plane consistency [14],
and allowing multiple applications to run side-by-side in
a non-conflicting manner [15]. However, unlike VeriFlow,
none of the existing solutions provide real-time verification
of network-wide invariants as the network experiences dy-
namic changes.

Programming OpenFlow networks: NOX [10] is a
“network operating system” that provides a programming
interface to write controller applications for an OpenFlow
network. NOX provides an API that is used by the appli-
cations to register for OpenFlow events and send OpenFlow
commands to the switches. Frenetic [9] is a high-level pro-
gramming language that can be used to write OpenFlow ap-
plications running on top of NOX. Frenetic allows OpenFlow
application developers to express packet processing policies
at a higher-level manner than the NOX API. However, Fre-

53

netic and NOX only provide the language and the associated
run-time. Unlike VeriFlow, neither NOX nor Frenetic per-
form correctness checking of updates, limiting their ability
to help in detecting bugs in the application code or other
issues that may occur while the network is in operation.

Checking OpenFlow applications: NICE [7] performs
symbolic execution of OpenFlow applications and applies
model checking to explore the state space of an entire Open-
Flow network. Unlike VeriFlow, NICE is a proactive ap-
proach that tries to figure out invalid system states by using
a simplified OpenFlow switch model. It is not designed to
check network properties in real time.

FlowVisor [15] allows multiple OpenFlow applications to
run side-by-side on the same physical infrastructure without
affecting each others’ actions or performance. Like VeriFlow,
FlowVisor acts as a proxy. Unlike VeriFlow, FlowVisor does
not look for violations of key network invariants.

Checking network invariants: The router configuration
checker (rcc) [8] checks configuration files to detect faults
that may cause undesired behavior in the network. However,
rcc cannot detect faults that only manifest themselves in the
data plane (e.g., bugs in router software and inconsistencies
between the control plane and the data plane; see [12] for
examples).

Anteater [12] uses data-plane information of a network
and checks for violations of key network invariants. Anteater
converts the data-plane information into boolean expres-
sions, translates network invariants into instances of boolean
satisfiability (SAT) problems and checks the resultant SAT
formulas using a SAT solver. Although Anteater can de-
tect violations of network invariants, it is static in nature
and does not scale well to dynamic changes in the network
(taking up to hundreds of seconds to check a single invari-
ant). Concurrent with our work, [11] is a system with goals
similar to Anteater, and is also not real time.

ConfigChecker [6] and FlowChecker [5] convert network
rules (configuration and forwarding rules respectively) into
boolean expressions in order to check network invariants.
They use Binary Decision Diagram (BDD) to model the net-
work state, and run queries using Computation Tree Logic

(CTL). VeriFlow uses graph search techniques to verify network-
wide invariants, and handles dynamic changes in real time.
Moreover, unlike previous solutions, VeriFlow can prevent
problems from hitting the forwarding plane.

7. CONCLUSION
In this paper, we presented VeriFlow, a network debugging

tool to find faulty rules issued by SDN applications and op-
tionally prevent them from reaching the network and causing
anomalous network behavior. To the best of our knowledge,
VeriFlow is the first tool that can verify network-wide in-
variants in a live network in real time. With the help of
experiments using a real world network topology, real world
traces, and an emulated OpenFlow network, we found that
VeriFlow is capable of processing forwarding table updates
in real time.

8. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their

invaluable feedback. We gratefully acknowledge the support
of the NSA Illinois Science of Security Lablet, and National
Science Foundation grants CNS 1040396 and CNS 1053781.

9. REFERENCES
[1] Mininet: Rapid prototyping for software defined

networks.
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet.

[2] OpenFlow switch specification.
http://www.openflow.org/documents/openflow-spec-
v1.1.0.pdf.

[3] Rocketfuel: An ISP topology mapping engine.
http://www.cs.washington.edu/research/networking/rocketfuel/.

[4] University of Oregon Route Views Project.
http://www.routeviews.org/.

[5] Al-Shaer, E., and Al-Haj, S. FlowChecker:
Configuration analysis and verification of federated
OpenFlow infrastructures. In SafeConfig (2010).

[6] Al-Shaer, E., Marrero, W., El-Atawy, A., and

ElBadawi, K. Network configuration in a box:
Towards end-to-end verification of network
reachability and security. In ICNP (2009).

[7] Canini, M., Venzano, D., Peresini, P., Kostic,

D., and Rexford, J. A NICE way to test OpenFlow
applications. In NSDI (2012).

[8] Feamster, N., and Balakrishnan, H. Detecting
BGP configuration faults with static analysis. In NSDI
(2005).

[9] Foster, N., Harrison, R., Freedman, M. J.,

Monsanto, C., Rexford, J., Story, A., and

Walker, D. Frenetic: A network programming
language. In ICFP (2011).

[10] Gude, N., Koponen, T., Pettit, J., Pfaff, B.,

Casado, M., McKeown, N., and Shenker, S.

NOX: Towards an operating system for networks. In
SIGCOMM CCR (2008).

[11] Kazemian, P., Varghese, G., and McKeown, N.

Header space analysis: Static checking for networks.
In NSDI (2012).

[12] Mai, H., Khurshid, A., Agarwal, R., Caesar, M.,

Godfrey, P. B., and King, S. T. Debugging the
data plane with Anteater. In SIGCOMM (2011).

[13] McKeown, N., Anderson, T., Balakrishnan, H.,

Parulkar, G., Peterson, L., Rexford, J., and

Shenker, S. OpenFlow: Enabling innovation in
campus networks. In SIGCOMM CCR (2008).

[14] Reitblatt, M., Foster, N., Rexford, J., and

Walker, D. Consistent updates for software-defined
networks: Change you can believe in! In HotNets
(2011).

[15] Sherwood, R., Gibb, G., Yap, K.-K.,

Appenzeller, G., Casado, M., McKeown, N.,

and Parulkar, G. Can the production network be
the testbed? In OSDI (2010).

[16] Tavakoli, A., Casado, M., Koponen, T., and

Shenker, S. Applying NOX to the datacenter. In
HotNets (2009).

[17] Varghese, G. Network Algorithmics: An
interdisciplinary approach to designing fast networked
devices, 2004.

[18] Yuan, L., Mai, J., Su, Z., Chen, H., Chuah,

C.-N., and Mohapatra, P. FIREMAN: A toolkit for
firewall modeling and analysis. In IEEE SnP (2006).

54

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

