
An Open Content Delivery Infrastructure
Using Data Lockers

Richard Alimi⋄ Lijiang Chen† Dirk Kutscher‡ Hongqiang Harry Liu⋄

Akbar Rahman+ Haibin Song⊙ Yang Richard Yang⋄ David Zhang× Ning Zong⊙
⋄Yale ⊙Huawei †HP Labs China +InterDigital ×PPLive ‡NEC Laboratories Europe

ABSTRACT

Content distribution has become a major function of the Internet.
However, the current Internet content distribution infrastructure is
largely closed to end-to-end applications, making it challenging for
the application community to utilize in-network storage resources.
In this paper, we investigate a simple paradigm named SAILOR that
introduces application-definable, shared in-network data lockers to
effectively facilitate the construction of highly efficient, coopera-
tive content distribution applications. We design and implement
a prototype of SAILOR and integrate it with two popular content
distribution applications for file and live streaming respectively.
Our experimental results clearly demonstrate that SAILOR can sig-
nificantly improve both network efficiency and application perfor-
mance, thereby benefiting both network providers and application
providers.

Categories and Subject Descriptors: C.2.1 [Computer Commu-

nication Networks]: Network Architecture and Design–Network
communications.

General Terms: Performance, Reliability.

Keywords: Content Delivery, Open In-Network Storage.

1. INTRODUCTION
Motivation. As content distribution becomes a major function of
the Internet [4], the scalability, efficiency, and flexibility of Internet
content distribution applications can have significant impacts on the
operation of the Internet.

A minimum approach of constructing content distribution ap-
plications is to use mostly the resources of participating (send-
ing/receiving) end hosts, but this approach can have inherent lim-
itations. Consider an application session with N end users receiv-
ing an object of size S. Without in-network resources or support,
a purely end-host based approach requires that the endhosts pro-
vide at least N ∗S upload traffic over the last-mile access networks.
However, access networks can be the major performance and cost
bottlenecks for many network service providers.

Both Internet service providers (ISP) and content delivery net-
work (CDN) providers have deployed in-network resources to as-
sist content distribution, but the existing designs are closed to ap-
plications. Specifically, ISPs may deploy transparent [19] and/or
non-transparent forward caches [18] at strategic locations of their
networks; CDNs deploy edge servers at data centers and/or inside
some ISP networks. However, for either ISP or CDN deployed in-
network resources, in the current design, applications have limited

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICN’12, August 17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1479-4/12/08 ...$15.00.

capability to control the usage of in-network resources (e.g., repli-
cation sites, the time of replication, the resource allocation among
end users). As a result, many applications with a large content de-
livery component choose to deploy their own infrastructures. Such
infrastructures can be costly and represent a major barrier for ap-
plication deployments.

Our approach. In this paper, we design a paradigm named SAILOR

(simple, application-independent data lockers) to provide a shared
in-network storage infrastructure for effective integration with large-
scale, end-to-end content distribution applications. In particular,
SAILOR provides end users and/or content publishers in-network
data locker accounts. A specific content distribution application,
with the resource account owner’s authorization, uses application-
specific information and state to directly control and make the best
use of the available resources at the in-network data lockers. In-
network data lockers have the potential to significantly lower the
cost of entrance to content distribution and thus generate innova-
tive solutions by the large application development community.

We show that integrating SAILOR with content distribution ap-
plications can provide flexibility and efficiency in addressing a wide
range of issues facing both networks and network applications in
content distribution.

Specifically, SAILOR can significantly improve efficiency of net-
work resource usage (e.g., inter-domain, backbone, and access net-
work usages). For example, by uploading from data lockers in-
stead of clients behind access networks, as in the minimum ap-
proach, SAILOR substantially reduces access network resource us-
age. In our experiments, we show that the deployment of SAILOR

by one cable ISP can reduce its access network upload by about
44%, and up to 96% if SAILOR clients are extensively deployed at
other ISPs. SAILOR/Live reduces access network median upload
rate by up to 95%. By integrating SAILOR with intelligent peer-
ing, we also demonstrate substantial reduction of ISP backbone and
inter-domain traffic, thereby further benefiting ISPs. For example,
SAILOR/File reduces inter-domain supply fraction by up to 87%
and backbone bandwidth-distance product by 58%; SAILOR/Live
reduces backbone traffic supply fraction by up to 95%.

Our experiments also clearly demonstrate the benefits of SAILOR

to application performance. In particular, SAILOR/File acceler-
ates the file download rate by 23%, shifting application bottleneck
rate from access network uplink bandwidth to downlink bandwidth.
SAILOR/Live reduces the startup delay of live streaming to 1/3 at
the 80-th percentile, thereby improving user experience.

Paper organization. The remainder of the paper is organized as
follows. In Section 2, we give an overview of the SAILOR architec-
ture entities. In Section 3, we present the guiding design require-
ments of SAILOR. In Section 4, we discuss key data locker design
features. We present the integration of SAILOR with two content
delivery applications in Section 5. In Section 6, we evaluate the
performance of SAILOR. We survey related work in Section 7, and
conclude in Section 8.

25

Figure 1: An example: provider C provides multiple data

locker servers to end users and content publishers.

2. ARCHITECTURE ENTITIES
SAILOR is a simple architecture that introduces shared in-network

content delivery data storage infrastructures into the design of ap-
plications. In the SAILOR architecture, there are multiple data
locker service providers. Each data locker service provider has one
or multiple data locker servers, which are hosted at different net-
work locations such as cable modem termination system (CMTS),
wireless base stations, and/or data centers of different regions. Fig-
ure 1 shows a data locker service provider C that has deployed
multiple data locker servers.

Each data locker server partitions its resources to create multiple
data lockers. Each data locker is assigned to one user, and requires
the user’s permission in order for other users to access. A user can
be either an end user or a content publisher. We use La to denote the
data locker of a user a. Each data locker La has an access key KLa

for implementing access control and resource usage constraints.
Each data locker service provider makes its own business and

policy decisions about who can get an account or accounts and
which of its data locker servers to use. For example, it can grant ac-
counts to consumer subscribers (e.g., along with Internet service),
or it may have a policy to grant accounts only to trusted content
publishers to reduce the problem of potential illegal content.

Usage scenario I. As an example deployment scenario, consider
an ISP C that provides data lockers to its subscribers. Figure 1
shows that C operates three data locker servers at three locations.
The data locker of a subscriber should be hosted on a close-by data
locker server that belongs to C. For example, La is hosted at data
locker server D1, which is close to subscriber a.

Subscriber a can use La in many ways. For example, a can use
La for file sharing. Specifically, subscriber a can first download a
piece, say File.fileid.piece1, to La. Then, while downloading the
piece to its local machine, a can start to simultaneously upload the
piece to its peers b and c from La instead of from its local machine.
By uploading from La, this approach saves access network band-
width and thus can avoid congestion on the bottleneck uplink. By
overlapping the downloading to a and the uploading to b and c, this
approach speeds up content distribution control cycle.

Concurrent with the file-sharing session, subscriber a may be
also watching a live video or participating in a multi-party video
conference. In either case, a can also use La to reduce the usage of
bottleneck resources.

Usage scenario II. Figure 1 shows that C also can allocate to con-
tent publisher p one data locker on each of the three data locker
servers. Content publishers can benefit from multiple data lock-
ers by performing application-specific replication and achieving
increased proximity to users. Specifically, the content publisher
p, say a streaming application provider, can proactively distribute
the blocks of popular channels to its data lockers. Then the content
publisher guides users to download from its data lockers to substan-
tially improve distribution efficiency, without having to construct
its own dedicated infrastructure.

3. DESIGN REQUIREMENTS
Despite the preceding specification on architecture entities, there

is still a large design space on data lockers. To guide our design,
we first present the key requirements.

Simple end-to-end control. The most important design require-
ment of SAILOR is the consistent application of the end-to-end de-
sign principle [21]. Users and their applications can have more
information on the need and impacts of resource allocation. Hence,
users and applications provide guidance on resource allocation de-
cisions and the infrastructure implements the decisions. Specif-
ically, when an application client is downloading data from oth-
ers, it decides whether to download to the client local host directly,
to its locker only, or first to its locker and then to the local host.
Similarly, when an application client is uploading data to others, it
decides who can receive its data, and whether to upload from the
locker or directly from the end host. Also, the application client
decides how much resources (e.g., the number of connections, net-
work bandwidth) that a data request consumes.

A corollary benefit of the end-to-end control is decoupled control
and data functions. Control functions tend to be processing inten-
sive, whereas data functions are often storage/bandwidth intensive.
The decoupling between control and data functions not only allows
us to optimize control and data functions separately, yielding better
overall efficiency, but also permits more flexible, open and evolv-
able control platforms on top of a shared data infrastructure.

Efficient and secure infrastructure storage. One design possi-
bility is complete virtualization, by considering each data locker as
an isolated container of the user’s content data. However, such an
isolation-based design is inefficient in infrastructure resource usage
and does not take advantage of a shared content distribution infras-
tructure provided by SAILOR. In particular, by considering each
data locker as an isolated data container, there can be substantial
amount of data redundancy. In the worst case, when N users are in-
terested in a common object, the object has to be fetched and stored
N times. On the other hand, blindly sharing all data is undesirable
either, because it may be important for some content distribution
applications to protect the ownership and the privacy of the data.
Therefore, it is essential for SAILOR to provide efficient and secure
data sharing.

Multiplexing gain for infrastructure resources. A major poten-
tial benefit of SAILOR is significant inter-user statistical multiplex-
ing gain in the consumption of critical in-network resources such
as bandwidth. By aggregating demands from a large number of
users and provisioning them collectively, SAILOR should require
significantly less resources than provisioning for each individual
user separately, so long as the individual users’ resource demands
do not peak at exactly the same time.

In addition, SAILOR should allow intra-user multiplexing gain.
A typical storage system has a provider-defined quota for each user,
and the user is responsible for allocating resources within the quota.
However, this is not sufficient for content distribution applications.
A user may run multiple applications sharing resources in the data

26

locker. Since it may not be practical to allow independent appli-
cations (e.g., a live-streaming application and a file-sharing appli-
cation, from two different providers) to jointly allocate resources
(e.g., by introducing a protocol between them), the resource model
must allow applications to manage resources independently. A nat-
ural solution is to allow the user to define a simple per-application
quota. However, this may waste available resources in a user’s data
locker.

Low-latency, scalable data locker control. One major differ-
ence between a traditional application and a content distribution
application is that the content distribution application often needs
a large number of connections, requires frequent resource adjust-
ment (e.g., connect or disconnect peers, reallocate bandwidth share
among peers), and must be sensitive to control overhead due to the
real-time nature of content distribution. On the other hand, with an
in-network storage infrastructure like SAILOR, resources are con-
sumed at a remote location and cannot be directly observed. Also,
data locker servers may become a bottleneck to resource manage-
ment. Thus, it is desirable to reduce the number of control mes-
sages sent between an application and its data locker.

4. DATA LOCKERS DESIGN
The preceding design requirements impose challenges but at the

same time provide substantial guidance to our design. Specifically,
to design a shared network storage infrastructure for integration
with large-scale end-to-end applications for efficient content dis-
tribution, we need to specify the following three components: (i)
the resource model; (ii) the data model; and (iii) the data locker

access. Below, we introduce the resource model and data locker
access protocol of SAILOR.

Resource model: SAILOR uses a simple, general, weight-based
resource model to partition each resource, unless it is overridden by
another more specific policy. The model applies to all three types
of resources, including the number of open network connections,
network bandwidth, and storage space. The simple, weight-based
resource model provides a simple, flexible mechanism to achieve
the multiplexing-gain requirement.

Specifically, let wa(R) be the weight assigned to entity a for re-
source R. Then a’s share of resource R is

max

(

Ua(R),Rtotal
wa(R)

∑b is activewb(R)

)

,

where the first term (Ua(R)) is a guaranteed amount of resource R

to entity a; the second term is the amount of resource R computed
for entity a, considering the relative weights of all active entities.
If not many entities are active, an active entity a can get more than
the guaranteed Ua(R), as SAILOR uses work-conserving schedul-
ing. An application may compute the value of Ua(R) to guarantee
basic performance (e.g., base rate streaming), and then take advan-
tage of additional amounts of resources made available by weighted
sharing (e.g., by using dynamic streaming). Note that providing re-
source guarantee requires an admission control module.

Figure 2 shows a 3-level hierarchy used in SAILOR. At the high-
est level of the hierarchy, a resource R is partitioned among concur-
rent users according to their subscription levels at the data locker
service provider. This is consistent with multiple recent proposals
on applying user-based fairness [10]. At the middle level, a user
assigns each application a weight. This scheme solves the issue of
distributed application resource coordination. That is, a user may
have multiple independent applications running simultaneously on
the user’s local machine or across multiple machines (e.g., multiple
machines at a user’s home), and these applications should share the

Figure 2: Hierarchy of Resource Allocation.

Figure 3: A scenario illustrating the need for distribute.

resources of a single user. Note that the scheme does not require
any third party middleware to handle resource sharing among appli-
cations. At the lowest level, an application partitions the resource
among the connections, if applicable and necessary. Controlling
bandwidth share at a per-connection level is important for fairness
schemes such as the proportional-share incentive scheme [15, 25].

Data locker access protocol: SAILOR provides a low-latency,
light-weight implementation of the resource model. Specifically,
applications issue commands to data lockers to store and retrieve
data. The basic command in SAILOR is the distribute primitive,
which enables efficient, pipelined multi-segment data access. Given
the wide deployment of HTTP for content distribution, the encod-
ing of distribute is based on HTTP.

One might think that there is no need to use a new primitive; in-
stead we can treat all of the data lockers collectively as a distributed
file system (similar to NFS) and simply apply the traditional file
system access commands: write to store objects, and read to re-
trieve objects. However, such an approach is insufficient to support
latency-sensitive, bandwidth-intensive content distribution applica-
tions. Consider a scenario shown in Figure 3. In this scenario, user
a has previously stored an object in its locker La, and decides to
send the object to a peer b. According to the end-to-end principle,
peer b may decide to first download the object to its locker, Lb, and
then download from its locker. The distributed file system view of
data lockers can have major difficulties in this scenario.

A distribute request from a client C to a data locker server S
specifies (i) a data object identifier dataid, (ii) a source node src,
(iii) an account on S S:account, and (iv) a destination node dst.
So a request distribute(dataid, src, S:account, dst) signals the
distribution of a data object dataid from src to S:account to dst.
Note that the src and dst fields can be empty. If src is empty, it
becomes a pure read request to transfer data from S:account to
dst; if dst is empty, it is a pure write request to store data from src
to S:account. Figure 4 illustrates a use case of distribute.

The distribute primitive is designed to explicitly support pipelined
multi-segment data access. Specifically, each data object in SAILOR

consists of a sequence of segments. As soon as the data locker
server S receives a segment of an object from src, S can immedi-
ately send the segment to dst without waiting for the entire object
to be received. Two or more distribute requests can be easily cas-
caded to enable multi-hop pipelined data access, to mimic a multi-
hop CDN functionality, with intermediate reflectors.

The distribute primitive also supports distribution deduplica-

27

a puts D1 in La

La Lb

a b

1

b learns a has D1

2
3

4

58

6

7

Request data D1

Response w/ token T1 allowing

accessing data D1

Get data D1 using token T1

Return data D1

Distribution Request:

Data: D1
Pivot account: La : a

Src: Token T1
Dst: b

Return data D1

Figure 4: The distribute primitive.

distribute(dataid, src, S:account, dst)
1. if (no data across server for dataid) then
2. server S gets data from src
3. elseif (src is an account on S) // local dedup
4. link data, and ack success
5. else // remote BW dedup
6. challenge src to verify owning dataid

Figure 5: Algorithm for distribution deduplication.

tion. Specifically, to reduce duplications in content distribution,
a server S can conduct distribution deduplication. Figure 5 depicts
the deduplication algorithm.

Note that distribution deduplication allows us to efficiently im-
plement point-to-multipoint distribution (i.e., multicast) using mul-
tiple point-to-point distribute requests. Specifically, in order to
distribute content from src to S:account to dstk (k = 1, · · · ,N),
we just need to issue N point-to-point distribute requests: dis-
tribute(dataid, src, S:account, dstk) (k = 1, · · · ,N). The data
locker server S can automatically eliminate redundant data trans-
mission and storage.

The distribute primitve includes not only access tokens but also
resource tokens: access tokens indicate permission to read/write
data, and resource allocation tokens indicate resources allocated
to perform the operation. Specifically, a resource allocation token
includes the following:

(SIZEmax,BWweight,BWmax,ConnSlots,AccessTokenHash).

The first three fields (SIZEmax, BWweight and BWmax) of a re-
source token indicate the maximum number of bytes allowed to be
transferred, a weight, and the maximum bandwidth allocated, re-
spectively. The next field (ConnSlots) of a resource token indicates
the connection slots.

The last field (AccessTokenHash) of a resource token optionally
links the resource allocation token to a particular access token. An
application may typically pass both an access token and linked re-
source allocation tokens to a peer resource allocation parameters.
However, in some application scenarios, such as flash crowds, a
client may have data that it wishes to upload to a peer, but it may
lack sufficient resources to do so. This is one possible reason for
poor performance during flash crowds.

5. APPLICATION/SAILOR INTEGRATION
Application controlled data lockers provide substantial flexibility

and efficiency. Nevertheless, achieving the full benefits of SAILOR

depends on effective integration of SAILOR with specific applica-
tions. In this section, we discuss two application-integration issues.

Backbone and interdomain traffic reduction. An objective of
introducing data lockers is to significantly improve network effi-

ciency. By reducing backbone and interdomain traffic, we reduce
global traffic, and improve network efficiency.

Recently, multiple peering techniques (e.g., Ono [3], and P4P [26])
have been proposed to reduce backbone and interdomain traffic.
Although different in details, these techniques are based on using
network costs to guide peering. One may also approximate such
costs using third-party databases such as the Maxmind database [16].

Adopting these techniques to data lockers involves a single cost
transformation. Consider the peer selection algorithm of a peer
(leecher) a who has a data locker La. Let B be the set of potential
peers that a can connect to. Given network costs without consid-
ering data lockers, we can derive network costs considering the ef-
fects of data lockers. As an example, let C0

ab be the network cost
when peer a sends to b ∈ B without data lockers; letCab be the cost
considering the effects of data lockers. We can deriveCab based on
C0
ab and the effects of data lockers. There are three cases:

• If b is a legacy client, we have Cab←C0
ab.

• If b is data locker capable but has no data locker, we haveCab←

C0
Lab

. If an ISP assigns a higher cost to upload from access net-

works, C0
Lab

can be much lower than C0
ab.

• If b has a data locker, we have Cab←C0
LaLb

.

We can similarly derive the cost of Cba.

Congestion control and reliability. Although applications are
encouraged to use data lockers when available, there are settings
when the data lockers are down, do not have enough capacities
(e.g., congested), and/or are on congested network paths. Thus, a
key integration issue is how an application utilizes both data locker
resources and end host resources. This is important for reliability
and particularly important for content distribution applications with
deadline constraints (e.g., live streaming or video-on-demand).

An application can use a priority scheme to try to use data locker
resources first, but can also adapt to use end host resources as
backup. Consider the setting in Figure 3. An ideal setting is that
b does a distribute request with source being La and destination
b. But there can be four congestion/failure points (see figure for
the points). If the ideal setting times out, user b tries to utilize re-
sources in the following order: Lb, La, and a. Figure 6 gives the
details of the priority algorithm.

priority-req(objid, Lb, a, La)
1.if (Lb && La && Lb is idle) then
2. indicate Lb to download objid from La
3.elseif (La && La is idle) then
4. request objid from La directly
5.elseif (objid is urgent)
6. // the object is critical for app performance
7. request objid from a directly
8.else
9. hold the request until next schedule time

Figure 6: Algorithm to handle congestion/failure.

6. EVALUATIONS
We have conducted preliminary evaluation on the effectiveness

of SAILOR through real experiments.

6.1 SAILOR FileSharing Results
We first integrate SAILOR with the popular BitTorrent file-sharing

application.

Setting. We use a real trace collected at a commercial BitTorrent
variant. The trace contains sufficient fields to allow us to assign
clients to areas of networks of two major US ISPs, named ISP-
A and ISP-B. We assume that only ISP-B provides data lockers

28

to its users. We consider three deployment scenarios: Native, All
SAILOR, and ISP SAILOR. In Native, no client is SAILOR capa-
ble (understands SAILOR protocol); in All SAILOR, all clients are
SAILOR capable, although only clients inside ISP-B have data lock-
ers; in ISP SAILOR, only clients inside ISP-B are SAILOR capable
and have data lockers.

Network performance. Figure 7(a) shows the results for access
supply. We observe that in All SAILOR, access upload supply is
reduced by 96% compared with Native. In ISP SAILOR, the reduc-
tion is smaller because non-SAILOR peers are not able to retrieve
data stored in lockers. Still we observe a reduction of 44% com-
pared with Native. Comparing SAILOR with current techniques,
such as Ono/P4P, we observe that they cannot reduce any access
supply, while SAILOR/FileSharing significantly reduces it.

Figures 7(b) and (c) evaluate reduction on interdomain and back-
bone usage, respectively. ISP-B prefers intradomain peers to in-
terdomain peers, and also assigns costs such that nearby intrado-
main peers are preferred. Integrating network costs in peer selec-
tion allows SAILOR to utilize more network-efficient peers. We ob-
serve that SAILOR/FileSharing clients reduce the interdomain sup-
ply from 83% to 11%. SAILOR also reduces the bandwith-delay-
product (BDP) from 3.36 to 1.39 (58% reduction).

Application performance. Next, we evaluate the effects of SAILOR

on application performance. Figure 8 shows the results. We ob-
serve that SAILOR/FileSharing improves median download rate from
320 kbps to 520 kbps, a 62% increase. Note that in this evaluation,
SAILOR refers to the case of ISP SAILOR.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F
 [

x
<

p
ct

]

Download Rate (kbps)

SAILOR
Native

Figure 8: SAILOR/FileSharing download rate at ISP-B.

6.2 SAILOR Live Results
The preceding experiments are for file sharing. We now turn to

live streaming to demonstrate SAILOR’s effectiveness across appli-
cation types.

Setting. We run real experiments on Planetlab. We utilize 400
planetlab nodes running PPLive, a production live streaming ap-
plication. We run two experiments: native PPLive (Native) and
PPLive with SAILOR (SAILOR/Live or SAILOR). The channel rate
is set to 384 kbps in both experiments. For the SAILOR/Live exper-
iment, we use a four-domain setting of Amazon EC2 with one data
locker server at each domain; each client is assigned a data locker
according to its location. For a fair comparison, the capacity of a
data locker server is equal to the sum of the upload capacities of the
clients assigned to it during the Native experiment.

Network performance. We start by showing that SAILOR sig-
nificantly reduces access supply. From Figure 9(a)), we observe
that the media access supply rate of SAILOR/Live is only 5.5 kbps
while Native is 395 kbps. This result is not surprising since control
messages are sent through access uplink. Heavy volume data traffic
comes from in-network data lockers.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
D

F

Average Uploading Rate (kbps)

SAILOR
Native

(a) Access Supply Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

Native SAILOR

In
te

rd
o
m

ai
n
 S

u
p
p
ly

 R
at

io
(b) Interdomain Supply

Figure 9: SAILOR/Live network efficiency.

SAILOR/Live also significantly reduces interdomain usage. Fig-
ure 9(b) shows the reduction of both interdomain supply ratio. Specif-
ically, SAILOR/Live reduces interdomain supply ratio from 85.1%
to around 1.67%, achieving as much as 98% reduction compared
with Native. Distributed deduplication, in particular remote band-
width deduplication, plays a major role in the reduction.

Performance Metrics Improvement with SAILOR

Startup Delay At 80-percentile: reduced to 1
3 of Native

Piece Lost Rate About the same, at ≤ 0.02%

Table 1: Improvement to application performance by SAILOR

(Planetlab).

Application performance. SAILOR reduces network traffic and at
the same time improves application performance. Performance im-
provements using SAILOR are summarized in Table 1. For startup
delay, SAILOR/Live reduces it to only 1

3 of the Native at the 80-th
percentile. The piece miss rates of the two experiments are simi-
lar, both at around 0.02%. A key reason for the speedup of startup
delay by SAILOR is the multiplexing gain, as we discussed in the
BitTorrent experiment. Furthermore, a SAILOR/Live peer starts to
announce piece availability only after the piece has arrived at its
locker, instead of waiting until it is at the last mile. This reduces
content bottlenecks during flashcrowd.

7. RELATEDWORK
Our work is directly motivated by the significant technical chal-

lenges in prior efforts to provide infrastructure support for end-to-
end content distribution applications (e.g., [7–9, 12, 14, 17, 20, 22–
24]).

One way to implement SAILOR is to adopt a generic network
storage service such as Oceanstore, FreeNAS, or Amazon S3. In [1,
2], Beck et al. propose Internet Backplane Protocol (IBP), a mid-
dleware created to allow the sharing of storage resources. Although
encouraging, none of these aforementioned network storage sys-
tems are designed for end-to-end content distribution applications.

29

 0

 0.2

 0.4

 0.6

 0.8

 1

Native All SAILOR ISP SAILOR

N
o

rm
al

iz
ed

 A
cc

es
s

S
u

p
p

ly

(a) Access Supply

 0

 0.2

 0.4

 0.6

 0.8

 1

Native All SAILOR ISP SAILOR

In
te

rd
o

m
ai

n
 S

u
p

p
ly

 R
at

io

(b) Interdomain Supply

 0

 10

 20

 30

 40

 50

 60

 70

Native All SAILOR ISP SAILOR

B
D

P

(c) BDP

Figure 7: SAILOR/FileSharing efficiency for ISP-B.

There is no previous study on how to design a network storage
infrastructure for integration with end-to-end, large-scale content
distribution applications.

There are substantial interests in adapting the Internet architec-
ture for content-oriented architectures that focus more on name-
based routing; see [5, 11, 13, 27] for some sample projects of the
recent literature, which is too large to review here. SAILOR focuses
on resource sharing and decoupling of control and data forwarding
in content delievry networks.

Our project draws on many discussions in the IETF DECADE
working group [6]. Instead of focusing on architecture, we focus
on the resource model, the data access primitive, and evaluations.

8. CONCLUSIONS AND FUTUREWORK
We present SAILOR to provide a simple, shared, application-

independent in-network storage infrastructure for effective integra-
tion with large-scale, end-to-end content distribution applications.
SAILOR introduces key features that are essential for designing
effective content distribution applications using network storage.
Through effective integration with two major applications, we demon-
strate that SAILOR can provide substantial benefits to both network
service providers and applications.

For our future work, we are planning large scale trials with ma-
jor ISPs and application vendors. We are also evaluating potential
extensions including access lockers of inactive users and shared
lockers. As end users’ computing and data move more into the
networks, data locker service can become an integral part of the
Internet infrastructure.

9. ACKNOWLEDGEMENTS
H. Harry Liu and Leo Chen are supported in part by a gift from

Huawei. We are grateful to James Chen, Xiaohui Chen, Yixuan
Geng, Yingjie Gu, Lili Qiu, Ye Wang, Hanyu Wei, Rich Woundy,
Harvey Xue, Peng Zhang, Yin Zhang, and Yunfei Zhang for collab-
orations on the project. Many participants from the IETF DECADE
Working Group made contributions to this project.

10. REFERENCES
[1] A. Bassi, M. Beck, T. Moore, J. S. Plank, M. Swany, R. Wolski, and

G. Fagg. The Internet Backplane Protocol: A study in resource
sharing. Future Generation Computing Systems, 2003.

[2] M. Beck, H. Liu, T. Moore, and Y. Zheng. Pipelining and caching the
Internet Backplane Protocol. Technical Report UT-CS-04-529,
University of Tennessee, 2004.

[3] D. R. Choffnes and F. E. Bustamante. Taming the torrent: A practical
approach to reducing cross-ISP traffic in P2P systems. In Proc. of

SIGCOMM, 2008.

[4] Cisco Visual Networking Index (VNI). Hyperconnectivity and the
approaching zettabyte era, June 2010.
http://www.cisco.com/en/US/solutions/

collateral/ns341/ns525/ns537/ns705/ns827/VNI_

Hyperconnectivity_WP.html.

[5] C. Dannewitz. NetInf: An information-centric design for the future
Internet. In Proc. 3rd GI/ITG KuVS Workshop on The Future

Internet, 2009.

[6] IETF DECADE Working Group. http://www.ietf.org/
html.charters/decade-charter.html.

[7] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and
J. Zahorjan. Measurement, modeling, and analysis of a peer-to-peer
file-sharing workload. In Proc. of SOSP, 2003.

[8] M. Hefeeda, C. Hsu, and K. Mokhtarian. pCache: A proxy cache for
peer-to-peer traffic. ACM SIGCOMM’08 Technical Demonstration.

[9] M. Hefeeda and B. Noorizadeh. Cooperative caching: The case for
P2P traffic. In Proc. of LCN, 2008.

[10] IETF P2Pi Workshop.
http://www.ietf.org/internet-drafts/

draft-p2pi-cooper-workshop-report-00.txt, 2008.

[11] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard. Networking named content. In Proc. of

CoNEXT, 2009.

[12] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should Internet
service providers fear peer-assisted content distribution? In Proc. of

IMC, 2005.

[13] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica. A data-oriented (and beyond) network
architecture. In Proc. of ACM SIGCOMM, 2007.

[14] N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit. Are file
swapping networks cacheable? characterizing P2P traffic. In Proc. of

WCW, Boulder, CO, 2002.

[15] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. BitTorrent is
an auction. In Proc. of SIGCOMM, 2008.

[16] MaxMind. http://www.maxmind.com/.

[17] A. Nakao, K. Sasaki, and S. Yamamoto. A remedy for network
operators against increasing P2P traffic: Enabling packet cache for
P2P applications. IEICE Transactions on Communications, 2008.

[18] Oversi. http://www.oversi.com/index.php?option=
com_content&task=view&id=48&Itemid=103.

[19] PeerApp. http://www.peerapp.com/
products-ultraband-How-Caching-Works.aspx.

[20] O. Saleh and M. Hefeeda. Modeling and caching of peer-to-peer
traffic. Technical Report TR 2006-11, SMU, 2006.

[21] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 1984.

[22] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M.
Levy. An analysis of Internet content delivery systems. In Proc. of

OSDI, Boston, MA, Dec. 2002.

[23] G. Shen, Y. Wang, Y. Xiong, B. Y. Zhao, and Z.-L. Zhang. HPTP:
Relieving the tension between ISPs and P2P. In Proc. of IPTPS,
Bellevue, WA, Feb. 2007.

[24] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak. Cache
replacement policies revisited. In Proc. of GP2P, Chicago, IL, 2004.

[25] F. Wu and L. Zhang. Proportional response dynamics leads to market
equilibrium. In Proc. of STOC, 2008.

[26] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz.
P4P: Provider portal for applications. In Proc. of SIGCOMM, 2008.

[27] L. Zhang and V. Jacobson. Named data networking (NDN) project,
Oct. 2010.

30

