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ABSTRACT
Today, high-end routers forward hundreds of millions of packets
per second by means of longest prefix match on forwarding tables
with less than a million IP prefixes. Information-Centric Network-
ing, a novel form of networking where content is requested by its
name, poses a new challenge in the design of high-end routers: pro-
cess at least the same amount of packets, assuming a forwarding
table that contains hundreds of millions of content prefixes. In
this work we design and preliminarily evaluate Caesar, the first
content router that supports name-based forwarding at high speed.
Caesar efficiently uses available processing and memory units in
a high-end router to support forwarding tables containing a billion
content prefixes with unlimited characters.

Categories and Subject Descriptors
B.3.4 [Arithmetic and Logic Structures]: High-speed Arithmetic;
C.2.1 [Network Architecture and Designs]: Network communi-
cations

General Terms
Design, Verification

Keywords
ICN, Forwarding, Router, Architecture

1. INTRODUCTION
Information-Centric Networking (ICN) [2] is a novel network

paradigm where information or content are requested by their name
instead of their location. This paradigm is realized by name-based
forwarding, where a packet is forwarded based on “content name”
instead of “content host”. ICN enables tremendous evolution of
routers that gain knowledge on what is transferred in a network.

Designs for name-based forwarding are classified as flat and hi-
erarchical. Flat designs use a flat namespace and a resolution step,
either explicit as in [4] or integrated with forwarding as in [15].
Hierarchical designs [13] use a hierarchical name space and for-
warding based on Longest Prefix Match (LPM), as in IP. In this

work, we target hierarchical designs, and for ease of notation we
simply refer to them as ICN.

Today, speed is the main challenge in router design and paral-
lelization is widely used to meet the speed requirements. In high-
end routers, which rely on specialized hardware and software, par-
allelization is realized by allowing each line card to perform packet
processing (e.g., packet forwarding and classification). Packet switch-
ing (transferring of a packet from an input to an output line card) is
done by a centralized switch fabric [5]. In software routers, which
are based on software running on general-purpose platforms, paral-
lelization is realized by distributing packet processing on a cluster
of thousands of servers [8, 11] (Section 2).

Parallelization is possible since each processing unit (line card
or server) holds a complete forwarding table, i.e., association of
IP prefix with output interface (Section 3). This is feasible since
today’s forwarding tables are relatively small. IP prefixes have
lengths from 8 to 24 (IPv4) and 16 to 48 (IPv6) bits; furthermore, IP
is location dependent which guarantees efficient aggregation, e.g.,
400,000 IPv4 prefixes cover about 4 · 109 IPv4 addresses. These
conditions do not hold in ICN where content prefixes have unlim-
ited characters and are location independent. It follows that ICN
forwarding tables are expected to contain hundreds of millions of
extremely long content prefixes [14, 3], making classic paralleliza-
tion unrealizable.

The question we aim to answer in this paper is the following:
how do we design a router that supports name-based forwarding at
high-speed? We focus on a high-end router since software routers
already struggle to compete in terms of speed with their special-
ized counterpart. However, as a future work we plan to extend our
design to software routers as well, since novel research questions
arise (Section 6).

This paper designs Caesar (Section 4), the first high-end router
that sustains name-based forwarding at high-speed. Caesar has two
main design forces. First, as software routers distribute process-
ing in a cluster of servers to maximize speed, Caesar distributes the
forwarding table across line cards to maximize size. The down-
side of this approach is a possible increase in switching operations
that is absorbed by additional switch fabrics as commonly done in
commercial routers [5]. Second, LPM is designed to be as much
independent as possible from the length of content names: this is
achieved by adapting the distributed Bloom filters approach pro-
posed in [16] to content names.

We perform a preliminary evaluation of Caesar by means of a
numerical evaluation (Section 5). Our analysis shows the follow-
ing results. First, each Caesar line card can process up to 160 mil-
lion packets per second, i.e., 100Gbps assuming 80-byte packets.
Second, coalescing 400 line cards, i.e., one third of the line cards
available in a state of the art router [5], Caesar supports high-speed
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forwarding on a billion content prefixes with up to 128 components
and unlimited characters per component. Given these encouraging
results, in the future we plan to implement Caesar on a FPGA and
run an extensive evaluation (Section 7).

2. RELATED WORK
Software routers are novel router designs that consist of soft-

ware running on general-purpose platforms. The main advantages
of software routers are their extensibility and programmability. The
challenge lies in their scalability when competing with high-end
routers, under constraints imposed by general-purpose hardware,
such as a limited number of physical ports. Caesar was largely
inspired by novel advances in software router designs. For this rea-
son, we now briefly overview RouteBricks [8] and PacketShader [11],
today’s most popular designs for software routers.

RouteBricks implements router functionalities using a decentral-
ized architecture running on commodity hardware, and achieves
linear capacity scalability by increasing the number of servers. The
key to its performance lies in the careful exploitation of paralleliza-
tion across and within servers. An important design decision is
the use of Direct VLB [17], a load-balancing routing algorithm
which parallelizes packet processing and switching. This algorithm
is coupled with carefully tailored implementation strategies such
as the use of parallelism in memory access, multiple receive and
transmit NIC queues, and amortization of the cost of per-packet
overhead by performing batch processing of packets. As a result, a
parallel router consisting of 4 Nehalem servers, each one equipped
with a 10Gbps NIC can sustain a load of 35Gbps, while introducing
negligible delay, jitter, and packet reordering. The limiting factor
in RouteBricks’ performance is CPU, which is a typical bottleneck
of PC applications, and a departure from previous software routers
whose bottleneck resided in shared memory. Further, it is expected
that the next generation of servers can provide a performance boost,
not only by allowing an increase in the number of cores, but also
by providing a larger number of PCIe slots.

PacketShader is another interesting approach to software routers.
Similarly to RouteBricks, it makes abundant use of parallelization.
The main departure from RouteBricks is the usage of Graphic Pro-
cessing Unit (GPU) acceleration. PacketShader overcomes Route-
Bricks’ performance limitations by exploiting the massively-parallel
processing power of GPUs. The authors show that PacketShader can
forward 64B IPv4 packets at 39Gbps on a single commodity PC
equipped with four 10Gbps cards, essentially quadrupling the num-
ber of NICs that were supported by a single machine using Route-
Bricks. The new limiting factor in PacketShader’s architecture has
been shifted from the CPU to I/O, and more specifically, it is a
consequence of an asymmetry of PCIe data transfer performance
resulting from the use of dual-IOH motherboards.

Caesar differs from both RouteBricks and PacketShader in sev-
eral aspects. First, Caesar is a design for high-end routers. Second,
each Caesar line card does not have a full copy of the forwarding
table. Third, Caesar supports name-based forwarding, which nei-
ther RouteBricks nor PacketShader support in their current stage.
Furthermore, we are not aware of any design for a content router.

3. BACKGROUND
This section serves as a background for a clear understanding

of the paper. First, we overview the most popular solutions for
Longest Prefix Match (LPM); then, we summarize the design of
today’s high-end routers.

3.1 Longest Prefix Match
Routers use LPM to select the entry from the local forwarding

table which shares the longest prefix with the destination address
contained in a packet header. LPM is implemented either in hard-
ware using a TCAM or in software using a Tree Bitmap [9] or
Bloom filters [7, 16], to name a few. Solutions based on software
are preferred because of TCAM’s high cost and power consump-
tion. The Tree Bitmap’s performance degrades linearly as the tree
depth increases; thus, it should not be used in presence of fast line
cards, e.g., 100Gbps [16], and large forwarding tables. We now
overview the Bloom filter approaches as they better suite the ICN
requirements.

A Bloom filter is a data structure for membership queries that
stores a “signature” of an item using k bits, independently of the
original size of the item. The k bits are obtained as a result of k
hash functions computed on the item, and stored in an array. Mem-
bership queries have no false negative probability and tunable false
positive probability. In order to remove elements from a Bloom
filter, a Counting Bloom Filter maintains a vector of counters cor-
responding to each bit in the bit-vector.

Dharmapurikar et al [7] are the first to use Bloom filters for LPM.
Assuming packet addresses formed by B “components”, e.g., B =
32 in IP, B Bloom filters are stored on on-chip memory (SRAM).
Each Bloom filter i is populated with prefixes of length i. An off-
chip hash-table (SRAM, RLDRAM or DRAM) stores for each pre-
fix the output interface. Upon reception of a packet whose address
has B

′
components, we query the B

′
Bloom filters associated to

each possible prefix length obtaining a “matching vector”. Then,
we query the hash-table to verify eventual false positives, and re-
trieve the output interface.

Song et al. [16] observe that it would be more convenient to use a
single Bloom filter (SBLF), and associate k different hash functions
to each of the B possible prefix lengths. The SBLF is independent
of both prefix length and distribution of prefix lenghts, but it can-
not be accessed in parallel, detracting from the LPM speed. So,
they suggest to split the SBLF into B smaller Bloom filters called
“distributed Bloom filters” (DLB-BFs) and generate k groups of B
hash functions, one from each of the B original group of k hash
functions in the SBLF. Each DLB-BF should be implemented on
at least B 2-port SRAM blocks in order to compute B hash func-
tions in parallel. The DLB-BF has same false positive probability
and optimal number of hash functions as the SBLF and the de-
sign in [7]. Finally the authors propose “ad hoc expansion”, an
optimization of the off-chip hash-table to bound worst case perfor-
mance. If a particular LPM causes several false positives, a rule
that matches the false positive is added to the hash-table; the ra-
tionale is to prevent future packets to incur several accesses to the
off-chip hash-table to solve the false positive.

3.2 High-end Routers
The different components of a router can be logically divided in

two categories: data plane and control plane. The data plane con-
sists of N line cards with rate R, each containing several I/O inter-
faces, and one or more switch fabric with overall rate NR. When a
packet arrives at a line card, the forwarding engine identifies the in-
terface where the packet should be forwarded based on LPM com-
puted over the Forwarding Information Base (FIB), a structure that
stores pairs <prefix,output interface>. Additional processing such
as policy routing and packet classification might be performed de-
pending on the router features. Afterward, the packet is sent to a
switch fabric that transfers the packet to the line card where the
output interface resides.

The control plane is mostly composed by one or more route
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controllers. Route controllers process route updates received from
neighbor routers, and computed the best next hop for each desti-
nation. This information is stored in the Routing Information Base
(RIB) and is used to compute the FIB that is then distributed to the
different line cards.

The Cisco CRS-1 [5] is today’s most advanced core router. It
runs both on a single shelf and multi-shelves mode. In single-shelf
mode, it has a single line card shelf with N=4,8,16 full-duplex line
cards, each running at R=40Gbps. A single switch fabric supports
a speed NR of 320, 640 Gbps, or 1.2 Tbps. In multi-shelves mode,
the CRS-1 has up to 72 line card shelves, each with 16 full-duplex
line cards at 40Gbps, for a total of 1,152 line cards. Overall, it
switches packets across line cards at 92Tbps by means of 8 switch
fabrics. The control plane contains two independent route proces-
sors (called “Cisco route controllers”) in single-shelf mode, and a
distributed route processor in multi-shelves mode.

4. Caesar
This section designs Caesar, the first high-end router that sus-

tains name-based forwarding at high speed. We assume a NDN-
like naming scheme. Content items are split in a sequence of pack-
ets identified by a content address. The content address is a hier-
archical human-readable name formed by B + 1 components de-
limited by a character: B components compose the content name,
whereas the last component identifies a specific packet, for example
/ICN2012/PAPERS/PaperA.pdf/packet1, where the delimiter
is “/”. Routers maintain forwarding information for content pre-
fixes that are formed by any subset of components from the content
names, for example /ICN2012/PAPERS/*.

4.1 Rationale
The design of a content router has two major challenges. First,

a content router has to process at least the same amount of packets
processed today by a high-end router, assuming forwarding tables
that are several orders of magnitude larger. Second, its forwarding
tables are filled with content prefixes that have a large number of
components and unlimited characters per component.

Our rationale to support such large forwarding tables is to dis-
tribute them across the line cards. Thus, rather than duplicating the
same forwarding table with S entries at each line card, each line
card stores a (different) subset of entries S

′
with #S

′
= #S, such

that, overall, the content router can serve n content prefixes, with
n =

Pi=N
i=1 S

′
i = NS

′
. Since the size of each forwarding ta-

ble does not change, each line card still operates at a rate R. In
order to distribute packet processing across line cards, we need a
mechanism which is lightweight compared to LPM, while enforc-
ing load balancing across line cards. Transferring packets across
line cards causes additional switching operations. In the worst case,
i.e., when a packet is never processed at the line card where it is
received, the switch fabric has to operate at a rate 2NR.

We now focus on the second challenge. Our goal is to build a
LPM solution that scales well with the number of components in a
content name and that is independent of the number of characters
in each component. Based on these motivations, the DLB-BF is the
perfect candidate [16] (cf. Section 3). In fact, it leverages a number
of DLB-BFs k which is independent of the prefix length, and it
maps each content prefix to k bits, independently of the number of
characters used for each component.

4.2 Design
A Caesar router consists of N full-duplex line cards (LCi) with

rate R interconnected by at least two switch fabrics (SF1 and SF2)

(a) Control and data plane ; N = 10

(b) Line card.

Figure 1: Sketch of a Caesar router.

each supporting a rate NR, and a classic route controller (Figure
1(a) where N = 10). In the following, we detail the design of
a Caesar router by focusing on both control and data plane. We
conclude the section with an example.

4.2.1 Control Plane
The route controller (CPU, memory and RIB) is responsible for

Caesar’s control plane. We do not consider the requirements related
to routing protocols execution as they are out of the scope of this
paper. We only focus on the additional or modified operations a
Caesar controller performs.

FIB Calculation and Distribution – A classic route controller
distributes to each line card the same FIB derived from the central
RIB. In Caesar, such FIB is then equally split across line cards by
respecting the following condition: if a content prefix A is stored at
a line card LCi, all further packets whose content names have A as
LPM should be processed by LCi as well. We proceed as follows.
We assign to each line card LCi an integer i from 1 to N, and to
each content prefix in the RIB a “contentID” derived by hashing1

the first component of the content prefix. Then, each content prefix
populates the FIB of the line card LCi, such that i = contentID
mod N . Since content names are hierarchically organized and, to
be unique, need to differ at least in the first component, the result of
this operation is the same for a content prefix as well as for for all
content names that can be originated by expanding this prefix. In
addition, the hash operation enforces “load balancing”: in presence
of skew prefix popularity, the hash function uniformly distributes
prefixes to each line card independently of their popularity value.

1We suggest to use the CRC-64 algorithm as hash function. CRC
is simple to implement in binary hardware and it is sufficiently re-
sistant to collision for our scope.
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Thus, each line card sees the same popularity curve for each subset
of prefixes. Finally, the route controller distributes the FIB to each
line card along with the mapping <LCi,interface> for all i.

Failure Recovery – The failure of a line card jeopardizes reach-
ability for the subset of prefixes it manages. Caesar enables redi-
rection of traffic from a failing line card to a second line card by
virtue of two design features. First, the pairs <LCi,interface> can
be updated live so that traffic is forwarded to the new interface in
presence of a failure. Second, the route controller has a copy of the
RIB from which it can derive an up-to-date FIB for each line card.
Therefore, when a failure occurs at line card LCi, the route con-
troller sends the FIB of LCi to one of the L additional line cards
pre-installed to handle individual line card failures. Then, it up-
dates the pair <LCi,interface> with the interface selected from the
new line card. Finally, it propagates this update to the N line cards.
This mechanism still deserves a detailed understanding. For exam-
ple, quantifying the off-service probabilities based on the value of
L, as well as how to detect a line card failure. Such analysis is out
of scope of this paper, but we intend to address this subject in the
future.

4.2.2 Data Plane
We now focus on the data plane which covers line cards, and

switch fabrics. We first describe the design of a line card (Fig-
ure 1(b)). This consists of four modules: Line card Table, Process-
ing Manager, LPM Cache and FIB.

Line card Table (LT) – The LT is a simple array that contains
at position i the interface to be used in order to reach line card
i, for i = 1 : N . As advised in [10], we use 16 bits to index
all the available interfaces in a router. Even assuming 2,048 line
cards (CRS-1 has up to 1,152 line cards), 32Kbits of memory are
enough. Thus, the LT table fits into a single 2-port SRAM block of
the Xilinx Virtex 6 FPGA [1], which guarantees fast access time.

Processing Manager (PM) – The PM identifies the line card
where a packet should be processed. First, it computes the con-
tentID of the packet by hashing the first component of the content
name. Then, it computes i = contentID mod N , and reads
from the LT at position i the interface of the line card where pro-
cessing has to be done. These operations are negligible compared
to an LPM operation, thus meeting our main design goal. If the
retrieved interface resides on the local line card, the packet is pro-
cessed locally. Otherwise, the PM sends the packet to the switch
fabric that moves it to the line card where packet processing should
be performed.

FIB – It receives as input a content name and outputs the in-
terface where the corresponding packet should be forwarded. We
implement the FIB using k on-chip DLB-BFs and an off-chip hash-
table (cf. Section 3.1). As in [16, 7] we support prefix insertion and
deletion through off-line mirror counting Bloom Filters. We call
Bmax the maximum length in terms of components of a content
prefix; this is defined by the maximum number of hash functions
Bmax · k that can be originated in hardware and is discussed in
the following section. The off-chip hash-table can be implemented
in SRAM or RLDRAM using indexing schemes for high-speed
caching [14]. The table is considered as a fixed size non-chained
hash table. Every prefix is hashed with the CRC-64 algorithm; the
first H-bits of the hash-value are stored along with next-hop inter-
face information (16 bits) in the bucket corresponding to the hash
value modulo the number of buckets2. In order to reduce the bucket
overflow probability, as in [16] we hash every prefix two times and
we pick the less loaded bucket. As RLDRAM and SRAM chips

2Buckets are the addressable elements of an hash table.

provide a bucket size of 144 bits, we pick H=56bits in order to store
two entries in a single bucket. Ad hoc prefix expansion is used to
bound performance in presence of false positives. Expanded pre-
fixes are removed when they are no longer necessary or to limit the
size of the hash table.

LPM Cache (LPM-C) – Packets with extremely long content
names can cause high burden to the router due to the B · k hashes
to be computed. Inspired by the ad-hoc expansion, we propose to
cache in the LPM-C results from the LPM originated by content
names with more than T components. At packet processing, we
simply need to verify whether B > T to decide to check or not the
LPM-C. The first time a content name is seen at a Caesar router, a
cache miss will occur causing an expensive LPM operation. This
won’t happen for upcoming packets of the same flow, where a flow
is a sequence of packets that share the same content name. The
LPM-C is implemented as a hash-table where we use as a key the
content name (B components of the content address) and as value
the output interface obtained as a result of the first LPM operation.
Cache entries are managed with any simple replacement policy.

In the worst case, i.e., when a packet is never processed at the
line card where it is received, the switch fabric has to operate at a
rate 2NR. Similarly to the multi-shelves CRS-1 [5], we distribute
the additional switching operations across a set of switch fabrics.
As showed in [12], it is feasible to combine multiple switch fabrics
together with no loss of performance at the price of small coordi-
nation buffers.

4.2.3 Example
Figure 1(a) shows the packet flow in case of a remote LPM op-

eration (green line) and of a local one (red line). We focus on the
remote LPM operation as it is more complete. Line card LC1 re-
ceives a packet (1). L1’s PM computes the contentID and finds that
line card LC10 is responsible for processing this packet as a re-
sult of the operation i = contentID mod N (2a). The packet is
then sent to one of the two switches, e.g., SF1 in this example, that
transfers it to LC10 (3) . The packet reaches LC10 (4), where the
PM verifies that this line card is responsible for packet processing
(4_a); then, if B > T it checks the LPM cache to verify if a LPM
result for this content name was previously cached (4_b). Assum-
ing a cache miss happens or B ≤ T , the FIB performs LPM giving
as a result LC2 (4_c). The packet is sent to one of the two switches,
e.g., SF2 in this example, that transfers it to LC2 (5); finally the
packet exits the router using line card LC2 (6).

5. EVALUATION
We perform a numerical evaluation of Caesar. As a reference

design, we consider the Xilinx Virtex-6 FPGA family; these de-
vices have between 156 and 1,064 2-port SRAM blocks each stor-
ing up to 32Kbit of data, for a total of 34-Mbit on-chip memory,
at most. We use the on-chip memory to store the DLB-BFs and
the LT. We assume our reference board is further equipped with
216Mbits SRAM and 2.3Gbit RLDRAM off-chip memory, as the
NetFPGA-10G [1], where we store the off-chip hash-table. Assum-
ing the design of the off-chip hash-table described in Section 4, the
off-chip SRAM and RLDRAM hold a maximum of 1.5 and 16 mil-
lion content prefixes, respectively. Also, a maximum of 250 and
6.6 million accesses per second is tolerated.

We first focus on a single Caesar line card to quantify how fast it
can process packets, and how many content prefixes it can handle
in its forwarding table. Figure 2(a) plots the number of content pre-
fixes that can be stored in the DLB-BFs, S

′
, as a function of the av-

erage packet size P , considering line card rates λ=10,40,100Gbps.
A line card performs an average number of LPM operations equal

76



to λ
P

, e.g., when λ=100Gbps and P=40Bytes about 320 million
LPM operations per second are required. The curves are obtained
assuming an off-chip hash-table implemented both in SRAM and
RLDRAM with infinite size; the two horizontal lines represent the
maximum number of content prefixes that can be stored in the refer-
ence design, i.e., SRAM (1.5M) and RLDRAM (16M). Finally, we
set the threshold for caching LPM results, T , to 64, and the maxi-
mum number of components in a content name, Bmax, to 128. We
discuss these parameters later in the section.

We first focus on the curves obtained assuming an SRAM-based
hash-table (solid lines). The Figure shows that for λ=10,40Gbps
a Caesar line card supports even 40Byte packets, whereas when
λ=100Gbps packets need to be at least 80Bytes long. For each λ,
as P increases S

′
increases as well; in fact, as P increases the rate

of LPM operations decreases, which means that more accesses to
the off-chip hash-table are tolerated. It follows that the DLB-BFs
can be dimensioned to support a higher false positive probability,
which allows to increase S

′
. In the extreme case, the false positive

probability reaches a value of 1 which means that the DLB-BFs can
be removed, e.g., for P=160Bytes when λ=10Gbps (“No BF” label
in the Figure). At this point, the line card can theoretically handle
infinite content prefixes since we assume no size limit for the off-
chip hash-table; for this reason, the curve is interrupted. Assuming
our reference design, the DLB-BFs should not store more than 1.5
million content prefixes due to the size limit of the SRAM-based
off-chip hash-table. This threshold is always smaller than the de-
rived values of S

′
, independently of P and λ. Thus, the SRAM

memory in the off-chip hash-table is the bottleneck for the size of
the line card’s forwarding table.

When RLDRAM technology is used for the off-chip hash-table
(dashed lines), S

′
assumes values lower than the 16 million limit

imposed by the RLDRAM for most values of P and λ. However,
due to the longer access time compared to the SRAM (15 vs 4ns),
only at 10Gbps we can support 40Byte packets, whereas an aver-
age packet size of 80 and 200Bytes is needed to support 40 and
100Gbps, respectively. Thus, the RLDRAM memory in the off-
chip hash-table is the bottleneck for the line card’s speed.

We now focus on four configurations derived from the left-hand
side area of Figure 2(a): we set S

′
to 1-1.5 million with off-chip

SRAM, and 2-2.5 million with off-chip RLDRAM. These config-
urations allow to handle both high rates and small packet sizes,
while respecting the maximum amount of prefixes that each off-
chip memory can store. An additional design goal is to minimize
the false positive probability pf of the DLB-BFs, in order to reduce
the ad-hoc prefix expansion (cf. Section 4). For each configuration,
we can derive the number of hash-functions k that minimizes pf .
We choose k = 8 for three reasons: i) it minimizes the highest
false positive probability across the four configurations, while in-
creasing the lowest one from 10−8 to 10−6; ii) a power of two
value is easier to implement in hardware; iii) a small value of k
is beneficial to reduce the overall number of hash-functions. With
k=8, the false positive probability for the four configurations varies
between 10−6 and 10−3; this means that one flow every million
and thousand new flows, respectively, generates a new entry for the
hash-table due to the ad-hoc prefix expansion.

We divide the 1,064 2-port SRAM blocks across 8 DLB-BFs,
such that each DLB-BF is composed by 64 SRAM blocks of 64Kbit,
each composed by two 32Kbit 2-port SRAM blocks. Then, we use
one of the remaining 2-port SRAM block to store the LT. We gen-
erate 128x8=1,024 hash functions; as discussed in [16], this can be
efficiently implemented in hardware. With this configuration, each
DLB-BF can compute 64 hash functions in one clock cycle, and
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Figure 2: Caesar preliminary evaluation.

support content names and prefixes with up to Bmax=128 compo-
nents. The LPM for content names with more than 64 components
might require up to 2 clock cycles, thus impacting worst case per-
formance. However, since T=64, only the first packet of a flow
reaches the FIB, whereas the remaining packets are directly pro-
cessed in the LPM-C. In [14], we measured that out of 10,000
unique users and 15,000 unique URLs the longest URL has 70
components. This suggests that T=64 is enough to guarantee a
small LPM-C. Note that we could increase T to 128 by assigning
128 2-port SRAM blocks to each DLB-BF. However, we prefer to
over dimension the DLB-BFs due to some subtle load balancing
issues across 2-port SRAM blocks, as discussed in [16].

We now evaluate a Caesar router as a whole. Figure 2(b) plots the
number of line cards N as a function of the prefix size n for each
of the above configuration. The Figure shows that with 400-1,000
line cards (tunable false positive) we support up to a billion con-
tent prefixes. This value of n is five times larger than the number
of active hostnames in today’s Internet [14]. A router with 1,000
line cards is feasible, e.g., the Cisco CRS-1 has up to 1,152 line
cards. However, a Caesar router requires a double switching ca-
pacity compared to a classic router; to avoid a bottleneck in the
switch fabrics, we should not consider more than ∼600 line cards.
Nevertheless, a Caesar router with 600 line cards handles up to 600
million content prefixes with pf = 10−6, or even a billion content
prefixes tolerating pf = 10−4.
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6. DISCUSSION
In this paper, we focus on the design of a high-end content router

rather than software, since software routers barely compete in terms
of performance with their specialized counterpart. However, soft-
ware routers provide the attractive feature that they can be pro-
grammed, configured and extended by using general-purpose plat-
forms, commodity programming languages and tools (cf. Section
2). We believe that Caesar is generic enough to be extended to a
software router as well.

There are few research issues that need to be solved before ap-
plying Caesar to a software router. In the following, we shortly
summarize the main challenges and propose a modification of the
Caesar design to meet each requirement. In the following, we refer
to software implementation of Caesar as S-Caesar.

Limited per-node processing rate – Per-node processing in a dis-
tributed software router is constrained by general-purpose CPU and
memory. PacketShader has proposed the use of GPUs for software
routers. GPUs provide the added advantage of hundreds of cores
and fast memory access, which significantly increases the opera-
tional speed of a router. In addition, graphics processing requires
extreme parallelism and GPUs are designed with parallel process-
ing as a primary guideline.

Similar to PacketShader, we plan on using GPUs for S-Caesar,
in order to avoid packet processing bottlenecks. Specifically, we
will implement the distributed bloom filters using GPUs: we will
store DLB-BFs on the shared memory that exists on each streaming
multiprocessor of the GPU, and the off-chip hash-table on device
memory of the GPU. Furthermore, we will store control plane an-
nouncements of the content prefixes in the general purpose host
memory of the node.

Limited internal link rates – Given the sheer size of FIB in a
content router, it is unlikely that a single GPU-enabled node will
suffice. As a result, we will use multiple nodes, each performing
lookup on a portion of FIB. However, similar to RouteBricks, con-
necting these nodes creates another bottleneck: the interconnection
links. Specifically, the use of commodity NICs and link technolo-
gies may significantly affect the performance of S-Caesar, as men-
tioned in RouteBricks.

We plan on exploring this problem by investigating various inter-
connection topologies, e.g., butterfly, torus, and full mesh [6]. We
will start with a full mesh topology of GPU-enabled nodes and ex-
amine whether it can fulfill the needs of a content router. We prefer
a full mesh because, in the worst case, it only adds one hop to the
lookup. However, if a full mesh proves insufficient, then we will
experiment with multi-hop topologies.

7. CONCLUSION AND FUTURE WORK
Future Internet architectures are expected to be centered around

content and not machines. This paradigm shift causes a high bur-
den on routers, due to the explosion of the forwarding tables and
the usage of extremely long content names. Motivated by these
observations we have designed Caesar, a high-end router that sup-
ports name-based forwarding at high speed. Caesar is built on two
founding principles: i) the forwarding table is distributed across
line cards to maximize size, and ii) Longest Prefix Match is de-
signed to be as much independent as possible from the content pre-
fix length. Our preliminary evaluation shows that Caesar supports
high-speed forwarding on a billion content prefixes with up to 128
components, each with unbounded number of characters.

Currently, we are implementing Caesar on a network processor
to verify the numerical results discussed in the paper. An excit-
ing avenue for future work is the extension of Caesar to software

routers. There are few research challenges that need to be solved
before applying Caesar to a software router. For example, the num-
ber of physical connections among servers should be small since
commodity servers have few NIC slots. In Caesar, each line card
eventually communicates with all other line cards to support dis-
tributed packet processing. We thus need to rethink the latter oper-
ation so to map it to a realistic overlay constructed among servers.
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