
Procera:
A Language for High-Level
Reactive Network Control

Andreas Voellmy Hyojoon Kim
Nick Feamster

Yale University, Georgia Tech, University of Maryland

August 13, 2012



Static & Dynamic Network Policies

Network operators want to implement their high-level network
policies.

Static policies; constrain flow based on flow tuple and state.

I Superusers can access the network.

I Critical flows should have minimum bandwidth guaranteed.

I Guests can access the network daily between 9am and 5pm.

Dynamic policies; involve describing state change:

I Only authenticated devices can access the network and
device authentications expire after 60 minutes.

I If a user’s 5 day average exceeds the limit, turn off their
access, permanently.



Two Approaches Available Today

General-purpose programming:

I Very expressive.

I Many details to program

I Easy to mix up code implementing high-level concepts with
low-level code.

Specialized policy language, e.g. Flow Management Language
(FML)

I Easy to use.

I Limited to static policies.



Today’s Approaches: FML in Detail

E.g. define and allow superusers:

allow(Us,Hs,As,Ut,Ht,At,Prot,Req) <- superuser(Us).

superuser(todd).

superuser(michelle).

FML policy is static: it determines a function from states to
flow constraints, but cannot specify what the states are or how
they should change.



Procera: High-Level Reactive Network Control

Declarative language that allows users to define what the states
are and how the system state changes in response to events.

Key elements:

1. Primitive events

2. Constructs for programming dynamic state; these maintain
state incrementally in reaction to events.

3. Composition operators

4. Constructs that collect incremental changes into values
such as sets, bags, and dictionaries.

5. Policy function expressed as a function of state and flow
tuple and outputting flow constraints.



1. Primitive Events

The collection of primitive event streams is customizable.

For a sample application we have:

I authEvents: authentication events consist of (device, user)
pairs.

I usageEvents: usage events consist of (device, usage) pairs.

I capSetEvents: cap settings consist of (device, usage) pairs.

I adminResetEvents: admin resets consist of device ids.



2. Incremental State Programming

60 second sliding window:

since 60

Input and Output is incremental, e.g.:

I Input
I at time 0: insert a

I at time 30: insert b
I at time 50: insert c
I at time 70: insert d

I Output:
I at time 0: insert a

I at time 30: insert b
I at time 50: insert c
I at time 60: delete a
I at time 70: insert d
I at time 90: delete b



2. Incremental State Programming

60 second sliding window:

since 60

Input and Output is incremental, e.g.:

I Input
I at time 0: insert a
I at time 30: insert b

I at time 50: insert c
I at time 70: insert d

I Output:
I at time 0: insert a
I at time 30: insert b

I at time 50: insert c
I at time 60: delete a
I at time 70: insert d
I at time 90: delete b



2. Incremental State Programming

60 second sliding window:

since 60

Input and Output is incremental, e.g.:

I Input
I at time 0: insert a
I at time 30: insert b
I at time 50: insert c

I at time 70: insert d

I Output:
I at time 0: insert a
I at time 30: insert b
I at time 50: insert c

I at time 60: delete a
I at time 70: insert d
I at time 90: delete b



2. Incremental State Programming

60 second sliding window:

since 60

Input and Output is incremental, e.g.:

I Input
I at time 0: insert a
I at time 30: insert b
I at time 50: insert c

I at time 70: insert d

I Output:
I at time 0: insert a
I at time 30: insert b
I at time 50: insert c
I at time 60: delete a

I at time 70: insert d
I at time 90: delete b



2. Incremental State Programming

60 second sliding window:

since 60

Input and Output is incremental, e.g.:

I Input
I at time 0: insert a
I at time 30: insert b
I at time 50: insert c
I at time 70: insert d

I Output:
I at time 0: insert a
I at time 30: insert b
I at time 50: insert c
I at time 60: delete a
I at time 70: insert d

I at time 90: delete b



2. Incremental State Programming

60 second sliding window:

since 60

Input and Output is incremental, e.g.:

I Input
I at time 0: insert a
I at time 30: insert b
I at time 50: insert c
I at time 70: insert d

I Output:
I at time 0: insert a
I at time 30: insert b
I at time 50: insert c
I at time 60: delete a
I at time 70: insert d
I at time 90: delete b



2. Incremental State Programming, Continued

Further incremental state operators:

I Reset on Clock: resetWindow clockFun

I Limit by count: limitBy attr count

I Filtering: select pred

I Projecting: project f

I Grouping: groupWith op

I Joining: join, joinOn attr1 attr2



3. Composition Operators

Operations can be composed, e.g.

since (days 5)>>> limitBy attr 10



4. Accumulate Incremental State

Operators to collect incremental state signal into a data
structure:

I collectSequence

I collectBag

I collectSet

I collectTable



5. Policy Functions

Policy function implemented as a function that references the
state and outputs a constraint, e.g.:

policy overSet pkt =
if member (etherSrc pkt) overSet
then Deny
else Allow



Putting it all Together

Deny any devices whose five day usage exceeds 1000.

usageEvents
>>> insertEach
>>> since (days 5)
>>> groupWith sum
>>> select (λ(dev , usage) → usage > 1000)
>>> project fst
>>> collectSet
>>> pure policy



Implementation

Language designed to support efficient evaluation:

I Eliminate need to poll policy by accurately tracking the
maximum amount of time until the state changes.

I Update state incrementally based on events and policy
definition.

I Old events are deleted automatically when no state refers
to the event anymore.



Next Steps

I Implement network controller; must be in implemented in
host language that Procera is embedded in.

I Provide richer constraints, e.g. allow and encrypt, allow
but avoid switch A, etc.

I Address fault tolerance: automated support for persisting
controller state.

I Optimize incremental change algorithms.



Conclusions

I Procera is a language for writing dynamic network policies.

I Keeps flow constraints (as in FML) but adds ability to
specify state and state changes.

I Implementation takes care of details of tracking policy
change correctly and efficiently.

Questions?

andreas.voellmy@yale.edu


