An OpenFlow Safe Update Protocol

Rick McGeer,
HP Labs
August 13, 2012
The Safe Update Problem

–Correctness constraints:
 • Deterministic handling of each packet (each packet takes a well-defined route through the network)
 • Deterministic handling of each flow
 – Strong Consistency: every packet from a flow takes the same route through the network
 – Weak Consistency: Prefix of a flow takes route 1, suffix takes route 2 (Preferred in some applications, notably traffic steering)

–Reality constraint
 • Rule updates arrive at each switch asynchronously and unpredictably
Update Example

A

B

C

u

v

s

t

r

w

y

z

A

B

C

u

v

s

A

B

C

r

w

y

z
Approach I: Verification

- Formalization of problem: switch j implements logic function F_{j1} (before update) or F_{j2} (after update)
 - Introduce new variable x_j
 - Switch function is $x_jF_{j2} + x_j'F_{j1}$
 - Composed in network exactly as in [McGeer2012a]
 - Verification property holds iff verification obligation is met for all values of the x_js

- Probably boosts the problem by a complexity class

- Properties to be verified will not, in general, hold anyway for most updates...
 - The point of an update is to change packet handling....
Example Bad Update

Update Arrives at u but not w
Approach II: Do Both At The Same Time

– Reitblatt, 2011
 • Updated version at SIGCOMM 2012
– Load each switch with the function $x_j F_{j2} + x_k F_{j1}$
– Use an unused bit in the header to mark each packet with which function should handle it
 • Plenty of unused header bits
– Consistency achieved by appropriate packet marking
 • Mark packets uniformly in flow for strong consistency
 • Mark prefix and suffix differently for weak consistency
Approach II

A

u
v
w
y
z

B

C
Approach II Features

😊 Deterministic packet-handling (?)

😊 Packet handling selected at edge

⚠️ Takes a lot of TCAM space
 - Each switch function roughly doubled in size
 - TCAMs are typically most expensive element of switch

⚠️ Need not simply a header bit for x_j, but one that can be matched in the fast path
 - May mean burning half the space in a common header field (uses VLAN tags)
Approach III: Use the Controller

– Assumption I: *Most* updates affect the handling of only a few packets
 • E.G. only *one* switch in our example changed packet handling
 • E.g. In Traffic Steering Application, packets from only *one* flow are redirected

– Assumption II: Packets can be sent safely to the controller at any time and held, released when safe
 • Optimization: for each switch, designate a packet refuge (need not be the controller)
Protocol

– Send function F_{12} to each switch
 • $F_{12} = F_1$ if packet handling doesn’t change at that switch
 • $F_{12} = F_2$ if only new flows are added
 • $F_{12} = $ Send to controller otherwise. Controller holds packets

– When switch gets F_{12}, send completion signal to controller

– When all completion signals received
 • Send F_2 to each switch
 • Release held packets from controller to next switch on path 2
Example of the OpenFlow Safe Update Protocol

F_1 function

F_{12} function
Example (cont)

F_2 function

Cleanup dead links
Approach III Features

😊 TCAM Space Conservation on switch
 • $\text{Max}(F_1, F_2)$

😊 No impact on flowspace, even for fast match

😊 Provably correct, no race conditions

⚠️ Increase in affected flow latency during transition
 • Minimum two LAN round-trips + rule load time

⚠️ Can only ensure weak consistency

⚠️ Increase in traffic to controller

 $(1.5 \times \text{LAN Round trip} + \text{rule load time}) \times \text{sum of bandwidth of affected flows}$
Conclusions and Further Work

– Approach II and Approach III represent different points in a trade space
 • Key positive: *both work*
 • Different costs and benefits
 – How much is switch flowspace and rulespace worth compared to latency and controller bandwidth penalty, and loss of strong flow consistency?
 – Likely dependent on specifics of LAN, switches, controller, application

– Not the only points in the trade space
 • Can use hybrid method

– One possible hybrid…
 • Use Reitblatt marking but send only hybrid function to changed switches
 • Topology and updates of this approach, marking of Reitblatt
 • Conserves TCAM space on most switches, synthesis techniques to conserve flowspace…
Thanks!