
OpenRadio
A programmable wireless dataplane

Manu Bansal
Stanford University

Joint work with Jeff Mehlman, Sachin Katti, Phil Levis

HotSDN ‘12, August 13, 2012, Helsinki, Finland

Opening up the radio

What?
• Flexible radio stack
• Deployable performance
• Convenient programming

Why?
• Evolving protocols
• Diverse applications
• Network growth and

Diverse scenarios

How?
• Decouple functionality and HW
• Judicious split of protocols
• High-level abstractions

2

MOTIVATION

3

Evolving standards
• Major 3GPP LTE releases every 18 months
• Continuous minor updates
• Old standards don’t die

– Multi-mode basestation radios

• Can we deploy once and keep updating?

Decoupled protocol
definition

Programmable
dataplane substrate

4

Application diversity

• Can do better than one-size-fits-all radio stack
– Eg. Unequal error protection (UEP) for video

• LTE specifies several traffic classes
– How do I implement them?
– Future traffic classes?

• How about a programmable infrastructure?

5

Network growth & scenario diversity
• Reducing cell-sizes to meet capacity demands

– Smaller macro-cells less users per cell
– Picocells (open), femtocells (closed) just thrown in
– Interference dominates, mobility is harder

• How can we make basestations coexist?
– Dynamic scenario-specific adaptation
– Decoupled control plane, programmable dataplane

`

6

Design goals and challenges

• Programmable wireless dataplane

– Customize remotely after deployment

– At least 20MHz OFDM-complexity performance

• More than 100 GLOPS computation

• Strict processing deadlines, eg. 25us ACK in WiFi

– Modularity to provide ease of programmability

• Only modify affected components, reuse the rest

• Hide hardware details and stitching of modules

– Built using off-the-shelf components

7

PROGRAMMING ABSTRACTIONS

8

Wireless programming

OFDM Demod

Demap
(BPSK)

Deinterleave

Viterbi Decode

Descramble

CRC Check

Hdr Parse

WiFi 6mbps

Deinterleave

OFDM Demod

Demap
(BPSK)

Demap
(64QAM)

WiFi 6, 54mbps

Descramble

CRC Check

Hdr Parse

Decode
(1/2)

Decode
(3/4)

Descramble

OFDM Demod

Demap
(BPSK)

Demap
(64QAM)

Deinterleave
(UEP)

Hdr Parse

CRC Check

Descramble

Hdr Parse

Deinterleave
(WiFi)

Decode
(1/2)

Decode
(3/4)

WiFi 6, 54mbps and UEP

9

Modular declarative interface

Modular library of blocks

OFDM
Demod

A

Demap
(BPSK)

B

Demap
(64QAM)

C

Deinterleave
(WiFi)

D

Deinterleave
(UEP)

E

Decode
(1/2)

F

Decode
(3/4)

G
Descramble

H

CRC Check
I

Hdr Parse
J

A

B

D

F

H

I

J

A

C

D

G

H

I

J

A

C

E

G

H

I

J

F

H

J
6M 54M UEP

A

B

D

F

H

I

J

6M

A

B

D

F

H

I

J

C

G

6M, 54M

Declaring Rules: Branching logic

Data
flow

Control
flow

Composing Actions: DAGs of blocks

10

DESIGN PRINCIPLES

11

Design principle I

Judicious scoping of flexibility
• Provide coarse-grained blocks

– FFT block, Viterbi decoder block

• Configurable parameters
– FFT length, Trellis structure

• Just enough flexibility

• Higher level of abstraction
• High performance through hardware

acceleration
– Viterbi co-processor
– FFT co-processor

• Off-the-shelf hardware
– Heterogeneous multicore DSPs
– TI, CEVA, Freescale etc.

Algorithm WiFi LTE 3G DVB-T

FIR / IIR √ √ √ √

Correlation √ √ √ √

Spreading √

FFT √ √ √

Channel
Estimation

√ √ √ √

QAM Mapping √ √ √ √

Interleaving √ √ √ √

Convolution
Coding

√ √ √ √

Turbo Coding √ √

Randomi-
zation

√ √ √ √

CRC √ √ √

12

Design principle II

Decision-processing separation

• Logic pulled out to decision plane SW

• Branch free actions in the processing plane SW

• Deterministic execution times for
blocks/actions

• Algorithmic schedule with pipelining
– Analogous to instruction scheduling

– Blocks = Instructions, Actions = Loops

• Meet deadlines reliably
(or deduce infeasibility)

• Abstract away the hardware

A

B

C D

E

F

60x

A

B

D

F

H

I

J

C

G

6M, 54M

13

PRELIMINARY IMPLEMENTATION

14

Prototype

• Off-the-shelf TI KeyStone multicore DSP platform
(EVM6618, two chips with 4 cores each at 1.2GHz)

• Configurable hardware accelerators for common, heavy processing
blocks (eg. FFT, Viterbi, Turbo)

• USRP2 for RF conversion, I/Q sample stream
• Prototype can process 2 x 20MHz, 54Mbps

– Room left for implementing variations and optimizations

RF signal
I/Q base-
band
samples

Antenna chain(AX)Radio front end (RFE)Baseband-processor unit (BBU)

(Digital) (Analog)

Layer 0Layer 0 & 1Layer 1 & 2

15

OpenRadio architecture

Controller

High Level Interface to
control physical infrastructure

16

Related work

• OpenRadio is not a software radio

– Judicious tradeoff between flexibility of pure
software and performance of ASICs

• OpenRadio is not a protocol stack, it is an
enabler

– Eg. LTE can be implemented conveniently with
OpenRadio

17

Conclusion

• A programmable wireless dataplane
– Rich programming interface for wireless radios

– Principled design for efficient implementation

– Built using off-the-shelf components

• Unique balance of flexibility, performance and
modularity

Thanks! Questions?
snsg.stanford.edu/openradio

18

BACKUP SLIDES

19

Challenges

• Can these programming abstractions be
implemented efficiently?

– more than 100Gflops

• Can we meet processing deadlines reliably?

– as tight as 25us for 2ms computation run

20

Design limitations

• Design works well for bulk of computation
coming from processing plane

• Heavy decision-planes will cause performance
bottlenecks and inefficient hardware use

• Model assumes processing/decision
separation is meaningful, blocks are small

• Logic-heavy blocks or heavily sequential,
indecomposable blocks will not execute well
on multi-core platforms

21

More Related work

• An SDN approach to wireless radios
• Same goals but different challenges

– Heavy computational load
– Strict deadlines

• OpenRadio is not a software radio
– Judicious tradeoff between flexibility of pure software and

performance of ASICs

• Design is not tied to a specific hardware
– Can implement on an FPGA or a desktop machine
– Net performance is a function of hardware capabilities
– Heterogeneous multicore platform is one good fit

• OpenRadio is not a protocol stack, it is an enabler
– Eg. LTE can be implemented conveniently with OpenRadio

22

Rule-action programming model

• Protocols can be tied together using “rules”
and “actions”

• Actions are DAGs of processing plane blocks

• Rules define the logic to conditionally pick
DAGs

Rule: if (data packet and wifi_6mbps)
Action: BPSK and 1/2 rate

Rule: if (data packet and CRC match)
Action: Send ACK

Rule: if (video packet)
Action: UEP decoding

23

State machines and deadlines
• Rules and actions encode the protocol state machine

– Rules define state transitions

– Each state has an associated action

• Deadlines are expressed on state sequences

deadline

A

C

B

D

G

F

H

I

J

Start
decoding

Finish
decoding

24

State machines and deadlines
State_HeaderDecode (S_HD):

Action HeaderDecode
Rule: if (data packet) transition to State_DataDecode (S_DD)

[Deadline: finishing S_DD by Deadline_DD from now]
Rule: if (video_packet) transition to State_VideoDecode (S_VD)

[Deadline: finishing S_VD ASAP]

25

Design principle II

Decision-processing separation
• Logic pulled out to decision plane SW
• Branch free actions in the processing plane SW

• Deterministic execution times for blocks/actions
• Efficient pipelining, algorithmic scheduling

• Meet deadlines reliably (or deduce infeasibility)
• Hardware is abstracted out

A

B

C D

E

F

60x

A

B

D

F

H

I

J

C

G

6M, 54M
Regular compilation OpenRadio scheduling

Instructions Atomic processing blocks

Heterogeneous functional units Heterogeneous cores

Known cycle counts Predictable cycle counts

Argument data dependency FIFO queue data dependency

26

Software architecture

Bare-metal with drivers

OR Wireless Processing Plane
deterministic signal processing blocks,
header parsing, channel resource
scheduling, multicore fifo queues, sample
I/O blocks

OR Wireless Decision Plane
protocol state machine, flowgraph
composition, block configurations,
knowledge plane, RFE control logic OR Runtime System

compute resource
scheduling, deterministic
execution ensuring protocol
deadlines are metdata

in
data
out

monitor
&

control

RFEBBU

(Digital) (Analog)

AX

27

Anticipated questions

• What about the UE side?
– UE side evolves much faster and incrementally

• Mostly talked about PHY. Is it just about PHY?
– The dataplane refers to both PHY and MAC. In fact, the boundary between PHY and MAC does

not exist for the dataplane. They are both made up of processing blocks and decision logic. An
example for MAC is the decomposition of channel scheduler – the decision plane involves
finding the mapping of data to channel resources, the processing plane operation is to actually
map data into its correct resource block. Our ongoing work includes studying concrete cases,
design of interfaces best suited to MAC and the balance between processing and decision
plane loads.

• Goal is cellular basestations but you study WiFi?
– Yes. WiFi has similar computation requirements being 20MHz OFDM/54Mbps and much more

stringent deadlines (25us) than LTE or WiMAX. Though solving WiFi does not imply solving LTE,
it is a strong proof of concept.

• What is the unit of data on which the blocks operate?
– Blocks generally have a natural granularity of operation, for example, an OFDM symbol worth

of data (FFT works on full symbol as the smallest unit). Smaller data units mean smaller
pipeline latencies. You can always increase the data unit size in multiples of the smallest unit,
if your latency budget permits.

28

