HyperDex
A Distributed, Searchable Key-Value Store

Robert Escriva†

Bernard Wong‡ Emin Gün Sirer†

†Department of Computer Science
Cornell University

‡School of Computer Science
University of Waterloo

ACM SIGCOMM Conference, August 14, 2012
From RDBMS to NoSQL

- RDBMS have difficulty with scalability and performance
- NoSQL systems emerged to fill the gap
Problems Typical of NoSQL

Lack of ...

- Search
- Consistency
- Fault-Tolerance

Specifics vary between systems
Typical NoSQL Architecture

Consistent hashing maps each key to a server
The Search Problem

Searching for objects without the key involves many servers
The Consistency Problem

Clients may read inconsistent data and writes may be lost
The Fault-Tolerance Problem

Many systems’ default settings consider a write complete after writing to just one node
HyperDex: An Overview

- Hyperspace hashing
- Value-dependent chaining

⇓

- High-Performance: High throughput with low variance
- Strong Consistency: Strong safety guarantees
- Fault Tolerance: Tolerates a threshold of failures
- Scalable: Adding resources increases performance
- Rich API: Support for complex datastructures and search
Introduction

Design and Implementation

Hyperspace Hashing

Value-Dependent Chaining

Evaluation

Conclusion
Attributes map to dimensions in a multidimensional hyperspace

First Name

Phone Number

Last Name

First Name
Attribute values are hashed independently
Any hash function may be used

First Name

Phone Number

H("607-555-1024")

Last Name

H("Armstrong")

H("Neil")

First Name
Objects reside at the coordinate specified by the hashes

- Neil Armstrong
- H(“Neil”) → First Name
- H(“Armstrong”) → Last Name
- H(“607-555-1024”) → Phone Number
Different objects reside at different coordinates

First Name
Phone Number
Last Name

- Neil Armstrong
- Lance Armstrong
- Neil Diamond
The hyperspace is divided into **regions** where each object resides in exactly one region.
Each server is responsible for a region of the hyperspace
Each search intersects a subset of regions of the hyperspace.
All people named Neil are mapped to the yellow plane

- Neil Armstrong
- Lance Armstrong
- Neil Diamond

First Name

Phone Number

Last Name

http://hyperdex.org/
All people named Neil are mapped to the yellow plane

First Name

Phone Number

Last Name

- Neil Armstrong
- Lance Armstrong
- Neil Diamond
All people named Armstrong are mapped to the gray plane

- Neil Armstrong
- Lance Armstrong
- Neil Diamond
All people named Armstrong are mapped to the gray plane

Phone Number

First Name

Last Name

- Neil Armstrong
- Lance Armstrong
- Neil Diamond
A more restrictive search for Neil Armstrong contacts fewer servers

First Name

Phone Number

Last Name

- Neil Armstrong
- Lance Armstrong
- Neil Diamond
Range searches are natively supported
Space Partitioning

- In a naive implementation, the hyperspace would grow exponentially in the number of dimensions
- *Space partitioning* prevents exponential growth in the number of searchable attributes

\[
\begin{array}{cccccc}
 k & a_1 & a_2 & a_3 & a_4 & \cdots & a_{D-2} & a_{D-1} & a_D \\
\end{array}
\]
Space Partitioning

- In a naive implementation, the hyperspace would grow exponentially in the number of dimensions
- \textit{Space partitioning} prevents exponential growth in the number of searchable attributes

\[
\begin{array}{cccccccc}
 k & a_1 & a_2 & a_3 & a_4 & a_5 & \cdots & a_{D-2} & a_{D-1} & a_D \\
\end{array}
\]

- A search is performed in the most restrictive subspace
Space Partitioning

- In a naive implementation, a 9-dimensional space could require 512 machines
- HyperDex can store this space on just 24 machines using three subspaces
Hyperspace Hashing Implications

- Searches are efficient
- Hyperspace hashing is a mapping, not an index
 - No per-object updates to a shared datastructure
 - No overhead for building and maintaining B-trees
 - Functionality gained solely through careful placement
Introduction

Design and Implementation

Hyperspace Hashing
Value-Dependent Chaining

Evaluation

Conclusion
Replication

- As an object changes, so too must the set of servers holding it
Value-Dependent Chaining

- Key subspace
- Subspace 1
- Subspace 2

```
put(k, A=1, B=1, C=1, D=1)
```

```
put(k, A=0, B=0, C=1, D=1)
```

```
put(k, A=0, B=1, C=1, D=1)
```
Value-Dependent Chaining

\[\text{put}(k, A=1, B=1, C=1, D=1) \]

A put includes one node from each subspace
When updating an object, the value-dependent chain includes the servers which hold the old and new versions of the object.
Value-Dependent Chaining

Each `put` removes all state from the previous `put`
Value-Dependent Chaining

\[
\text{put}(k, A=0, B=1, C=1, D=1)
\]

Subsequent operations involve solely the most recent nodes
Value-Dependent Chaining

Servers are replicated in each region to provide fault tolerance
Value-Dependent Chaining

The value-dependent chain includes all replicas
Value-Dependent Chaining

```
put(k, A=0,B=0, C=1,D=1)
```

Failed nodes are removed from the chain
Value-Dependent Chaining Implications

No extra mechanism is necessary to provide

- Atomicity
- Ordering
- Replication
- Relocation
Consistency

- **Key Consistency**: Key operations are linearizable
- **Search Consistency**: All search operations observe all put operations that completed prior to the search
Implementation

- Fully implemented system with 52,000 LOC
- Bindings for C, C++, Python, Java, Ruby, Node.JS
- Open sourced under a BSD-like license
- Active user community with many contributors
- Implementation tricks:
 - Hyperspace hashing maps objects to locations on disk
 - Paxos-based RSM maintains the hyperspace mapping
Introduction

Design and Implementation

Evaluation

Conclusion
Experimental Setup

- Use the Yahoo! Cloud Serving Benchmark
- Each system makes two replicas of the data
- **MongoDB**: Writes to the client’s outgoing socket buffer
- **Cassandra**: Writes to one storage node’s filesystem
- **HyperDex**: Writes to both replicas in three subspaces
YCSB Throughput

![Bar chart showing throughput comparison for Cassandra, MongoDB, and HyperDex across different workloads A to E.]

Robert Escriva, Bernard Wong, Emin Gün Sirer

HyperDex

http://hyperdex.org/
95% get / 5% put Latency

YCSB Workload B

CDF (%) vs. Latency (ms)

- Cassandra (R)
- Cassandra (U)
- MongoDB (R)
- MongoDB (U)
- HyperDex (R)
- HyperDex (U)
100% put Latency

YCSB Load Dataset

CDF (%) vs Latency (ms)

- Cassandra
- MongoDB
- HyperDex

Robert Escriva, Bernard Wong, Emin Gün Sirer

HyperDex
http://hyperdex.org/
search Latency

YCSB Workload E

CDF (%)

Latency (ms)

Cassandra
MongoDB
HyperDex

http://hyperdex.org/
Scalability

Throughput (million ops/s) vs Nodes

Robert Escriva, Bernard Wong, Emin Gün Sirer

HyperDex
http://hyperdex.org/
Performance Summary

- Outperforms other systems by 2–4× for get/put
 - While offering stronger consistency and fault tolerance
- Outperforms other systems by 12–13× for search
 - Despite operating solely on secondary attributes
- Latency for chain-operations is predictable
- Scales as resources are added
Conclusion

- HyperDex is a next generation NoSQL system
- Novel Techniques
 - Hyperspace Hashing
 - Value-Dependent Chaining
- The next-generation of NoSQL systems should explore alternative designs that offer both an expanded API and strong guarantees
- http://hyperdex.org/
YCSB Benchmark Workloads

<table>
<thead>
<tr>
<th>Name</th>
<th>Workload</th>
<th>Key Choice</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50% R</td>
<td>Zipf</td>
<td>Session Store</td>
</tr>
<tr>
<td></td>
<td>50% U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>95% R</td>
<td>Zipf</td>
<td>Photo Tagging</td>
</tr>
<tr>
<td></td>
<td>5% U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>100% R</td>
<td>Zipf</td>
<td>Profile Cache</td>
</tr>
<tr>
<td>D</td>
<td>95% R</td>
<td>Temporal</td>
<td>Status Updates</td>
</tr>
<tr>
<td></td>
<td>5% I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>95% S</td>
<td>Zipf</td>
<td>Threads</td>
</tr>
<tr>
<td></td>
<td>5% I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>50% R</td>
<td>Zipf</td>
<td>User Database</td>
</tr>
<tr>
<td></td>
<td>50% R-M-U</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R = Read, U = Update, I = Insert, S = Scan/Search
Hash Functions and Load Balancing

- Out of the box, HyperDex supports hashing strings and integers
- What about non-uniform inputs?
 - Select a better hash function
 - Use forwarding pointers
 - Create multiple dimensions in the hyperspace for a single attribute
- The default hash functions work well for workloads that we’ve seen in practice
The CAP Theorem

- What CAP is simplified to:
 - You must always give something up

- What the CAP theorem really says:
 - If you cannot limit the number of faults
 - and requests can be directed to any server
 - and you insist on serving every request
 - then you cannot possibly be consistent

- Most NoSQL systems are proud to preemptively give up desirable properties like consistency in the name of CAP — even in the case of no failures

- HyperDex allows for \(f \) failures without sacrificing consistency or availability
Experimental Setup

Lab Cluster
- 14 Machines
- Intel Xeon 2.5 GHz E5420 × 2
- 16 GB RAM
- 500 GB SATA HDD
- Debian 6.0
- Linux 2.6.32

VICCI Cluster
- 70 Machines
- Intel Xeon 2.66 GHz X5650 × 2
- 48 GB RAM
- 1 TB SATA HDD × 3
- Virtualized Fedora 12
- Linux 2.6.32
Cluster Size

- Netflix: App-specific clusters of 6-48 Cassandra instances
- Google BigTable:
 - 66% of clusters < 20 tablet servers
 - 84% of clusters < 100 tablet servers
 - 96% of clusters < 500 tablet servers
- Justin Sheehy, Basho Inc.:
 - Typical cluster is 6-12 Riak nodes
 - Largest clusters < 100 Riak nodes
Related Work

- Multi-dimensional database systems on a single host
 - Grid File, KD-Tree, Multi-dimensional BST, Quad-Tree, R-Tree, Universal B-Tree
- Distributed database systems maintain distributed indices
 - Distributed B-Tree, P-Tree, Sinfonia
- Peer-to-peer systems are only eventually consistent
 - Arpeggio, CAN, Chord, Consistent Hashing, Mercury, MURK, Pastry, SkipIndex, SWAM-V, Tapestry
- Space-filling curves suffer from the curse of dimensionality
 - MAAN, SCRAP, Squid, ZNet
- NoSQL systems/key-value stores give up search, consistency or fault-tolerance
 - CouchDB, MongoDB, Neo4j, PNUTS, Redis, TXCache, BigTable, Cassandra, COPS, Distributed Data Structures, Dynamo, Fawn KV, HBase, HyperTable, LazyBase, Masstree, Memcached, RAMCloud, Riak, SILT, Spanner, Spinnaker, TSSL, Voldemort