Optimizing Cost and Performance for Content Multihoming

Hongqiang Harry Liu
Ye Wang
Yang Richard Yang
Hao Wang
Chen Tian

Aug. 16, 2012
Content Multihoming is Widely Used

Content Publisher

CDN-1

CDN-2

CDN-3

Content Viewers
Why Content Multihoming: Performance Diversity
Why Content Multihoming: Performance Diversity

Table: The fraction of successful deliveries for objects with streaming rate of 1Mbps | 2Mbps | 3Mbps.

<table>
<thead>
<tr>
<th></th>
<th>CloudFront</th>
<th>MaxCDN</th>
<th>Liquid Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>99.9</td>
<td>99.9</td>
<td>99.3</td>
</tr>
<tr>
<td>Brazil</td>
<td>100</td>
<td>99.9</td>
<td>99.6</td>
</tr>
<tr>
<td>Austria</td>
<td>99.9</td>
<td>99.9</td>
<td>97.0</td>
</tr>
<tr>
<td>Spain</td>
<td>99.9</td>
<td>99.9</td>
<td>99.4</td>
</tr>
<tr>
<td>Japan</td>
<td>99.9</td>
<td>99.9</td>
<td>99.7</td>
</tr>
<tr>
<td>China</td>
<td>99.9</td>
<td>99.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Australia</td>
<td>100</td>
<td>99.9</td>
<td>99.7</td>
</tr>
</tbody>
</table>

Diversity in different areas
Diversity in different streaming rates
Why Content Multihoming: Cost Diversity

Amazon CloudFront

<table>
<thead>
<tr>
<th>Charging Region</th>
<th>US</th>
<th>EU</th>
<th>SA</th>
<th>JP</th>
<th>S/HK</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 10 TB /month</td>
<td>$0.120/GB</td>
<td>$0.120/GB</td>
<td>$0.250/GB</td>
<td>$0.201/GB</td>
<td>$0.190/GB</td>
</tr>
<tr>
<td>Next 40 TB /month</td>
<td>$0.080/GB</td>
<td>$0.080/GB</td>
<td>$0.200/GB</td>
<td>$0.148/GB</td>
<td>$0.140/GB</td>
</tr>
<tr>
<td>Next 100 TB /month</td>
<td>$0.060/GB</td>
<td>$0.060/GB</td>
<td>$0.180/GB</td>
<td>$0.127/GB</td>
<td>$0.120/GB</td>
</tr>
<tr>
<td>Next 350 TB /month</td>
<td>$0.040/GB</td>
<td>$0.040/GB</td>
<td>$0.160/GB</td>
<td>$0.106/GB</td>
<td>$0.100/GB</td>
</tr>
<tr>
<td>Next 524 TB /month</td>
<td>$0.030/GB</td>
<td>$0.030/GB</td>
<td>$0.140/GB</td>
<td>$0.085/GB</td>
<td>$0.080/GB</td>
</tr>
<tr>
<td>Next 4 PB /month</td>
<td>$0.025/GB</td>
<td>$0.025/GB</td>
<td>$0.130/GB</td>
<td>$0.075/GB</td>
<td>$0.070/GB</td>
</tr>
<tr>
<td>Over 5 PB /month</td>
<td>$0.020/GB</td>
<td>$0.020/GB</td>
<td>$0.125/GB</td>
<td>$0.065/GB</td>
<td>$0.060/GB</td>
</tr>
</tbody>
</table>

MaxCDN

<table>
<thead>
<tr>
<th>Charging Region</th>
<th>US/EU/SA</th>
<th>A/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 10 TB /month</td>
<td>$0.070/GB</td>
<td>$0.100/GB</td>
</tr>
<tr>
<td>Next 40 TB /month</td>
<td>$0.060/GB</td>
<td>$0.074/GB</td>
</tr>
<tr>
<td>Next 100 TB /month</td>
<td>$0.050/GB</td>
<td>$0.064/GB</td>
</tr>
<tr>
<td>Next 350 TB /month</td>
<td>$0.040/GB</td>
<td>$0.053/GB</td>
</tr>
<tr>
<td>Next 524 TB /month</td>
<td>$0.035/GB</td>
<td>$0.043/GB</td>
</tr>
<tr>
<td>Next 4 PB /month</td>
<td>$0.030/GB</td>
<td>$0.037/GB</td>
</tr>
<tr>
<td>Over 5 PB /month</td>
<td>$0.020/GB</td>
<td>$0.032/GB</td>
</tr>
</tbody>
</table>

LiquidWeb

<table>
<thead>
<tr>
<th>Charging Region</th>
<th>US/EU/SA</th>
<th>A/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TB monthly plan</td>
<td>$100</td>
<td>$200</td>
</tr>
<tr>
<td>2.5 TB monthly plan</td>
<td>$250</td>
<td>$500</td>
</tr>
<tr>
<td>5 TB monthly plan</td>
<td>$500</td>
<td>$1,000</td>
</tr>
<tr>
<td>10 TB monthly plan</td>
<td>$900</td>
<td>$1,800</td>
</tr>
<tr>
<td>100 TB monthly plan</td>
<td>$8,000</td>
<td>$16,000</td>
</tr>
</tbody>
</table>

Concave Function

Region Based

Yale LANS
Our Goal

- Design **algorithms** and **protocols** for content publishers to fully take advantage of content multihoming to optimize
 - publisher cost and
 - content viewer performance.
Key Question

- A content object can be delivered from multiple CDNs, which CDN(s) should a content viewer use?
Key Challenges

- Online vs statistical CDN performance
 - e.g., real-time network congestions or server overload

- Complex CDN cost functions
 - e.g., the cost of assigning one object to CDN(s) depends on other assignments => coupling
Our Approach: Two-Level Approach

1. Statistical Performance
2. Efficient Optimal Object Assignment Algorithm
3. Guidance from Content Publishers
4. Local, Active Clients

- Online Performance
Roadmap

• Motivations

• Global optimization
 – Problem definition
 – CMO: An efficient optimization algorithm

• Local active client adaptation

• Evaluations
Roadmap

- Motivations
- Global optimization
 - Problem definition
 - CMO: An efficient optimization algorithm
- Local active client adaptation
- Evaluations
Problem Definition: Network Partition

Global Network

Location Area a

Location Object i^a

Exclusion

Object-i
Problem Definition: CDN Statistical Performance

Global Network

Target Performance: 90%

Statistical Performance: e.g., probability of successful deliveries in an area

\[F_k = \{ i^{a_1}, j^{a_7} \} \]

CDN-k
Problem Definition: Optimization Formulation

Problem Q

Charging function in region r of CDN-k

$$\min_{\{x^a_{i,k}\}} \sum_k \sum_r C^r_k \left(\sum_{a \in r} x^a_{i,k} t^a_i \right)$$

Traffic volume in charging region-r of CDN-k

$$\forall i, a, n^a_i > 0 : \sum_k x^a_{i,k} = 1$$

All requests are served

Performance constraints

$$\forall i, k, a, i^a \not\in F_k : x^a_{i,k} = 0$$

$$\forall i, k, a : x^a_{i,k} \geq 0$$

$x^a_{i,k}$ is the fraction of traffic put into CDN-k for location object i^a
Solving Problem Q:
Why not Standard Convex Programming or LP

- To minimize a concave objective function
- Problem scale is too large to be tractable:
 - N objects, A locations and K CDNs $\Rightarrow N \times A \times K$ variables, and $N \times K$ constraints
 - For example, given $N=500K$, $A=200$ and $K=3$ $\Rightarrow 300M$ variables and $100M$ constraints
Roadmap

• Motivations

➢ Global optimization
 – Problem definition
 ➢ CMO: An efficient optimization algorithm

• Local active client adaptation

• Evaluations
Developing the CMO Algorithm: Base

- **Problem Q** has an optimal solution which assigns a location object into a single CDN.

- The object assignment problem is still hard:

 Assignment Space

 K CDNs and N location objects
 =>
 K^N assignment possibilities
CMO Key Idea:
Reduction in the Outcome Space

Assignment Space

Outcome (CDN Usage) Space
CMO Key Idea:
Reduction in the Outcome Space

Assignment Space

Outcome (CDN Usage) Space
CMO Key Idea: Reduction in the Outcome Space

Assignment Space

Outcome (CDN Usage) Space

Infeasible Assignments
CMO Key Idea:
Reduction in the Outcome Space

Assignment Space

Outcome (CDN Usage) Space

Infeasible Assignments
CMO Key Idea: Reduction in the Outcome Space

Assignment Space

There are up to K^N points with K CDNs and N location objects.

Outcome (CDN Usage) Space

There are only N^{KR} vertices points, where R is the # of charging regions (a small #).
Mapping From Object Assignment to Outcome

<table>
<thead>
<tr>
<th>Location Objects</th>
<th>v^1_1</th>
<th>v^2_1</th>
<th>v^1_2</th>
<th>v^2_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic in Area-1</td>
<td>t^1_1</td>
<td>0</td>
<td>t^1_2</td>
<td>0</td>
</tr>
<tr>
<td>Traffic in Area-2</td>
<td>0</td>
<td>t^2_1</td>
<td>0</td>
<td>t^2_2</td>
</tr>
</tbody>
</table>

- $x^1_{i,1} = 1$
- $x^2_{i,1} = 1$
- $x^1_{i,2} = 1$
- $x^2_{i,2} = 1$

<table>
<thead>
<tr>
<th>CDNs</th>
<th>CDN-1</th>
<th>CDN-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic in Region-1</td>
<td>$t^1_1 + t^1_2$</td>
<td>0</td>
</tr>
<tr>
<td>Traffic in Region-2</td>
<td>t^2_1</td>
<td>t^2_2</td>
</tr>
</tbody>
</table>

Example assumption: Area-i is in charging Region-i
Extensions

• CDN subscription levels (e.g. monthly plan)
 – Introducing CDN capacity constraints

• Per-request cost
 – Adding a row which indicates the #request in outcome

• Multiple streaming rates
 – Considering each video at each encoding rate as an independent object
Extension Example: Per-request Cost

Location Objects

<table>
<thead>
<tr>
<th></th>
<th>v_1^1</th>
<th>v_1^2</th>
<th>v_2^1</th>
<th>v_2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic in Area-1</td>
<td>t_1^1</td>
<td>0</td>
<td>t_2^1</td>
<td>0</td>
</tr>
<tr>
<td>Traffic in Area-2</td>
<td>0</td>
<td>t_1^2</td>
<td>0</td>
<td>t_2^2</td>
</tr>
</tbody>
</table>

#Request

<table>
<thead>
<tr>
<th></th>
<th>n_1^1</th>
<th>n_1^2</th>
<th>n_2^1</th>
<th>n_2^2</th>
</tr>
</thead>
</table>

CDNs

<table>
<thead>
<tr>
<th></th>
<th>CDN-1</th>
<th>CDN-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic in Region-1</td>
<td>$t_1^1 + t_2^1$</td>
<td>0</td>
</tr>
<tr>
<td>Traffic in Region-2</td>
<td>t_1^2</td>
<td>t_2^2</td>
</tr>
</tbody>
</table>

#Request

<table>
<thead>
<tr>
<th></th>
<th>$n_1^1 + n_1^2 + n_2^1$</th>
<th>n_2^2</th>
</tr>
</thead>
</table>

Example assumption: Area-i is in charging Region-i.
From Algorithm to System

- Optimizer
 - Long-term scale statistics
- CPDNS
- CDN1
 - CloudFront
- Passive Client
- CDN2
 - MaxCDN
From Algorithm to System

- Optimizer
 - Long-term scale statistics

- CPDNS
 - Resolve obj-i.cp.com

- Passive Client

- CDN1
 - CloudFront

- CDN2
 - MaxCDN
From Algorithm to System

Client IP → area

Optimizer

Long-term scale statistics

CPDNS

Resolve obj-i.cp.com

Passive Client

CDN1
CloudFront

CDN2
MaxCDN

Yale LANS
Roadmap

• Motivations
• Global optimization
 – Problem definition
 – CMO: An efficient optimization algorithm
 ➢ Local active client adaptation
• Evaluations
Active Clients

Primary CDN

- h11
- h12

Backup CDN

- h21
Informing Active Client

Resolve obj-i.cp.com

Get CNAME d3ng4btfd31619.cloudfront.net

Passive Client

Optimizer

CDN1
CloudFront

CDN2
MaxCDN

Active Client
Informing Active Client

Resolve obj-i.cp.com
Get CNAME d3ng4btfd31619.cloudfront.net

Passive Client

Optimizer

Manifestation Server

CDN1 CloudFront

CDN2 MaxCDN

Active Client
Informing Active Client

Resolve obj-i.cp.com

Get CNAME d3ng4btfd31619.cloudfront.net

CDN1 CloudFront

Request cp.com/sample.flv

CDN2 MaxCDN

Passive Client

Optimizer

Active Client

Manifestation Server
How to Select Multiple CDNs?

• The same CMO algorithm, where input CDNs are virtual CDNs (ranked CDN combinations)

• Example: Select 2 CDNs (primary + backup) for an active client:
 - Each pair of CDNs is a “virtual CDN”: \(k' = (k, j) \)
 - \(F_{k'} \): the set of location objects that CDN \(k \) and CDN \(j \) together can achieve performance requirement
 • Each with 90% statistics => together > 90%
 - Objective function: for each location object \(i^a \), primary CDN \(k \) delivers the normal amount of traffic and backup \(j \) incurs backup amount of traffic.
Active Clients: Adaptation Goals

- **QoE protection (feasibility):**
 - Achieve target QoE through combined available resources of multiple CDN servers

- **Prioritized guidance:**
 - Utilize the available bandwidth of a higher priority server before that of a lower priority server

- **Low session overhead (stability):**
 - No redistributing load among same-priority servers unless it reduces concurrent connections
Active Clients: Control Diagram

Primary

h_{11} < R \text{ and } h_{12} > R

h_{11} > R \text{ and } h_{12} < R

Backup

h_{11} < R \text{ and } h_{12} < R?
Realizing Control Diagram: Key Ideas

- Controlling the windows
 - AIMD
 - Total load control
- Using the sliding windows
 - Priority assignment

h_{12}

pieces can be downloaded from the server in a period T

h_{21}

Pieces to request in T
Realizing Control Diagram: Key Ideas

- Controlling the windows
 - AIMD
 - Total load control
- Using the sliding windows
 - Priority assignment

pieces can be downloaded from the server in a period T

Pieces to request in T
Realizing Control Diagram: Key Ideas

- Controlling the windows
 - AIMD
 - Total load control
- Using the sliding windows
 - Priority assignment

h_{21}

h_{12}

h_{11}

$\#$ pieces can be downloaded from the server in a period T

Pieces to request in T
Roadmap

- Motivations
- Global optimization
 - Problem definition
 - CMO: An efficient optimization algorithm
- Local active client adaptation

 Evaluations
CMO Evaluation Setting

- 6-month traces from two VoD sites (CP1 and CP2):
 - Video size
 - #request in each area (learned from clients’ IP)

- Three CDNs
 - Amazon CloudFront
 - MaxCDN
 - CDN3 (private)

- #request prediction
 - Directly using #request last month in each area

- Compare 5 CDN selection strategies:
 - Cost-only, Perf-only, Round-robin, Greedy, CMO
Cost Savings of CMO

Avg Saving: ~35% compared with Greedy

(a) monthly cost: CP1
Cost Savings of CMO

Avg Saving: ~40% compared with Greedy

All three CDNs have good performance in US/EU
Active Client Evaluation Setting

- **Clients**
 - 500+ Planetlab nodes with Firefox 8.0 + Adobe Flash 10.1

- **Two CDNs**
 - Amazon CloudFront
 - CDN3
Active Client Test Cases

- **Stress test**
 - CDN3 as primary; CloudFront as backup
 - Two servers in two CDNs: primary1, backup1
 - Two servers in the primary CDN: primary1, primary2
 - Control primary1’s capacity
 - Step-down
 - Ramp-down
 - Oscillation

- **Large scale performance test:**
 - CloudFront as primary, CDN3 as backup
 - We saw real performance degradations
Stress Tests (Step-down)

Different Priority

Same Priority

Step-down
Recovery
Stress Tests (Ramp-down)

Different Priority

Same Priority
Stress Tests (Oscillation)

Different Priority

Same Priority
Active Client QoE Gain (CloudFront + CDN3)

Freezes Per View Statistics

CDF[x<pct]

Active Clients

Passive Clients
Active Client: Cost Overhead

Cost (Kilo USD)

Per-request Traffic

Ideal-CMO Real-CMO greedy
Conclusions

• We develop and implement a two-level approach to optimize cost and performance for content multihoming:
 – CMO: an efficient algorithm to minimize publisher cost and satisfy statistical performance constraints
 – Active client: an online QoE protection algorithm to follow CMO guidance and locally handle network congestions or server overloading.
Q&A
Related Work and Conclusions

• CDN switchers: seamless switch from one CDN to another
 – One Pica Image
• CDN Load Balancers: executing traffic split rules among CDNs
 – Cotendo CDN
 – LimeLight traffic load balancer
 – Level 3 intelligent traffic management
• CDN Agent: CDN business on top of multiple CDNs
 – XDN
 – MetaCDN
• CDN Interconnection (CDNi)
 – Content multihoming problem still exists in the CDN delegations.
Backup Slides
Searching Extremal Assignments

(1) **Separation Lemma:** \(\phi^* \) is extremal \(\iff \exists P, \forall \phi \neq \phi^* : \langle P, V_\phi - V_{\phi^*} \rangle > 0 \)

(2) **Recall:** \(V_\phi = \sum_v v \otimes e_{\phi(v)} \rightarrow \phi^* \) is extremal \(\iff \exists P, \forall \phi \neq \phi^* : \sum_v \langle P, v \otimes e_{\phi(v)} \rangle > \sum_v \langle P, v \otimes e_{\phi^*(v)} \rangle \)

(3) **We prove:** \(\phi^* \) is extremal \(\iff \exists P, \forall v, k \neq \phi^*(v) : \langle P, v \otimes e_k \rangle > \langle P, v \otimes e_{\phi^*(v)} \rangle \)

(4) **With a proper** \(P \), we can find an extremal assignment:
 - For each object \(v \), there is a **unique minimum** element in set \(\{ \langle P, v \otimes e_k \rangle | \forall k \} \)
Picking Proper P

A Proper P:
- $\forall v$ there is a **unique** minimum element in set $\{\langle P, v \otimes e_k \rangle | \forall k \}$

A special subset of P (S'): all elements in $\{\langle P, v \otimes e_k \rangle | \forall k \}$ are distinct

\[\forall v, k \neq j: \langle P, v \otimes e_k \rangle \neq \langle P, v \otimes e_j \rangle \]

\[\Rightarrow \langle P, v \otimes (e_k - e_j) \rangle \neq 0 \]

We prove:
- Each extremal assignment can be found by an element in S'
- Two interior points from the same cell find the same extremal assignment

Conclusion:
- All possible extremal assignments are exhausted by S'.
- The number of extremal assignments is no more than the $\#\text{cell}$ (polynomial with $\#\text{object}$).

Cell Enumeration of Hyperplane Arrangements
Realizing Control Diagram: Key Ideas

• Yry (revise next slide) Draw a figure w/
 – An active client
 – 3 cdn servers
 – Label a sliding window to conn. to each CDN

 – Say 3 key techniques to control and use the sliding window: total