
Downton Abbey Without the Hiccups:
Buffer-Based Rate Adaptation for HTTP Video Streaming

Te-Yuan Huang Ramesh Johari Nick McKeown
Stanford University

{huangty,ramesh.johari, nickm}@stanford.edu

ABSTRACT
Recent work has shown how hard it is to pick a video stream-
ing rate. Video service providers use heuristics to estimate
the network capacity leading to unnecessary rebuffering events
and suboptimal video quality. This paper argues that we
should do away with estimating network capacity, and in-
stead directly observe and control the playback buffer. We
present a class of rate selection algorithms that allow us to
optimize the delivered video quality while provably never un-
necessarily rebuffering. Our algorithms work with discrete
video rates, video chunking and for both CBR and VBR
video codecs.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-
Communication Networks—General

General Terms
Algorithms, Design

Keywords
HTTP-based Video Streaming, Video Rate Adaptation Al-
gorithm

1. INTRODUCTION
Today, video streaming is a huge and growing fraction

of Internet traffic, with Netflix and YouTube accounting for
over 50% of the peak download traffic in the US [7]. In order
to provide a high-quality user experience, most commercial
video streaming services use dynamic rate selection algo-
rithms to adapt video quality based on the available capac-
ity their clients perceive. The majority of these streaming
services run over HTTP.

How do HTTP streaming services pick a video rate? First,
the video client estimates how fast the server can deliver
video (i.e. the available capacity) by measuring the time-
weighted average arrival rate of data at the HTTP layer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
FhMN’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2183-9/13/08 ...$15.00.

Next, the client picks a video rate to match the estimated
capacity. If it chooses a video rate that is too high, the viewer
will experience rebuffering events (i.e., playback will halt
because the playback buffer goes empty); if it picks a video
rate that is too low, the viewer will experience suboptimal
video quality.

Since capacity is estimated using a weighted average of
recent throughput, the estimate is typically not the same as
the true current available capacity. This mismatch leads to a
known problem in today’s video streaming algorithms: they
can be both too conservative and too aggressive. Figure 1(a)
shows an example in which the video is streamed too slowly
and the stream does not obtain its fair share [5] (too conser-
vative). On the other hand, Figure 1(b) shows an example
in which the video keeps playing at an inappropriately high
rate after the available capacity has dropped (too aggres-
sive).1 As a result, the client rebuffers unnecessarily and
is not able to resume playing until 200 seconds later. Note
that the rebuffering events were entirely avoidable, since the
available capacity is still high enough to support the lowest
video rate.

At first glance it seems video rate selection algorithms are
forced into a tradeoff. Requesting a higher video rate might
lead to being overly aggressive and unnecessary rebuffering.
On the other hand, requesting a lower video rate might un-
der utilize the available capacity and lead to unnecessarily
low video quality.

In this paper we show that this is a false choice: neither
of the situations should ever happen! We present a class of
video rate selection algorithms that: (1) never unnecessarily
rebuffer; and (2) are free to pick the highest possible video
rate. Our algorithms achieve both objectives simultaneously
by choosing a video rate based only on the current buffer
occupancy, and avoid estimating bandwidth at all. To the
best of our knowledge, we are the first to remove bandwidth
estimation from video rate selection algorithms and base the
algorithms exclusively on playout buffer occupancy.

Why not estimate bandwidth? Capacity estimation de-
pends on many factors, such as the size of each video chunk,
the dynamics of TCP’s congestion control algorithm, com-
peting flows and the load on the server. Today’s video
streaming services introduce many heuristics to control the
error without understanding the implications. For example,
some heuristics can adversely interact with the underlying

1Both figures are based on real measurements from Service
A in [5], a very large video service provider. We do not
identify the service provider as we have found the problem to
be common across many commercial video service offerings.

9

0 100 200 300 400 500 600 700 800
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

235
375
560
750

1050

1400

1750

Video Playback Rate

Competing Flow's
Throughput

(a) Being too conservative: A video starts stream-
ing at 1.75Mb/s over a 5Mb/s network. After
395 seconds, a second flow starts (from the same
server). The video should be able to stream at
1.75Mb/s (given its fair share of 2.5Mb/s), but in-
stead drops down to 235kb/s.

0 50 100 150 200 250 300
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

235
375
560
750

1050

1750

2350

3000

Video Playback Rate

0

5

10

15

20

25

30

35

40

B
uf

fe
r

(s
)

Buffer Occupancy

Rebuffer!
Streaming paused.

Streaming resumed
 after 200 seconds

(b) Being too aggressive: A video starts streaming at
3Mb/s over a 5Mb/s network. After 25s the available
capacity drops to 350 kb/s. Instead of switching down
to a lower video rate, e.g., 235kb/s, the client keeps
playing at 3Mb/s. As a result, the client rebuffers and
does not resume playing video for 200s.

Figure 1: A paradox in video streaming algorithms that use capacity estimation (Service A in [5]).

TCP logic as shown in [1, 2, 5]. As we see above, pick-
ing a video rate based on capacity estimation can lead to
unnecessary rebuffering and sub-optimal video quality.

If we are not estimating capacity, how should our algo-
rithm pick a video rate? Let’s take a step back and look
at the purpose of the video rate selection algorithm. Ulti-
mately, the algorithm is trying to control the playback buffer.
It is trying to prevent unnecessary buffer underruns (i.e. re-
buffering events) and overruns (i.e. streaming below the
highest possible quality level [5]).

If it is the playback buffer we are controlling, then why
not measure and control its occupancy directly? The current
buffer occupancy tells us how far we are from an underrun
or overrun, and its rate of change captures the mismatch
between the system capacity and the requested video rate.
The buffer occupancy reflects the end-to-end system capac-
ity, including current load conditions of the network, the
CDN, and the video client. In brief, the buffer occupancy
contains a lot of information and is the variable we are di-
rectly trying to control.

Inspired by these observations, we propose a class of al-
gorithms that select the video rate based solely on the play-
back buffer level. Our algorithms do no capacity estimation
at all; rather, they rely on the buffer dynamics to implicitly
capture the available capacity. In this paper we show that
our algorithms (1) will never unnecessarily rebuffer, and (2)
achieve an average video rate equal to available capacity in
steady state.

The basic intuition behind our results – obvious with hind-
sight – is that if the network capacity never falls below
the minimum video rate, the algorithm should never re-
buffer. This observation leads to a simple but interesting
consequence: we can separate the task of maximizing video
quality from the task of avoiding rebuffering. First we dis-
pense with unnecessary rebuffering, allowing us to control
the video rate independently.

Of course, in practice, a streaming algorithm must take
care of many other considerations: it must converge quickly
to the right video rate, but it must not change the video rate

too often (since users find it distracting) [3]; it must work
with discrete video rates, and both constant and variable
bit-rate coding. We will show how our algorithms allow all
of these factors to be taken into consideration.

The remainder of the paper is organized as follows. Sec-
tion 2 formally defines a model for HTTP video streaming
and our problem statement. Section 3 defines the class of
algorithms we consider. Section 4 uses an idealized setting
to show that the algorithms we propose can prevent unnec-
essary rebuffering while maximizing video quality. We then
relax our assumptions and discuss variable bit rate encoding
in Section 5. In Section 6, we discuss other performance cri-
teria, including convergence time and rate oscillation. We
then show some preliminary results in Section 7. Finally, we
conclude this work in Section 8.

2. AN HTTP STREAMING MODEL
To set the stage, we start with a formal model of HTTP-

based video streaming.
Video rates and video chunks. For a typical commer-

cial HTTP-based video streaming service, videos are pre-
encoded into a discrete set of video rates (e.g. 235kb/s,
500kb/s, 1.5Mb/s and so on) and stored as separate files
by the CDNs. When a customer streams a video, the video
client downloads the video piece by piece by issuing HTTP
byte-range requests. The individual pieces are called chunks.
A client can only change its selected video rate on a chunk-
by-chunk basis (since this is the granularity of requests).
Regardless of the encoded video rate, each video chunk con-
tains the same length of video in seconds of playback.

In our formal model, we assume the video client can choose
from a set of m discrete video rates, {R1, . . . , Rm}, where
R1 < R2 < ... < Rm. We also refer to R1 as Rmin (the
minimum video rate), and Rm as Rmax (the maximum video
rate).

The streaming buffer. In the model we consider, the
streaming buffer in the video client is typically measured in

10

seconds of playback time.2 At any time the buffer may con-
tain chunks with many different video rates, and the output
bitrate of the buffer will depend on the video rate of the
chunk currently being played. As a result, there is no di-
rect mapping between buffer occupancy in bytes and buffer
occupancy in seconds. By measuring the buffer in the time
domain, the client keeps a record of how many “video sec-
onds”worth of playback video currently resides in the buffer,
without having to track the video rate associated with each
video chunk. Since the viewer ultimately cares about play-
back, streaming clients commonly measure the buffer in sec-
onds rather than bytes. Previous literature on HTTP video
streaming also uses the time-based buffer model [5, 8]. We
let Bmax denote the buffer capacity in seconds.

Buffer dynamics. We index time by t ≥ 0, and let
C(t) denote the system capacity at time t. Here, the sys-
tem capacity represents the overall end-to-end capability of
the system, including the capacity of the CDN servers, the
video client and the available bandwidth of the network in
between. We let B(t) be the streaming buffer occupancy at
time t (measured in seconds). Finally, we let R(t) denote
the video rate selected at time t. (Note that if the buffer is
full, then no chunk can be downloaded at time t; thus we
adopt the convention that if B(t) = Bmax then C(t) = 0.)

Observe that the buffer drains at unit rate (since one sec-
ond is played back every second of real time), and fills at
rate C(t)/R(t). Thus the buffer dynamics obey the follow-
ing simple differential equation:

dB(t)

dt
=

 [C(t)/R(t)− 1]+, if B(t) = 0;
C(t)/R(t)− 1, if 0 < B(t) < Bmax;
[C(t)/R(t)− 1]−, if B(t) = Bmax.

(1)
(Here the notation [x]+ means the positive part of x, max{x, 0};
and [x]− means the negative part of x, min{x, 0}.)

Given the constraint that we can only select video rates
on a chunk-by-chunk basis, it is useful to consider the buffer
dynamics when observed at the time points when a chunk
finishes. Formally, let tk be the completion time of the k-
th chunk; by convention, let t0 = 0. Let r[k] be the video
rate selected for the k-th chunk, so that R(t) = r[k] for
tk−1 < t ≤ tk. Similarly, let c[k] be the average download
capacity for the k-th chunk, so that:

c[k] =

∫ tk
tk−1

C(t) dt

tk − tk−1
.

If each chunk contains V seconds of video, the k-th chunk is
V r[k] bytes long. This assumes a constant bit rate (CBR)
stream; we extend our results to variable bit rate video
(VBR) in Section 5. Thus we have tk = tk−1 + V r[k]/c[k]
(since this is when the k-th chunk completes downloading).
On the other hand, between tk−1 and tk, the buffer fills with
V seconds of video. Therefore:

B(tk) =

[
B(tk−1) + V − V r[k]

c[k]

]+

. (2)

(Note that since C(t) = 0 whenever B(t) = Bmax, the buffer
must be less than or equal to Bmax when a chunk completes.)

We summarize the two equivalent models of buffer dy-
namics in Figure 2.

Problem statement. We can now define the two objec-
tives discussed in the introduction.
2This is typical of streaming clients, e.g., Silverlight.

€

C[k]
R[k]

B[k]&

Input&

Rate&

Buffer&Size&

(seconds)&

Output&

Rate&

Buffer&

Occupancy&

(seconds)&

1&

€

V r[k]
c[k]

B(t)&

Input&

Rate&

Buffer&&

Size&

(seconds)&

Output&

Rate&

Buffer&

Occupancy&

(seconds)&

V&

€

C(t)
R(t)

B(t)&

Input&

Rate&

Output&

Rate&
1&

Figure 2: Two models of the streaming buffer.

V
id
e
o
&

R
a
te
&

Buffer&Occupancy&&

Rmin&

Rmax&

f"

Bmax&

Feasible&Region&

Figure 3: The design space of rate maps.

No unnecessary rebuffering. An unnecessary rebuffering
event occurs when the buffer underruns, despite the fact
that sufficient capacity was available. Formally, we require
the following property: If C(t) > Rmin for all t ≥ 0, then
B(t) > 0 for all t ≥ 0.

Average video rate optimization. The playback quality (as
perceived by the viewer) is measured by averaging the video
rate over chunks; thus the long-run average video rate is R̄ =
limK→∞

1
K

∑K
k=0 r[k]. Our goal is to maximize R̄. At the

same time, this rate must be less than or equal to the long-

run average capacity, C̄ ≤ limT→∞
1
T

∫ T

0
C(t) dt. Note that

even though our goal is to maximize capacity utilization, the
underlying TCP ensures the algorithm stays a“good citizen”
and only gets its fair share of available capacity.

3. RATE MAPS AND BUFFER-BASED AL-
GORITHMS

In this section we define our class of algorithms. Since
we select a video rate based solely on the buffer occupancy,
the design space for our algorithms can be expressed as the
buffer-rate plane shown in Figure 3. The shaded region be-
tween [0, Bmax] on the buffer-axis and [Rmin, Rmax] on the
rate-axis defines the feasible region. Any curve f(B) on
the plane within the feasible region defines a rate map, that
maps a current buffer occupancy to a video rate between
Rmin and Rmax. We focus on rate maps that are continuous
functions of the buffer occupancy B, and that are strictly
increasing on the region {B : Rmin < f(B) < Rmax}.

Note that a rate map by itself does not define an algo-
rithm. Since the rate map is continuous, it may not directly
correspond to an available discrete video rate. And con-

11

tinuously changing the rate might cause the video rate to
oscillate. Instead, we desire an implementation where the
video rate is a little “sticky”.

We therefore use the rate adaptation algorithm described
in Algorithm 1. The algorithm follows a simple principle: it
stays at the current video rate as long as the rate suggested
by the rate map does not pass either the next higher avail-
able video rate (Rate+) or the next lower available video
rate (Rate−). If either of these “barriers” are hit, the rate is
switched up or down (respectively) to a new discrete value
suggested by the rate map. In this way, the buffer distance
between the adjacent video rates provides a natural cushion
to absorb rate oscillations.

Algorithm 1: Video Rate Adaptation Algorithm

Input: Rateprev: The previously used video rate
Bufnow: The current buffer occupancy

Output: Ratenext: The next video rate

if Rateprev = Rmax then
Rate+ = Rmax

else
Rate+ = min{Ri : Ri > Rateprev}

if Rateprev = Rmin then
Rate− = Rmin

else
Rate− = max{Ri : Ri < Rateprev}

if f(Bufnow) ≥ Rate+ then
Ratenext = max{Ri : Ri < f(Bufnow)};

else if f(Bufnow) ≤ Rate− then
Ratenext = min{Ri : Ri > f(Bufnow)};

else
Ratenext = Rateprev;

return Ratenext;

4. AN IDEALIZED SETTING
Given the algorithm described in Section 3, we now find

rate mappings that achieve our two objectives: (1) no un-
necessary rebuffers and (2) average video rate maximization.
In this section we use an idealized model to gain some intu-
ition, before relaxing our assumptions.

We make the following two simplifying assumptions:
1. Any video rate between Rmin and Rmax is available.
2. The chunk size is infinitesimal, so that we can change the

video rate continuously.
With these two assumptions the algorithm from Section 3
becomes quite simple: at every time t, we instantaneously
map the buffer level B(t) to the video rate f(B(t)). The
resulting buffer dynamics are:

dB(t)

dt
=

 [C(t)/f(0)− 1]+, if B(t) = 0;
C(t)/f(B(t))− 1, if 0 < B(t) < Bmax;
[C(t)/f(Bmax)− 1]−, if B(t) = Bmax.

(3)
In what follows, we consider rate maps f (cf. Section 3)

that are pinned at both ends: f(0) = Rmin and f(Bmax) =
Rmax. In other words, the rate map moves from the lowest
to highest video rate as the buffer moves from empty to full.
As we will see, any such rate map automatically give us the
desired properties (in this idealized setting).

No unnecessary rebuffering. Since f(B) → Rmin as
B → 0, the derivative of B(t) will become positive before
the buffer hits zero. Thus we have the following result.

Theorem 1 (No unnecessary rebuffers). As long as C(t) >
Rmin for all t, B(t) > 0 for all t > 0 as well.

Average video rate maximization. Now suppose that
C(t) = C for all t, where Rmin < C < Rmax. Informally,
we can expect the buffer level to eventually converge to a
value B∗ where f(B∗) = C—in other words, the video rate
selected will exactly match the capacity. This is captured in
the following theorem (and proved in [6]).

Theorem 2 (Average video rate maximization). Suppose
that Rmin < C < Rmax. Then starting from any initial
buffer level, limt→∞B(t) = B∗, where B∗ is the unique so-
lution to f(B∗) = C.

Note that if C > Rmax, it is clear from (3) that the buffer
will fill up and remain full; and thus the video rate will
remain at Rmax, which is the best we can hope for. (In
practice, we would observe “on-off” behavior in the video
stream due to finite chunk sizes.)

The preceding results are obtained in a highly idealized
setting. In the next two sections we see how our algorithms
behave in a more realistic context, and show that essentially
the same insights continue to hold.

5. A MORE REALISTIC SETTING
In this section, we remove the two simplifying assump-

tions. First, we select the video rate from the finite feasible
set {R1, . . . , Rm}; second, we assume the chunk size is finite
(V seconds long), and we can only change the video rate
when requesting a new chunk.

Note that with a discrete set of video rates, the buffer level
B(t) no longer directly maps to a video rate f(B(t)), since
f(B(t)) might not be an available rate. Thus Algorithm 1
defined in Section 3 has slightly more complex dynamics,
making the analysis more challenging.

Nevertheless, we now show how to choose rate maps so
that our algorithm still achieves our two objectives. We also
discuss extensions of our results to a setting with variable
bit rates (VBR).
No unnecessary rebuffering. Because video is requested
and delivered in V second chunks, the buffer might go empty
while a chunk is still downloading, giving us no opportunity
to react (since we can only pick a new rate when a chunk has
finished). To prevent this possibility, we build a “reservoir”
r > 0 into the rate map—a lower threshold in the playback
buffer, such that f(B) = Rmin for all B ≤ r. Figure 4 shows
the rate map and a reservoir on the buffer-rate plane.

To choose r we use the chunk-based buffer dynamic in

equation (2). Because the buffer can drop by at most V r[k]
c[k]

during a chunk download, we can show that if the reser-
voir is r ≥ V (Rmax/Rmin), the client will not unnecessarily
rebuffer.3

Optimizing average video rate. Ideally, if the capacity is
constant (C = C(t) for all t, and Rmin < C < Rmax) we want
the average video rate to match the capacity, i.e., R̄ = C,

3Note that this condition is quite conservative if Rmax/Rmin

is large; in general, with knowledge of the video rates we can
reduce the reservoir. See [6] for details.

12

Rmin&

Rmax&

Reservoir&
Buffer&Occupancy&&

Bmax&

B&→&Reservoir,&&
R&→&Rmin&

Vi
de

o&
Ra
te
&

Figure 4: Rate Maps with Reservoir.

even with video delivered in chunks, and even when the ca-
pacity does not equal one of the discrete video rates. Under
Algorithm 1, the buffer level might not be able to converge
to B∗, because f(B∗) might not map to an available video
rate. The buffer will swing between two occupancies Bi and
Bj , where f(Bi) and f(Bj) maps to discrete rates above and
below C (Ri and Rj respectively, i.e. Ri < C < Rj).

Suppose we again use“pinned”rate maps such that f(B) =
Rmin for all B such that 0 ≤ B ≤ r (the reservoir), and
f(Bmax) = Rmax. For such rate maps, informally, the rate
will“hover”around the capacity C in steady state. Formally,
we prove that the long-run average video rate, R̄, equals the
capacity C (the proof is in [6]).
Variable Bit Rate (VBR) Coding. So far we have only
considered constant bit-rate (CBR) video, i.e., for a given
video rate, each chunk contains the same number of bytes.
In practice, video streaming services use variable bit-rate
(VBR) encoding depending on how dynamic a scene is. The
chunk size varies over time and, typically, the average chunk
size is bounded over a fixed time period (e.g. 10 seconds).
Because we know the size of each chunk, we can normalize
the buffer input with the ratio of a chunk size to the average
chunk size. With this scaling, the buffer dynamics are es-
sentially the same as for CBR (proofed in Theorem 3), and
hence we can obtain the same results as before.

Note that we only need to have one additional variable
to keep track of the normalized buffer occupany. This vari-
able is updated whenever a chunk is finished download and
is reset to the actual buffer occupancy whenever the video
rate is changed. The reset is necessary to prevent the grow-
ing difference between normalized buffer occupancy and the
actual one. When staying at the same video rate, the differ-
ence between two buffer occupancy will be offseted by the
nature of VBR encoding. More details can be found in [6].

Theorem 3. Given a VBR stream, if we normalize the V
seconds contains in each chunk to V × ChunkSize

AvgChunkSize
, the

change rate of the normalized buffer occupancy on a VBR
stream will be the same as the change rate of the actual buffer
occupancy on a CBR stream.

Proof. In the case of CBR, the buffer occupancy will be

changed at the rate of C(t)
R(t)
− 1, as shown in Figure 2.

Suppose the size of the downloaded chunk is V Ri + ∆,
where V Ri is the averange chunk size for chunks with video
rate Ri and ∆ is the deviation of the current chunk size
from the average chunk size. Note ∆ can be either negative

Rmin&

Rmax&

Reservoir&

Buffer&&

Occupancy&&

Bmax&

V
id
e
o
&

R
a
te
&

R2&

R3&

…
&

RmI1&

ΔB1&ΔB2& ΔBmI1&

B2& B3&B1& BmI1& Bm&

Cushion&

Figure 5: Both convergence time and number of
video rate switches depends on the buffer distance
between rates.

or positive. The scaling normalizes the V seconds contains
in a chunk by the ratio of its size and the average chunk size
in the selected video rate. Since R(t) = Ri, the normalized
video length of a chunk, i.e., the input of the normalized
buffer after downloading the chunk, would be:

V × V Ri + ∆

V Ri
=

V Ri + ∆

Ri
(4)

Since the capacity is C(t), it requires V Ri+∆
C(t)

seconds for

the chunk to be downloaded, which means the streaming
buffer depleted V Ri+∆

C(t)
seconds during the download. From

Equation 4, we know the input is normalized to V Ri+∆
Ri

.

Thus, the change of the normalized buffer occupancy would
be the input minus the output: V Ri+∆

Ri
− V Ri+∆

C(t)
. The

change rate of the normalized buffer occupancy would be:

V Ri+∆
Ri

− V Ri+∆
C(t)

V Ri+∆
C(t)

=
C(t)

Ri
− 1 (5)

Equation 5 shows that the change rate is the same as the
change rate of the actual buffer occupancy when download-
ing a CBR chunk. Thus, the normalized buffer occupancy
can effectively offset the buffer occupancy variation caused
by VBR chunk size variation. As a result, if we adapt the
video rate based the normalized buffer occupancy, instead of
the actual one, we can maintain all the properties mentioned
in the previous sections.

6. TRANSIENT BEHAVIOR
In practice, a rate selection algorithm needs to control the

transient behavior, including the convergence time and how
often the video rate switches. We now show how to control
transient behavior, and show that these two properties are
tradeoffs.
Controlling convergence time. If the capacity is con-
stant (C(t) = C), then our target buffer level is B∗, where
f(B∗) = C. The convergence time is how long it takes us to
reach target B∗ from our current buffer level. Let ∆k be the
buffer distance between rates Rk and Rk+1 according to the
rate map; i.e., ∆k = f−1(Rk+1) − f−1(Rk). It follows that
the smaller the buffer distances between video rates (i.e, the
“steeper” the rate map), the shorter the convergence time.
By picking the buffer distance between video rates in the

13

The Internet!
!

Bandwidth  
Throttle!

CDN 3!

CDN 2!

CDN 1!

Video  
Client!

Figure 6: The Experiment Setup.

rate map, we can control the convergence time. (See [6] for
details.)
Limiting how often we switch video rates. Although
smaller buffer distances between rates mean a faster conver-
gence time, it also means lower resistance to capacity varia-
tion and therefore increases how often we switch video rates.
For example, if the capacity fluctuates between Ri+∆R and
Ri−∆R every T seconds, the video rate will only stay at the
correct average value, Ri, if the buffer level does not cross
the “barriers” between adjacent rates.

This makes clear the tradeoff between faster convergence
time (i.e. small buffer distances) and less frequent video
rate changes (i.e. larger buffer distances). By expressing the
tradeoff, the algorithm designer can explore the design space
and optimize the rate map for the operating environment.

7. PRELIMINARY RESULTS
To compare the performance of the proposed buffer-based

algorithm with the current algorithm used in Service A,
we have our prototype video client, with our buffer-based
algorithm, streaming real video from Service A, using the
same methodology described in [5]. The router buffer size is
120kbit, enough to sustain 100% throughput for connections
with a 4-20ms RTT. Our client uses the rate map shown in
Figure 5, with a reservoir of 45 seconds and a cushion of 15
seconds.

We use the same bandwidth setting as in Figure 1(b):
the bandwidth starts out at 5Mb/s and then is throttled to
350kb/s after 25 seconds. The result is shown in Figure 7.
The solid lines show the buffer occupancy and playback rate
if we use our basic algorithm, and assume chunks are CBR
encoded. The dashed lines account for the fact that the
video is really VBR, and so our algorithm operates on the
normalized buffer occupancy as discussed in Section 5. In
both cases, the video rate converges to the highest video rate
quickly, since the buffer distance between the reservoir and
the target rate is relatively small. If we account for VBR,
the buffer converges even faster because this video happens
to start with larger-than-average chunk sizes.

When we throttle the bandwidth to 350kb/s, for the solid
line, the video rate steps down to 1750kb/s as the buffer
level is depleted, then all the way down to 235kb/s when
the buffer level dips into the reservoir. For the dashed line,
it takes more than 40 seconds to finish downloading the last
3000kb/s chunk. As a result, it drops directly to the lowest
rate, since the buffer has already dipped into the reservoir.
Neither case experiences rebuffering events. In contrast, the
current algorithm used in Service A would keep requesting
for an inappropriately high video rate after the bandwidth
has dropped and resulted in buffer underrun, as shown in
Figure 1(b).

These preliminary results demonstrate our prototype buffer-

0 10 20 30 40 50 60 70
Time (s)

0

1000

2000

3000

4000

5000

kb
/s

235
375
560
750

1050

1750

2350

3000

Video Playback Rate

Video Playback Rate
 (from Normalized Buffer)

0

20

40

60

80

100

B
uf

fe
r

(s
)

Buffer Occupancy

Normalized
 Buffer Occupancy

Figure 7: Preliminary Results.

based video selection algorithm with real streaming video.
More extensive trials are still needed to fully test the ap-
proach.

8. CONCLUSION
To the best of our knowledge, we are the first to propose a

video rate adaptation algorithm based solely on the playback
buffer. Most of the existing works depends the bandwidth
estimation to pick a video rate [5]. Some prior works used
the buffer occupancy as a feedback signal, but the main al-
gorithm was still based on capacity estimation [4, 8]. The
immediate benefit of our approach is to allow designers to
focus on optimizing the viewer’s video quality—maximize
the average delivered rate, converge quickly, avoid switching
rates too often—without worrying about rebuffering events.
In essence, we are benefiting from the well-known “separa-
tion of concerns” that naturally arises from layering: By
letting TCP find the fair share of the network capacity for
us, we can limit our scope to effective management of the
playback buffer.

9. REFERENCES
[1] S. Akhshabi et al. An Experimental Evaluation of Rate

Adaptation Algorithms in Adaptive Streaming over
HTTP. In ACM MMSys, 2011.

[2] S. Akhshabi et al. What Happens When HTTP
Adaptive Streaming Players Compete for Bandwidth?
In ACM NOSSDAV, June 2012.

[3] A. Balachandran et al. A Quest for an Internet Video
Quality-of-Experience Metric. In ACM HotNets-XI,
2012.

[4] L. De Cicco et al. Feedback Control for Adaptive Live
Video Streaming. In ACM MMSys, 2011.

[5] T.-Y. Huang et al. Confused, Timid, and Unstable:
Picking a Video Streaming Rate is Hard. In ACM IMC,
November 2012.

[6] T.-Y. Huang et al. Buffer-based rate adaptation for
http video streaming. Technical report, 2013.
http://goo.gl/mD1uM.

[7] Sandvine: Global Internet Phenomena Report.
http://www.sandvine.com/news/pr detail.asp?ID=312.

[8] G. Tian and Y. Liu. Towards Agile and Smooth Video
Adaptation in Dynamic HTTP Streaming. In ACM
CoNEXT, December 2012.

14

