
Open Transport Switch - A Software Defined Networking
Architecture for Transport Networks

Abhinava Sadasivarao* Sharfuddin Syed* Ping Pan*

Chris Liou* Andrew Lake† Chin Guok†

Inder Monga†

*Infinera Corporation †Energy Sciences Network
Sunnyvale, CA 94089 Berkeley, CA 94720

{asadasivarao, ssyed, ppan, cliou}@infinera.com {andy, chin, inder}@es.net

ABSTRACT
There have been a lot of proposals to unify the control and
management of packet and circuit networks but none have
been deployed widely. In this paper, we propose a simple
programmable architecture that abstracts a core transport
node into a programmable virtual switch, that meshes well
with the software-defined network paradigm while leverag-
ing the OpenFlow protocol for control. A demonstration
use-case of an OpenFlow-enabled optical virtual switch im-
plementation managing a small optical transport network for
big-data applications is described. With appropriate exten-
sions to OpenFlow, we discuss how the programmability and
flexibility SDN brings to packet-optical backbone networks
will be substantial in solving some of the complex multi-
vendor, multi-layer, multi-domain issues service providers
face today.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Circuit-switching networks; C.2.3
[Computer-Communication Networks]: Network Op-
erations—Network management

General Terms
Design, Standardization

Keywords
sdn; transport networks; optical networks; virtualization;
otn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HotSDN’13, August 16, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

1. INTRODUCTION
Significant advances in optical technologies, bit rates and

deployment of Optical Transport Network (OTN) [9] pro-
tocols have enabled transport networks to provide flexible
multiplexing and switching functions in addition to basic
data transport and survivability. In addition, transport net-
work elements are being supplemented with more intelligent
set of features for flexible management. The growth in traffic
volumes, changing traffic profiles and types of applications
has prompted service providers to rethink not only how to
engineer their IP and optical backbone transport optimally,
but also to ease their operational and management overhead.

In the Internet core, traditionally, the design approach
has been to place all the network functions within the IP
layer (routing, signaling, protection) and use static optical
trunks interconnecting these L2/L3 devices. This hop-by-
hop architecture of packet processing and forwarding can be
optimized significantly by taking advantage of the dynamic
transport capabilities offered by the state-of-the-art optical
network. In addition, service providers typically manage
their L3 networks and transport layer operations indepen-
dently.

In this multi-layer setup, provisioning bandwidth involves
multiple steps: provisioning transport circuits, configuring
interfaces and creating appropriate forwarding entries in the
L3 devices, and in the end, bridging the path to create an
end-to-end circuit. The distributed nature of the provision-
ing requires UNI and NNI signaling to help provision each
segment of the actual datapath. This approach adds com-
plexities to the transport control plane mechanisms (GM-
PLS [5]/MPLS [4]/MPLS-TP [6]).

The latest trends in application delivery architectures,
like cloud computing, not only aggregate the user traffic
but also create large data flows between consolidated data-
centers for state and data synchronization. The need for
cost and performance optimization including the need for
service providers to create new network services relevant to
the above application patterns is driving the requirements
for dynamic, multi-layer, multi-domain networking. Multi-

115

layer optimization, with applications such as dynamic router
bypass, not only has technology drivers, but also influences
CapEx economics. Even though the benefits of such ap-
proaches are well understood as well as protocols have been
created by the community - the complexity of existing pro-
tocols, vendor interoperability and lack of management tools
has prevented these applications from being deployed.

Software-Defined Networking (SDN), decoupling of the
data plane from control plane, has been discussed recently
[2] as a viable and simple approach to provide the required
functionality. The approach promises meeting the manage-
ability, flexibility, and evolvability requirements in large ser-
vice provider networks. Although, much of SDN efforts to-
day are concentrated on networks at Layer 2 and above.
Many vendors have added OpenFlow capabilities to their
Gigabit Ethernet switches. There have also been efforts in
building hardware architectures [10] and switch fabrics for
efficient OpenFlow enabled network devices [1]. OpenFlow
based enterprise wireless network management has also been
proposed [12]. All these are Ethernet/IP centric.

In this paper we propose a virtual abstraction of the trans-
port element, Open Transport Switch (OTS), that integrates
within a SDN framework and offers simple OpenFlow proto-
col based control of the packet-optical cross-connect (XCON)
and bandwidth allocation capability of the optical element.
In addition, we showcase a prototype implementation of this
abstraction and deployment at a test network in Long Island.
We show SDN as a viable approach for building wide-area
packet-optical networks.

2. ARCHITECTURE
The central approach is to abstract the interface between

packet and circuit layers, leading to virtualization of the
transport layer. Let us consider a typical multi-layer ser-
vice provider network (Fig. 1). The network is segmented
into various layers each running their own control plane
for routing and signaling. Each layer may have equipment
from different vendors. Multi-layer integration becomes a
challenge as 1) GMPLS protocols for multi-layer require
UNI relationship which hides each layer’s topology (Fig.
2) 2) Multi-vendor implementations of GMPLS protocols
and path-finding are fairly different with interoperability at
a least common denominator of functionality 3) Different
EMS/NMS systems are ultimately used to manually man-
age each vendor, leading to a static, pre-planned network
solution.

On the other hand, the applications at the edges of these
networks require high-bandwidth paths for exchange of data,
for example data center interconnects. These connections
require connectivity and varying amounts of bandwidth, ir-
respective of the protocols used to transport the information.
The underlying transport infrastructure could be packet/M-
PLS, OTN or MPLS-TP. If the resources viz. ports, links
and bandwidth can be virtualized with generic abstractions,
the applications would need to program this virtual over-
lay network of devices interconnected by links (Fig. 1).
The network then truly becomes open, programmable and
flexible.

Figure 1: Multi-Domain, Multi-Layer

Figure 2: Service Provider Transport Network

Open Transport Switch (OTS) is an OpenFlow [11] en-
abled light weight, virtual switch that represents a trans-
port network element (NE). Applications can now use the
northbound API of a SDN controller to request provisioning
of circuit cross-connects or aggregation of packet interfaces
into optical trunks with the required capacity and QoS pa-
rameters, if needed. This gives service providers the abil-
ity to create a unified view of the network (Fig. 3). The
SDN Controller offers the abstract topology to smart ap-
plications enabling them to perform optimal path computa-
tion, provisioning and monitoring based on their constraints.
Applications not capable or interested in their own path-
computation can request the bandwidth capacity and QoS,
outsourcing the end-to-end path computation to a special-
ized carrier SDN controller or leverage an application similar
to PCE, that can match the request for the end-to-end path
across multiple domains/layers to meet the requested SLA.

Figure 3: SDN Enabled Transport Network

116

Fig. 4 shows the building blocks of OTS consisting of the
following components:

Discovery Agent : is responsible for discovery and registra-
tion of SDN-controlled resources. It appropriately notifies
the Controller dynamically as and when the NE and/or the
Network state changes (for example, link up/down). This
typically happens via the switch OFPT_FEATURES_REQUEST,
OFPT_FEATURES_REPLY and other related Modify Statemes-
sages [11]. How the discovery agent retrieves this informa-
tion from the NE is upto the implementation or via propri-
etary vendor interfaces.

Control Agent : is responsible for monitoring and propa-
gating notifications and alarms to the Controller, allowing
network admins to monitor performance, faults and alarms
in the network. These include change notifications for any
new equipment/facilities provisioned/deprovisioned. Loss-
of-light, Loss-of-sync, Loss-of-signal are some examples of
alarms. Faults could range from link failures to equipment
failures. (Note that some of equipment related alarms could
be reported by both the Control and Discovery agents).
This way, the controller’s state is asynchronously (or syn-
chronously) kept consistent with the state of the underlying
network.

Dataplane Agent : is responsible to program the NE dat-
apath to create/update/release circuits/LSP. The datapath
entities could be Time slots, XCONs or MPLS labels. This
programs the underlying network infrastructure and helps
complete the datapath. The controller sends appropriate
OpenFlow messages (similar to OFPT_FLOW_MOD message).
Again, how the Dataplane Agent programs the particular
NE database/forwarding tables could be through vendor
specific interfaces.

The northbound interface from OTS to the Controller is
OpenFlow 1.0 [11]. Given that OTS is virtualizing transport
NE, much of the Ethernet centric OpenFlow messages are
not used. With addition of extensions (see sections 2.1 & 3),
the Controller can send requests to OTS to provision/release
transport circuits.

OTS being a virtual switch has multiple advantages:

• OTS is minimally stateful: All the alarms, stat coun-
ters, forwarding table entries are stored in the NE
database and could be retrieved on-demand. OTS
need not maintain these managed objects. This en-
ables OTS to be light on the use of on-switch resources.

• OTS is lightweight and portable: Given that most of
the state is maintained by the NE, if the southbound
interface from the OTS agent to the NE is flexible to
be implementation and/or vendor specific, the OTS
abstraction could be made to run recursively on a stan-
dalone server or EMS or any other machine which can
communicate and maintain an active OpenFlow ses-
sion with the Controller.

• OTS Southbound Interface: The southbound interface
from the OTS agent to the NE could also be standard
hardware abstraction layer allowing plug and play of
multi-vendor transport elements that conform to that
interface.

• Multiple OTS agents could be run on the same NE.
These different instances can be used to hard-partition
the ports/wavelengths present on the NE and man-
age their respective resources only, thus supporting a
multi-tenant architecture. (See section 3.2)

Figure 4: OTS Building Blocks

2.1 OpenFlow Extensions
OpenFlow [11] only addresses packets, thus is L2/L3 cen-

tric as of today. With the need to control optical trans-
port equipment with the same software controller, the pro-
tocol currently needs to incorporate circuit switching con-
structs like time-slots or cross-connects. We propose extend-
ing OpenFlow with messages that enable provisioning/re-
lease of circuits. In order to virtualize the network, we use
opaque, MPLS-style labels to represent links i.e. a sequence
of ingress/egress ports. We also indicate the style of circuit
that needs to be setup (see section 2.2). Along with these,
the message includes service rate and latency parameters
along with provisioning actions (ADD_XCON and REM_XCON).
For now, we assume the type of service/traffic to be Ether-
net. However, the protocol could be extended to OC-192,
OTU3, Fibre Channel and so on.

struct ofp_id {
// Host ID - DCN IP Address of the Node
uint32_t node;

// Flow ID maintained by the Controller
uint32_t label;

};

struct ofp_xconn {
struct ofp_header header; // OFPT_VENDOR
uint32_t vendor; // Vendor ID

uint8_t pad[4];

struct ofp_id src; // Source of the flow
struct ofp_id dst; // Destination of the flow

uint32_t rate; // Rate of service (Mbps)
uint8_t latency; // Latency - 0 to 255
uint8_t style; // Implicit = 1 Explicit = 2

// Unidirectional = 1 Bidirectional = 2
uint8_t directional;

uint8_t pad_extra[1];

// ADD_XCONN = 0xFF REM_XCONN = 0xFE
struct ofp_action_header actions[0];

};
OFP_ASSERT(sizeof(struct ofp_xconn) == 40);

117

2.2 Modes of Operation
We already described how SDN for transport can pro-

vide an alternative to inter-working UNI/NNI protocols as-
sociated with distributed routing and signaling. Integrating
OTS into today’s large service provider transport networks
may become a very complex exercise (we are infact trying
to make transport networks more flexible and manageable!).
Taking this into account, we propose two modes of operation
to allow smooth integration of, and transition to transport
SDN.

Figure 5: Transport SDN Explicit Mode

2.2.1 Explicit Mode
Fig. 5 depicts Explicit Mode. In this mode, the Controller

has the knowledge of every NE in a particular domain. Af-
ter optimal/constrained path computation, provisioning a
circuit becomes a exercise of the Controller programming
all the transport devices along the path in a hop-by-hop
manner across single or multiple transport domains.

2.2.2 Implicit Mode
Fig. 6 depicts Implicit Mode. In this mode, the Con-

troller is aware of only the edge nodes in every transport
domain (Ethernet/MPLS/OTN). Within the domain, the
existing routing and signaling control plane can be used to
setup path. The Controller sends provisioning request, spec-
ifying the source and destination to the SDN-aware nodes
at the edges of the network. The source node then trig-
gers MPLS/GMPLS control plane to setup the circuit. The
Controller being aware of NE type and capabilities, stitches
these segments across multiple domains to form an end-to-
end circuit. Implicit mode adds great flexibility in gradu-
ally incorporating OTS architecture into existing transport
networks. Without disrupting current deployments, service
providers may choose to continue using intra-domain con-
trol plane while still being SDN aware. From a Controller’s
perspective, this edge-to-edge intra-domain path appears as
a single network fabric of a given capacity. Service providers
depending on the necessary management effort, can gradu-
ally make all the NEs SDN capable, moving to an explicit
deployment model.

Note that these are not the only two feasible models in
Transport SDN. In a given network, it is possible to have
SDN circuits created with mix of implicit and explicit modes.
This prototype demonstrates the larger concept.

Figure 6: Transport SDN Implicit Mode

3. IMPLEMENTATION
Section 2 described the building blocks of OTS. The pro-

totype OTS implementation only has the Dataplane agent
functionality built in. Rest of the subsystems will be inte-
grated in the future.

3.1 Controller
On-Demand Secure Circuits and Advanced Reservation

System (OSCARS) [3] is a provisioning system developed
by Energy Sciences Network (ESnet). It provides multi-
domain, high-bandwidth, virtual circuits that guarantee end-
to-end network data transfer performance. Today, OSCARS
virtual circuits carry about fifty percent of ESnet’s annual 60
petabytes of traffic, supporting large scale sciences such as
High Energy Physics, Climate, Computational Astrophysics,
and Biological and Environmental Research.

The OSCARS system in this instance acts as a typical
SDN controller, albeit with several specific extensions (see
2.1) to leverage the transport OpenFlow capabilities of the
OTS. The initial handshake between OSCARS and OTS in-
volves the characteristic exchange of OFPT_HELLO followed by
OFPT_FEATURES_REQUEST and OFPT_FEATURES_REPLYmessages
[11]. However, OpenFlow extension messages as described
above are used for optical specific information.

3.2 OTS Agent - Virtual Switch
The prototype OTS implementation is coupled with the

Infinera DTN [8], which embodies the optical transport NE.
The DTN has fully flexible OTN, SONET/SDH and Ether-
net add/drop capabilities with OTN [9] line side wavelength
Optical Carrier Groups (OCG), and includes an embedded
GMPLS control plane for end-to-end routing and provision-
ing.

To determine the tributary ports and line-side wavelengths
to be used, a simple manually edited configuration file is ref-
erenced. In the future, this will be part of automated topol-
ogy learning and could also be managed by OF-Config set
of protocols. Given that these are TDM circuits, the incom-
ing traffic payload is digitally wrapped/containerized into
OTN optical channels and transported. There is no header
or label lookup done on incoming traffic, and therefore the
configuration file itself is sufficient as a simple flow table. In
addition, the configuration file can specify ”slices” of an NE
that can be virtualized into separate tributary port/line side

118

wavelength resources controlled by distinct OTS instances.
This allows service providers to sell wholesale bandwidth to
multiple third party/tier-2 providers, who can only control
their portion of the equipment/resources.

4. RESULTS AND OBSERVATIONS

4.1 Network Setup
We used ESnet’s Long Island Metropolitan Area Network

(LIMAN) to demonstrate SDN control of the transport op-
tical backbone by combination of OSCARS controller and
OTS. Fig. 7 shows the setup. DTN nodes A and B are SDN
aware and the two embedded OTS agents offer an abstracted
view of the NEs. These nodes connect to the ESnet pro-
duction network via pair of optical fibers lit via a DWDM
system. These nodes are interconnected by a direct fiber
connection as well. Hosts, each with 40G Ethernet inter-
faces, connect to each of these transport SDN nodes. Using
OpenFlow, we setup two 40G circuits between the nodes A
and B, one circuit over the direct fiber link and the other
over the set of production nodes. The fiber path traversed
by the optical circuit is transparent to the end-hosts. The
hosts see each circuit as a direct one-hop IP link connecting
each other.

Figure 7: Network Setup

4.2 Measurements
The measurements were done for a 40GbE circuit reser-

vation from Node A to B (Fig. 7). This only includes the
time taken by the Controller to compute the path. The
time can be further optimized, by leveraging faster process-
ing platforms for the Controller. This metric was specifically
chosen so we could compare the time involved in setting up
the path using SDN Controller and contrast it with a dis-
tributed signaling approach. We take note that the time
to configure each NE to setup a circuit remains the same
irrespective of the centralized SDN or distributed signaling
approach taken to communicate the cross-connect action.

Mode Min Max Mean Std. Dev
Implicit 2 7 2.84 0.98
Explicit 2 5 2.95 0.87

Table 1: Circuit path computation latencies (s)

Given a fairly simple topology, higher latency observed
is for the first circuit setup request. For the first request,
OpenFlow session needs to be established with the OTS
agents and hence the higher latency. Once the session is
active, the time delay just involves the Controller comput-
ing the required path based on the existing topology. Since
this experiment is a prototype, most of the topology and
node/link information was statically configured. In the fu-
ture, OTS Discovery agent is responsible to provide the Con-
troller with the necessary topology and network resource in-
formation. This will be planned within the next phase of
work.

5. SCOPE FOR FUTURE WORK
There are several additions to OTS that could provide full

featured network virtualization capabilities. From an imple-
mentation perspective, we wish to fully integrate the Mon-
itoring and the Discovery agents into OTS for fault/alarm
propagation and port/link discovery respectively. Currently
for this prototype implementation, the ports, optical chan-
nels and links are hand-configured through a configuration
file. But we would need a dedicated info model, similar to
Open vSwitch Database [7], to house the configuration in-
formation and advertise it to the Controller. This allows the
Controller to discover the complete topology depending on
the mode of operation (Implicit/Explicit). JSON encoded
data could be used to exchange the extracted topology be-
tween OTS and the Controller.

From the point of view of standardization, other impor-
tant functions that are inherent to core transport networks
have to be factored in, for example, protection and restora-
tion. Typically, these are part of the control plane (MPLS
FRR or GMPLS restoration).Thorough studies need to be
done to determine if these require explicit incorporation
within OpenFlow protocol, or the embedded software layer
on the transport NE can take care of that function. Fur-
ther, if domain specific parameters (like optical impairments,
OSNR, channel power levels etc) are needed, these need not
be a part of the protocol itself. Instead, a management in-
terface like OF-Config or NETCONF can be used to manage
these.

6. CONCLUSION
The SDN approach has been applied successfully to the

optical transport network through the instantiation of a vir-
tual transport switch architecture and abstraction described
in this paper. This approach has been shown as practical
through implementation and demonstration over a metro-
area network. This architecture can easily be extended from
optical transport to converged packet-optical transport ar-
chitectures including MPLS or MPLS-TP core backbones
as well. Including the transport network within the SDN
paradigm provides compelling technical and economic ad-
vantages to large service providers looking to efficiently en-
gineer, manage and evolve their networks to meet the ’big
data’ challenges and cater to new on-demand ’cloud’ applica-
tions. The transport infrastructure can now be made open
and uniformly programmable, enabling multi-layer, multi-
domain and multi-vendor optimization in both core and metro
networks.

119

Network virtualization through OTS enables building an
overlay network that applications can program to meet their
specific service requirements irrespective of underlying pro-
tocol or encapsulation layers (L1/L2/L3 or OTN/MPLS/IP)
used. Efforts are already underway within Open Network-
ing Foundation (ONF) to build consensus around the stan-
dardization of transport extensions to OpenFlow (Optical
Transport WG). We believe that these extensions will be
an important element in control and management of packet-
optical architectures within the core of the network.

7. REFERENCES
[1] Casado, M., Koponen, T., Shenker, S., and

Tootoonchian, A. Fabric: a retrospective on
evolving SDN. In Proc. of HotSDN (2012).

[2] Das, S., Parulkar, G., and McKeown, N. SDN
Based Unified Control Architecture. In Photonics
Conference (IPC), 2012 IEEE (2012), pp. 778–779.

[3] Guok, C., Robertson, D., Chaniotakisy, E.,

Thompson, M., Johnston, W., and Tierney, B. A
User Driven Dynamic Circuit Network
Implementation. In GLOBECOM Workshops, 2008
IEEE (2008), pp. 1–5.

[4] IETF. RFC3031: Multiprotocol Label Switching
Architecture, January 2001.

[5] IETF. Generalized Multi-Protocol Label Switching
(GMPLS) Architecture, July 2004.

[6] IETF. RFC6215: A Framework for MPLS in
Transport Networks, July 2010.

[7] IETF. ovsdb-draft-00: The Open vSwitch Database
Management Protocol, August 2012.

[8] Infinera. DTN
http://www.infinera.com/products/dtn.html.

[9] ITU. G.709: Interfaces for Optical Transport
Network, Feb 2012.

[10] Mogul, J. C., and Congdon, P. Hey, you darned
counters!: get off my ASIC! In Proc. of HotSDN
(2012).

[11] Pfaff, B. OpenFlow Switch Specifications 1.0.0, Dec
2009.

[12] Suresh, L., Schulz-Zander, J., Merz, R.,

Feldmann, A., and Vazao, T. Towards
programmable enterprise WLANS with Odin. In Proc.
of HotSDN (2012).

120

