
EtherPIPE: an Ethernet character device for network
scripting

Yohei Kuga
Keio University

Takeshi Matsuya
Keio University

Hiroaki Hazeyama
NAIST

Kenjiro Cho
IIJ

Osamu Nakamura
Keio University

ABSTRACT
The UNIX command tools are designed to combine sim-
ple generic commands to accomplish various complex tasks.
Meanwhile, in network programming, we often end up writ-
ing many similar functions and packaging functions of all
network layers to build an application. In this paper, we
propose EtherPIPE, a character network I/O device, that
allows the programmer to access network traffic data as a
file through UNIX commands. By setting a UNIX pipe “|”
from or to EtherPIPE’s output or input with UNIX com-
mands, packets can be easily processed, executing functions
such as packet filtering, packet capturing, generating arbi-
trary packets, and rewriting header information. We devel-
oped a prototype of EtherPIPE as a character device driver
for a commodity FPGA card. This paper argues for use
cases of the EtherPIPE, and discusses enhanced formats of
character devices for easier network scripting.

Categories and Subject Descriptors
C.2.3 [Network Operations]: [Network management]; D.4.4
[Communications Management]: [Network communica-
tion]

Keywords
Network I/O; Ethernet; Shell script; Software-Defined Net-
working; Device driver

1. INTRODUCTION
In this paper, we argue for the abstraction of a network in-

terface and packet streams on an OS. Network processing is
much more difficult than file processing on an OS. The ques-
tion “Why cannot we process packets by UNIX shell com-
mands as readily and interactively as we can process files?”
is our simple motivation.

One of the reasons why network I/O is usually imple-
mented as a network device is the need to access different

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2178-5/13/08 ...$15.00.

layers in a packet such as the Ethernet frame, the IP packet
and the UDP/TCP datagram.

The BSD socket is one abstraction method on network
devices to access raw packets, and behaves as a glue or a
buffer to read / write a payload as characters. The BSD
socket provides an interface to control packets with flexibil-
ity and good performance, however, we have to obey the
programming manner of the BSD socket that forces us to
write a long passage of code for accessing raw packets. Of
course, we can inject packet streams easier by using a vir-
tual network device[1] or one of several libraries to access raw
sockets[2]. These APIs provide easy access to raw socket but
still require programming specific to networking. Following
the characteristics and friendliness of these APIs, we would
like to provide a simple network I/O for network process-
ing on an OS in the same manner of device files for storage
devices.

We propose the EtherPIPE network scripting framework
in this paper. EtherPIPE provides a character device inter-
face for a network device. A network device on EtherPIPE
is abstracted as a device file on an OS, and packets on the
network device are transformed to files or streams on the
device file. EtherPIPE also serves as truly simple input /
output functions for scripting packets like file processing on
a UNIX command line. In EtherPIPE’s network scripting,
various packet processing can be achieved by I/O redirec-
tion through standard input (<), standard output (>) and
pipe (|). We believe that the EtherPIPE network scripting
framework brings a more flexible / lightweight programming
paradigm that allows us to develop a packet processing ap-
plication for a Software Defined Network(SDN).

As a proof of concept, we developed EtherPIPE as an
Ethernet device driver for a commodity FPGA network card
on Linux†. Combining EtherPIPE with hardware offloading
functions of the FPGA or other network processors, more
powerful network scripting or network processing can be
achieved.

The rest of this paper is composed of the following sec-
tions; Section 2 discusses the primitive functions on network
processing and defines primitives that must be supported in
the EtherPIPE. Section 3 shows our concept of the network
scripting that we try to achieve through the EtherPIPE. In
Section 4, we explain device formats and interfaces of the
EtherPIPE. Section 5 shows our prototype implementation.
We present examples of applications by EtherPIPE network
scripting in Section 6 and discuss extensions and limitations

†EtherPIPE, https://github.com/sora/ethpipe

61

of EtherPIPE in Section 7. After referring to related work
in Section 8, we conclude this paper in Section 9.

2. PRIMITIVE FUNCTIONS FOR PACKET
PROCESSING

As a network scripting framework, primitive network pro-
cessing functions should be provided by EtherPIPE as com-
mands on an OS. Before designing the EtherPIPE network
scripting framework, we explore the primitive functions to
program network applications as shell scripts, and try to
define a primitive function set. We focus on network ap-
plications on data-link layer as a first step. Note that we
call all of Ethernet frames, IP packets and / or TCP/UDP
datagrams, “packets” in the following sentences. We use the
terms“Ethernet frames”, “IP packets”and“TCP/UDP data-
grams” when we would like to distinguish the data format
on each layer.

Typical network applications on the data-link layer are as
follows, packet generator, packet capture tools, forwarding
and header modification. These applications can be com-
posed of five primitive functions 1) packet generation (packet
sending), 2) packet capturing (packet receiving), 3) forward-
ing, 4) packet filtering, and 5) header modification.

Packet Sending and Receiving
All network equipment requires the functions of packet send-
ing and / or packet receiving at the minimum. Usual TCP
connections employ both packet sending and packet receiv-
ing, in other words, an application uses read(2) and write(2)

on a socket file descriptor for a TCP connection.
Packet capture tools such as tcpdump[3] or WireShark[4]

require only the packet receiving function. On the other
hand, packet generator applications, such as pktgen[5] or
scapy[6], are mainly composed of the packet sending func-
tion.

OpenFlow[7] defines Packet-in and Packet-out functions.
Various OpenFlow libraries provide Packet-in and Packet-
out APIs. Using these APIs, an open flow controller can
send and receive arbitrary packets from OpenFlow switches.

Filtering
Filtering function is required by a firewall, port mirroring or
network injector. Barkley Packet Filter (BPF)[8] OpenBSD
Packet Filter (PF)[9] or IPFW[10] are supported in various
BSD Operating Systems.

Forwarding
Repeaters, switches and routers require a forwarding func-
tion to interconnect an input port and an output port. Sev-
eral OSes support the forwarding function in the kernel. Re-
cently, Linux brctl(8) and Open vSwitch[11] provide more
flexible forwarding control.

Header Modification
Header Modification is a key function to achieve forwarding,
routing or encapsulation. Filtering tools on various OSes
or Flow-Mod action of Open vSwitch enable users to mod-
ify protocol headers. Usually, a header modification func-
tion is hidden in the kernel space. The RUMP (Runnable
Userspace Meta Program) kernel of NetBSD[12] provides a
header modification environment in the user space.

stdin grep
tr

awk
...

tee
wc

netcat
...

file

file

stdoutpipe

packet
input

packet
outputethpipe ethpipe

Figure 1: Network scripting

Table 1: Translate functions from packet processing
to Ethernet character device
Packet processing Ethernet character device
receive packets read from input device
send packets write to output device
forward copy from inputs to outputs
filter search data pattern
modify headers translate characters

3. ETHERPIPE NETWORK SCRIPTING
We define “network scripting” to be processing packets

in the UNIX shell interface or shell programming. In this
section, we explain the design of the EtherPIPE network
scripting framework to achieve the basic functions for net-
work processing mentioned in Section 2 on the UNIX shell
interface.

Table 1 shows the correspondence between basic functions
and commands on the UNIX shell interface. In the UNIX
shell programming framework, an application can be written
by a chain of device files, files, and commands, concatenated
by redirection expressions, using stdin (<), stdout (>) and
pipe (|).

To handle packets in the UNIX shell programming man-
ner, input and output for packets must be expressed in char-
acter devices that can be connected by stdin and stdout.
Character device type network I/O uses the read system call
to a device file for packet receiving, and the write system call
to send packets to the device file.

The forwarding function can be simply achieved by copy-
ing data from the output of a device file to the input of
the another device file. Also, redirection and concatenating
commands will provide forwarding packets to multiple ports.

Each packet on a character device type network I/O is
a simple string, therefore, a combination of grep(1) and
tr(1) will give a filtering function and a header modification
function. Using regular expressions in grep(1) or sed(1),
we will describe a complex search pattern in one liner shell
script.

Figure 1 shows an overview of network scripting. Con-
catenating character device type network I/O and shell com-
mands, we can process packets as files in a UNIX shell in-
terface. Of course, the network scripting inherits the UNIX
shell programming manner, a custom network scripting com-
mand can be reused in another network script. Through
our network scripting, interactive processing against net-
work streams can be realized.

62

/dev/
|-- ethpipe/

|-- 0 # Shell IF port 0
|-- 1 # Shell IF port 1
|-- r0 # Raw IF port 0
|-- r1 # Raw IF port 1

Figure 2: EtherPIPE device names

[DST_MAC] [SRC_MAC] [Eth_Type] XX XX XX XX ...
[DST_MAC] [SRC_MAC] [Eth_Type] XX XX XX XX ...
[DST_MAC] [SRC_MAC] [Eth_Type] XX XX XX XX ...

Figure 3: Shell interface

4. DESIGN OF DEVICE FORMATS
The EtherPIPE device tree and its name space are shown

in Figure 2. For simplicity, we consider a case where only
one multi-port network card is inserted into a computer. We
locate a network device in /dev as is the case with other de-
vices. Therefore, EtherPIPE provides abstracted character
device files under /dev/ethpipe/. Each physical port on a
network card is labeled as an independent device such as
/dev/ethpipe/0 or /dev/ethpipe/1.

EtherPIPE creates two device interfaces at each physical
port; one is the shell interface and the other is the raw
interface. The shell interface is designed to access packets
by using ASCII for network processing on a shell. The device
name is described by only port number in /dev/ethpipe/.

On the other hand, the raw interface enables to access
packets in a binary format for high-bandwidth network pro-
cessing. The device name on the raw interface is labeled
with ’r’ + port number. For instance, physical port ’0’ and
’1’ can be described as in Figure 2.

4.1 Shell interface
The shell interface is used for network scripting in shell.

Figure 3 presents the format of the shell interface. Pack-
ets are presented in ASCII, one packet per line and Ether-
net header fields and payload in hexadecimal notation are
separated with “space” characters by the kernel driver. Us-
ing the shell interface, we can parse packets by traditional
command-line tools.

This shell interface on EtherPIPE is very simple, however,
two alternatives of ASCII expression are considered. One
is expressing MAC addresses and IP Addresses in ASCII,
the other is expressing all protocol headers in ASCII. Of
course, adopting these expressions on EtherPIPE will give
more control to network scripting, these expressions sacrifice
processing time, data size and overhead on kernel drivers.
Considering these trade-offs on ASCII expression, we take a
simple ASCII expression described in Figure 3.

4.2 Raw Interface
The raw interface is used for network processing in a high-

bandwidth network connections. Figure 4 shows the format
of the raw interface. This interface has metadata that in-
dicates a hardware time stamp, a frame length, a five-tuple
hash and Ethernet frame data. All EtherPIPE metadata

+----------------------------+
| Magic code (2 Byte) |
+----------------------------+
| Frame length (2 Byte) |
+----------------------------+
| |
| Hardware timestamp |
| (8 Byte) |
| |
+----------------------------+
| Five-tuple hash |
| (4 Byte) |
+----------------------------+
| Ethernet frame data |
| ... |
+----------------------------+

Figure 4: Raw interface

are computed on network hardware to support network pro-
cessing in the user space.

The hardware time stamp is described in a 64-bit counter
value taken when the head of a packet arrives at a net-
work hardware. Wireshark[4] and its capture format as
PcapNG[13] support a nanosecond time stamp with NIC
hardware counters. We use the same 64-bit time stamp to
convert from the EtherPIPE raw format to the PcapNG for-
mat easily.

The five-tuple hash is a hash value of <source IP ad-

dress, destination IP address, protocol number,

source port number, and destination port number> for
the high throughput packet processing. Network processing
often uses five-tuple hash values for identifying unique IP
flows on routers, firewalls and load-balancers.

5. PROTOTYPE
We developed a prototype of EtherPIPE as a character de-

vice driver for a commodity FPGA network card on Linux,
and implemented almost all of the EtherPIPE primitive func-
tions. The current prototype implementation does not per-
form at high speed because it is just for a proof of concept
with a single TX/RX buffer on the FPGA. We will improve
the performance in the next prototype. However, the con-
tribution of this paper is just to show a proof of concept.

We support two FPGA cards, the LatticeECP3 versa kit[14]
and the NetFPGA-1G[15]. The Lattice ECP3 versa kit has
two 1000BASE-T interfaces and one PCI Express interface.
NetFPGA-1G has four 1000BASE-T interfaces and one PCI
interface. Both FPGA cards have multiple 1000BASE-T
Ethernet ports, therefore, they can be used to test the for-
warding case by EtherPIPE network scripting.

6. APPLICATIONS
This section shows examples of network scripting by Ether-

PIPE. Mainly, we explain the examples of primitive func-
tions mentioned in Section 2.

6.1 Packet capture and generation

Command 1: packet generation
$ cat packet.dump > /dev/ethpipe/r1

Command 2: packet capture
$ cat /dev/ethpipe/r0 > packet.dump

63

/dev/ethpip/0 /dev/ethpip/1

Port0 Port1

PCI Bus

FPGA

read() write()

Ethernet frame

Linux

packet processing

Figure 5: prototype

Command 3: decapsulating Ethernet header and store IP packets
$ cut -d’ ’ -f4- /dev/ethpipe/0 > ip-packets.dump

Command 4: packet capture with PcapNG format
$ ethdump < /dev/ethpipe/r0 > dump.pcapng

Packet monitoring or packet analysis often employs tcp-
dump[3] or WireShark[4] to store packets in Pcap format or
PcapNG format files. EtherPIPE is suited to capture pack-
ets or to generate packets from Raw and Shell interface.

Command 1 shows an example to generate (replay) pack-
ets from Raw interface. Simply reading a Raw format file by
cat(1) and redirecting stdout to the raw interface to Port 1,
packets will be sent through Port 1.

Command 2 describes packet capturing shell scripting. In
contrast to Command 1, the packet capturing scripts redi-
rects the raw interface to a file.

Command 3 removes the Ethernet header of each packet
from Port 0 and stores the IP packets into a file by redirec-
tion of stdout. Because of the shell interface of the charac-
ter device (/dev/ethpipe/0), EtherPIPE enables cut(1) to
separate the Ethernet header from a packet.
ethdump in Command 4 is our original shell command to

store packets in the PcapNG format with hardware offload-
ing of a FPGA network card. Through ethdump, nanosecond
accuracy time stamp will be contained in each PcapNG for-
mat packet.

6.2 Mac address filtering

Command 5: filtering dstmac
$ awk ’$1=="001122334455"{print $0}’ \
< /dev/ethpipe/0 > /dev/ethpipe/1

Command 5 forwards packets from Port 0 to Port 1 on the
network interface card only when the destination MAC ad-
dress of a packet matches 00:11:22:33:44:55 by gawk(1).

6.3 decap and encap

Command 6: VLAN tagging
$ sed -e ’s/^\([^]* \)\{2\}/&8100 00 01 /’ \
< /dev/ethpipe/0 > /dev/ethpipe/1

Command 7: VLAN untagging
$ sed -e ’s/8100 00 01 //’ \
< /dev/ethpipe/0 > /dev/ethpipe/1

Command 8: VLAN translation
$ sed -e ’s/8100 00 02 /8100 00 01 /’ \
< /dev/ethpipe/0 > /dev/ethpipe/1

Command 3 decapsules of Ethernet header from a packet.
802.1Q VLAN operation can be described by sed(1); VLAN
tagging in Command 6, VLAN untagging in Command 7 and
VLAN translation in Command 8 respectively.

6.4 Port mirroring and Forwarding

Command 9: Port mirroring
$ cat /dev/ethpipe/0 \
| tee /dev/ethpipe/1 > /dev/ethpipe/2

Command 10: forwarding
$ echo ‘arp -an | grep "eth1" | cut -f4 -d" "‘ \
| sed -e ’s/://g’ -e ’s/\ /\\\|/g’ > eth1.txt; \
grep -i ‘cat eth1.txt‘ < /dev/ethpipe/0 > \
/dev/ethpipe/1

Port mirroring can be composed of chains of tee(1) and
the shell interfaces of EtherPIPE like Command 9. The
example of Command 9 mirrors received packets from Port 0
to Port 1 and Port 2. Adding a set of tee(1) and pipe (|),
the number of the destination ports can be extended.

As with Command 5, Command 10 forwards packets ac-
cording to the ARP table entries. As a feature of the UNIX
shell programming, Command 10 is described in two lines
that are separated by “;”. In actual usage, a shell script for
ARP entries of each interface will be made.

6.5 Overlay tunneling

Command 11: L2 over TCP tunneling
[192.168.0.1] $ nc -l 9999 < /dev/ethpipe/0 \
> /dev/ethpipe/0
[10.0.0.1] $ nc 192.168.0.1 9999 \
< /dev/ethpipe/0 > /dev/ethpipe/0

Command 12: ssh tunneling
$ cat /dev/ethpipe/r0 \
| ssh sample.com "cat >/dev/ethpipe/r0"

Several types of overlay tunneling can be described in
EtherPIPE. In Command 11, L2 over TCP tunnel is achieved
by nc(1). Inc(1) of the 192.168.0.1 node (the first line)
reads packets from Port 0 and encapsulates read packets into
a TCP (port 9999). In the second line, 10.0.0.1 node con-
nects to 192.168.0.1 TCP port 9999, decapsules packets,
and throws decapsulated packets into port 0 of 10.0.0.1

node.
On the other hand, Command 12 forwards captured pack-

ets to sample.com through ssh(1). This example shows a
unidirectional ssh tunnel. If a bidirectional ssh tunnel is re-
quired, the same setting should be configured on sample.

com.

7. DISCUSSION
In this section, we describe the limitations of the current

EtherPIPE design and its implementation, and discuss the
extensions to EtherPIPE.

7.1 Performance
The current prototype hardware does not perform at high

speed, and is not suitable for evaluation. Thus, we eval-
uate the performance of general network scripting with a
dummy driver. There are two major factors. One is mem-
ory access throughput because entire packets are passed be-
tween UNIX commands through Standard I/O. The other

64

Table 2: Measuring Shell command-based packet proceedings using dummy driver
dummy driver (frame size: 64B) throughput (MB/s) throughput / 1GE line-rate
capture∗ 1,097 11.52
MAC address filtering (one rule)† 833 8.75
MAC address filtering (five rules)‡ 184 1.93
decap ethernet header§ 8 0.08
∗ cat /dev/ethpipe > dump
† grep ”̂ 002222222222” /dev/ethpipe > dump
‡ grep ”̂ 001111111111|ˆ002222222222 ... ˆ005555555555” /dev/ethpipe > dump
§ cut -d’ ’ -f4- /dev/ethpipe > dump

1GE line-rate (excluded Ethernet preamble and Interframe Gap): 95.24 MB/s
CPU: Intel Core i5 760 2.80 GHz

is character-based processing (e.g., string matching) used
in UNIX commands. We have developed a dummy device
driver for EtherPIPE. When reading from the device, the
driver returns a dummy shortest (64 byte) Ethernet frame
data pre-populated in the device driver. When writing to
the driver, the driver simply copies the data into a buffer in
the driver. The driver does not take it into account the tim-
ing constraints of the Ethernet specification (e.g., interframe
gap). The measurements were performed on a PC with Intel
Core i5 760 2.8 GHz and ramdisk (tmpfs).

Table 2 shows the throughput of typical applications of
network scripting using the dummy driver. The results show
that simple packet capturing by cat(1) achieves more than
10 Gbps, but header rewriting by grep(1) and cut(1) is much
slower.

Modern PCs have enough memory bandwidth (e.g., 10.6
GB/s for DDR3-1333) so that memory copy is not a bottle-
neck. Moreover, we can take advantage of multi-core pro-
cessors and their shared cache when using piped commands.

On the other hand, string matching used in header rewrit-
ing requires to process data byte-by-byte. Many UNIX com-
mands are line-oriented that needs to check every byte in
search for newline characters. Also, a string match stops
when a match is found, but needs to search to the end of
a packet when no match is found. It becomes even worse
when regular expressions require backtracking. Therefore,
the performance of network scripting is heavily influenced
by string matching rules used in a command. We will pro-
vide examples and guidelines on matching rules for users.

To further improve the performance, one possible way is to
provide a special command to extract specific header fields
and apply commands only to the extracted field. For exam-
ple, to apply grep(1) to only the Ethernet headers in packets,
it would look something like “epcmd –extract etherheader –
command ’grep PATTERN’ ”. Another way is to keep the
command syntax but add hardware-based offloading func-
tions to make use of GPU, FPGA or other parallel process-
ing methods.

7.2 Interface namespace
Our current device naming rules cannot express multiple

network cards. For supporting multiple network cards, each
EtherPIPE device may be put in subdirectory of each cards
such as /dev/ethpipe/slot0/0. Because the control plane
of packet processing is complex, it would be handled well by
the network stack of OS.

We also will develop virtual network devices for OS net-
work stack under /dev/ethpipe/. Further discussion on the
EtherPIPE device namespace is required, however, we do
not mention it due to the limitation of space.

7.3 Configuration of Interfaces
EtherPIPE currently focuses on lightweight scripting of

packets over the data link layer. One of the limitations
of the current EtherPIPE, is that it ignores metadata of
physical devices or socket options for TCP/IP. Ignoring the
configuration functions, EtherPIPE can access packets in a
simple way. To handle upper layers, some metadata han-
dling scheme is required in EtherPIPE.

To implement such metadata, we can add other devices
that have their own purpose for packet processing. The
current EtherPIPE raw interface should be kept for per-
formance. And the EtherPIPE shell interface may need to
improve the ASCII format for usability on shell scripting
even if it needs to pay a performance penalty. If it needs
scalability, a device should be developed to set socket like
options or store dynamic parameters in data format.

8. RELATED WORK
The concept of character-based network interfaces is not

new. STREAMS[16] employs a modular architecture for im-
plementing I/O between device drivers including network
subsystems. Plan 9[17] pushes it further to abstract every-
thing including network as a file, and controls networkstack
and services throughfiles. Other systems such as x-kernel[18]
and Netgraph[19] provide a framework for building a net-
workstack by connecting protocol modules. The main focus
of these systems is to provide abstraction of network inter-
faces and protocol stack components.

There exist network interface devices that allow to ac-
cess Ethernet frames such as DLPI (Data Link Provider In-
terface)[20], a STREAMS device driver of SunOS, and the
TUN/TAP device driver[1]. They are often used to imple-
ment a tunneling or bridging function in user space.

The purpose of EtherPIPE is to allow network scripting.
To this end, it provides a simple abstraction of Ethernet
ports as a character device, and converts Ethernet frames
to and from ASCII representation for easy processing by
UNIX commands.

65

9. CONCLUSION
Shell scripting is powerful utility for files, however, it

has not supported network processing. Our EtherPIPE al-
lows shell scripting to deal with network devices and net-
work I/O in the same manner with file devices and file I/O.
Through the development of the EtherPIPE, we have shown
that many packet processing operations can be described by
chains of standard commands using standard input / output
and pipe.

EtherPIPE is a low-layer network device yet its data for-
mat is simple and easy to handle in commands and scripting
languages. Therefore, EtherPIPE can be used not only for
simple network scripting but also for more complex packet
processing using scripting languages. We believe that Ether-
PIPE is suitable for SDN where simple packet manipulations
are often required. As a lightweight implementation method
of SDN applications, we hope the EtherPIPE opens a new
paradigm of network programming.

10. REFERENCES
[1] M. Krasnyansky. Universal TUN/TAP device drive.

https://www.kernel.org/doc/Documentation/

networking/tuntap.txt.

[2] C. Catlett and G. Foot. Libnet Homepage.
http://libnet.sourceforge.net/.

[3] tcpdump.org. TCPDUMP and LIBPCAP.
http://www.tcpdump.org/.

[4] The Wireshark Foundation. Wireshark.
http://www.wireshark.org/.

[5] R. Olsson. pktgen the linux packet generator. In
Proceedings of the Linux Symposium, Ottawa,
volume 2, pages 11–24, Jul. 2005.

[6] P. Biondi. Scapy.
http://www.secdev.org/projects/scapy/.

[7] The Open Networking Foundation. OpenFlow Switch
Specification. Technical Report Version 1.3.1 (Wire
Protocol 0x04), Sep. 2012.

[8] St. McCanne and V. Jacobson. The bsd packet filter:
a new architecture for user-level packet capture. In
Proceedings of USENIX’93 Winter Conference, Jan.
1993.

[9] D. Hartmeier. Design and performance of the openbsd
stateful packet filter (pf). In Proceedings of USENIX
ATC 2002, pages 171–180, Jun. 2002.

[10] K. J. Lidl, D. G. Lidl, and P. R. Borman. Flexible
packet filtering: providing a rich toolbox. In
Proceedings of BSDC’02, Feb. 2002.

[11] B. Pfaff and J. Pettit and T. Koponen and K. Amidon
and M. Casado and S. Shenker. Extending networking
into the virtualization layer. In Proceedings of
HotNets-VIII, Oct. 2009.

[12] A. Kantee. Environmental Independence: BSD Kernel
TCP/IP in User Space. In Proceedings of
AsiaBSDCon’2009, 2009.

[13] L. Degioanni, F. Risso, and G. Varenni. PCAP Next
Generation Dump File Format, Mar. 2004.

[14] Lattice Semiconductor Corporation. LatticeECP3
Versa Development Kit, 2013.

[15] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
Netfpga: reusable router architecture for experimental
research. In Proceedings of PRESTO ’08, pages 1–7,
Aug. 2008.

[16] D. M. Ritchie. A stream input-output system. AT&T
Bell Laboratories Technical Journal, 63(8):1897–1910,
Oct. 1984.

[17] D. Presotto and P. Winterbottom. The organization of
networks in plan 9. Winter 1993 USENIX Conference
Proceedings, 1993.

[18] Norman C. Hutchinson and Larry L. Peterson. The
x-kernel: An architecture for implementing network
protocols. IEEE Transactions on Software
Engineering, 17(1):64–76, January 1991.

[19] Julian Elischer and Archie Cobbs. FreeBSD man pages
- netgraph(4). http://www.freebsd.org/cgi/man.
cgi?query=netgraph&sektion=4.

[20] Oracle Corporation. man pages section 7: Device and
Network Interfaces dpli(7P). http://docs.oracle.
com/cd/E19253-01/816-5177/dlpi-7p/index.html.

66

