
Accelerating the Mobile Web with Selective Offloading

Xiao Sophia Wang
University of Washington
Seattle, Washington, USA

wangxiao@cs.washington.edu

Haichen Shen
University of Washington
Seattle, Washington, USA

haichen@cs.washington.edu

David Wetherall
University of Washington
Seattle, Washington, USA
djw@cs.washington.edu

ABSTRACT
Mobile Web page loads are notoriously slow due to limited
computing power and slow network access. Our preliminary
experiments show that computation is a significant fraction
of page load time on mobile devices. Also, energy arguments
suggest that it will stay this way. To compensate the limited
computing power, our position is that offloading portions of
the page load process to the cloud can significantly improve
mobile page load time. We propose a measurement-based
framework that allows to offload portions of mobile page
load process to the cloud. Unlike browsers that offload fixed
parts of page loads such as Opera Mini, our framework will
allow to offload any portion of the page load process. We
will experiment with a large variety of real-world situations
(e.g., varying computing power on mobile devices) by of-
floading varying portions of page loads using our framework.
Informed by the experimental results, we will develop a mo-
bile browser that considers the diverse situations as well as
energy and data usage.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed applications

General Terms
Design

Keywords
Web; Mobile Web; Page load; Cloud; Offload

1. INTRODUCTION
Web pages delivered by HTTP(S) have become the de-

facto standard for connecting billions of users to Internet
applications. While the Web provides many favorable fea-
tures (e.g., mashups) as opposed to native applications, it
incurs noticeably high page load latencies on mobile devices,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MCC’13, August 12, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2180-8/13/08 ...$15.00.

making it less attractive on mobile. Our preliminary tests
on the top ten mobile pages suggest that mobile page load
times are 1.5x (3x) of desktop counterparts in initial (re-
peated) loads.

Our previous research in desktop settings that quantifies
the composition of page load time suggests that computa-
tion is significant [15]. We extensively loaded the top 200
Alexa [1] Web pages and found that computation comprises
35% of page load latencies on the critical path (the longest
bottleneck path) even on an iMac with a 3GHz quad core
CPU and a 8GB memory. This fraction is as much as 40%
on a machine with 2GHz CPU and a 4GB memory. Our
mobile study on sampled Web pages also suggests that com-
putation is a key bottleneck of Web page loads on mobile
devices that have less computing power than desktop. And
it is likely that mobile computing power will stay this way
in the future due to limited energy on mobile devices.

To compensate the limited computing power on mobile
devices, a common approach is offloading to the cloud. How-
ever, little has been done to offload mobile Web page loads
in the research community because it requires deep under-
standing of how browsers load Web pages. Offloading is now
adopted in more browsers in the industry such as Opera
Mini [11], Amazon Silk [12], and recently released Android
Chrome Beta [2]. Those browsers do offload to the cloud,
but it is unclear how well they perform. Opera Mini com-
presses pages to a markup format called OBML that reduces
both transfer time and data usage [10]. Yet it still leaves the
full logic of page load processing to mobile devices and so
does Android Chrome Beta. Amazon Silk moves portions
of page loads to the cloud which depend on the structure of
Web pages. But, it is unknown how the Silk browser divides
the page load process and the choice of offloaded portions
should consider ambient situations, not only Web pages.

Our position is that offloading portions of the page load
process to the cloud can significantly accelerate the mobile
Web. We want a mobile browser that selectively offloads
portions of page loads in any real-world situations. In the
long term, the browser should be able to properly offload
even if mobile network technologies or computing power
evolve. We believe that research on offloading is valuable
because it has potential to help energy and data usage, not
only performance, while we note that the constraint of the
three metrics is likely to stay on mobile without external
support such as offloading.

In the rest of the position paper, Section 2 identifies the
opportunities for offloading and suggests that offloading mo-
bile page loads can help both network and computation.

45

Section 3 examines the challenges in making offloading de-
cisions and discusses issues raised by using offloading (e.g.,
broken HTTPS end-to-end security and broken cache). We
review the background of the page load process in Section
4 and propose a measurement-based framework that allows
to offload any portions of the page load process to the cloud
in Section 5. Section 6 reviews related work and Section 7
concludes.

2. OPPORTUNITIES
We begin with examining the opportunities offered by of-

floading mobile Web pages. Note that offloading mobile Web
applications exhibits different opportunities than offloading
mobile native applications. This is because Web applica-
tions differ from native applications in two aspects: (i) Web
pages are downloaded when being requested and thus net-
work activities and computation are inter-dependent, and
(ii) computation of different kinds of objects (e.g., HTML
and CSS) incurs different patterns. The result is that of-
floading techniques that have been used for mobile native
applications [5, 3, 4] cannot be directly applied to Web ap-
plications.

To make the case that offloading is a viable approach to
accelerate the mobile Web, we identify three opportunities
offered by offloading. This includes i) reduced round trips,
ii) reduced time in computation, and iii) consistency with
other mobile constraints.

2.1 Reduced round trips
Unlike offloading native applications that introduce addi-

tional round trips between the mobile device and the cloud,
offloading Web applications can reduce round trips between
the mobile device and the cloud.

To demonstrate this opportunity, we first look at how a
mobile device interacts with Web servers when loading a
Web page. When a page request to example.com (fictitious)
is made, the mobile browser performs a DNS lookup, sets
up a TCP connection, waits for a response, and downloads
the response header and content. Often, the request is redi-
rected to another mobile page, e.g., m.example.com. Upon
receiving the first byte of the root HTML page, the mo-
bile browser iteratively parses the HTML page and requests
embedded objects, possibly from other Web servers, e.g.,
foo.com and bar.com, until every Web object is fetched,
parsed, and loaded.

Consider when portions of the page load process are of-
floaded to the cloud, similar to redirecting the traffic to a
proxy. The cloud interacts with the Web servers on behalf
of the mobile device, but the round trip latencies can be
much lower when the cloud server is placed near the Web
servers. The cloud can connect to the mobile device via a
single TCP connection such as SPDY [13] to batch up small
HTTP transactions for loading a page. Note that Web page
transmission from the cloud to the mobile device can occur
after the root HTML page is fetched and does not have to
wait for the entire page to be fetched. The notion of leverag-
ing the cloud has been adopted by Opera mini [11], Amazon
Silk browser [12], and recently Chrome beta for Android [2],
suggesting the feasibility of leveraging cloud in mobile Web.

2.2 Reduced time in computation
Despite the rapid growth in computing power on mobile

phones, the cloud or even a high-end desktop is still more

powerful in computing as of today. Therefore, offloading
computation to the cloud offers the opportunity to reduce
page load time. The argument here is similar to code offload
for mobile native applications [5, 3, 4], but offloading tech-
niques differ because computation for page loads has certain
patterns (i.e., HTML parsing, JavaScript and CSS evalua-
tion, rendering).

We demonstrate this opportunity by measuring the com-
putation time of loading a page on a mobile phone and on
a laptop. We use our recently developed tool WProf [15]
that captures the dependencies and the time to load and
compute each Web object during a page load. The mobile
phone is a Nexus S with 1GHz CPU and 512MB memory
and the laptop is a Macbook Pro with 2.66GHz CPU and
8GB memory. We find that the time to evaluate the same
piece of JavaScript is less than 20 milliseconds on the lap-
top but is as large as 100 milliseconds on the mobile phone.
The time to evaluate the same set of CSS is 100 milliseconds
on laptop compared to over 200 milliseconds on the mobile
phone. A recent study also suggests that the gap between
smartphone and computer is 5.5 to 23.1 times in JavaScript
execution speed [7].

While offloading the logics of the page load process to the
cloud suggests exciting benefits, Opera mini and Android
Chrome beta only compress the Web pages in the cloud while
leaving the full logics of page load processing to the mobile
device. We consider offloading partial logics of the page load
process to the cloud which offers more opportunities.

2.3 Consistency with other mobile constraints
For techniques to be practical on mobile devices, one

has to consider their compatibility with other mobile con-
straints. There are three key constraints on mobile phones,
say performance, power consumption, and 3G/4G data us-
age. Below, we examine whether offloading to the cloud
helps relax each constraint. Performance is a key constraint
on mobile devices which incur less computing power and
slower access network than desktop counterparts. We have
demonstrated that offloading can reduce round trips and
computation time which in turn can reduce the total page
load time. Thus, we do not elaborate here.

Power consumption. Battery power is a scarce resource
on mobile devices that limits the deployment of more com-
puting power and energy-intensive applications. We argue
that offloading likely results in less power consumption in
both computation and network for a page load. It is straight-
forward that offloading portions of the computation in page
loads incurs less power consumption on the mobile device.
Besides consuming less power in computation, offloading can
also help the power consumed in network. Because the mo-
bile device uses a single TCP connection instead of multiple
connections per Web page, less resources are allocated for
network. Because the connection between the mobile device
and the cloud is under control, the traffic can be shaped to
avoid energy inefficiency problems such as 3G long tail.

3G/4G data usage. 3G/4G network operators charge
data-plan subscribers based on the used traffic volume, mak-
ing the 3G/4G data usage a key metric to consider in de-
signing mobile applications and techniques. As portions of
the page load process are offloaded to the cloud, the Web
page transmitted to the mobile device will be some form
of intermediate representations instead of raw Web pages.

46

For example, it is possible that a DOM tree decorated by
matched CSS is delivered to the mobile device in place of an
HTML page and some CSS files. It is unclear whether this
will increase or decrease the data usage at this time. But,
since the intermediate representation can be compressed be-
fore being transmitted, there is an opportunity to reduce the
transmitted data to the mobile device.

3. CHALLENGES
We have demonstrated the opportunities offered by of-

floading to accelerate the mobile Web. To design a mobile
browser that sufficiently exploits offloading, we need to ad-
dress the following challenges.

Understanding the mobile page load process. There
have been several techniques that aim to accelerate the mo-
bile Web [6], and thus it is surprising to learn that the mo-
bile page load process is still poorly understood. A key rea-
son is the lack of standardization of the page load process
while current Web standards focus on enriching the feature
set (e.g., HTML 5, CSS 3). The result is that browsers
embrace different implementations and each corresponds to
millions of lines of code. The rapid evolvement of the Web
and browser ecosystem further compounds this situation.
Lack of standardization and documentation makes the page
load process hard to understand. However, without under-
standing the page load process it is hard to decide how to
offload.

What and when to offload. To fully exploit the power
of offloading, a key question to answer is what and when
to offload. Offloading portions of the page load process to
the cloud makes use of the computing power of the cloud,
resulting in less time in computation. Then, the cloud trans-
mits the processed Web page (a.k.a., intermediate represen-
tation) to the mobile device which could increase the trans-
mission time if the processed page is significantly larger than
the raw page. Thus, the key to maximize the page load
performance is to trade off between the decreased computa-
tion time and the potentially increased network time. This
tradeoff depends on so many factors, namely the Web page,
difference in computing power, network characteristics, and
the size of intermediate representations, that make up the
question of what and when to offloading hard to answer.
The Amazon Silk browser [12] only considers the factor of
Web page when considering this tradeoff, and thus does not
fully exploit the power of offloading.

How to use the cloud. While the benefits by using the
cloud is intuitive, it is unclear how to use the cloud to max-
imize page load performance. It is hard to determine loca-
tions of the cloud servers that interact with Web servers. Re-
call that placing the cloud server near the Web servers incurs
minimal round trip latencies. However, it is hard to know
what Web servers the cloud server needs to interact with
before the cloud server is chosen. Because of the heavy use
of content distribution networks (CDNs), the Web servers
that host content for a single Web page are dynamic which
further complicates the situation. Addressing this challenge
requires clever use of the cloud.

Security issues. With the advocacy of HTTPS to protect
user privacy on the Web, the cloud in the middle, however,
breaks the end-to-end security chain provided by HTTPS.
Android Chrome Beta [2] avoids this problem by only work-

UI �

Object

Loading
 �

Cache, cookie,
localStorage�

Network �

DOM �

HTML
Parsing�

Evaluation�

Rendering�

Figure 1: The workflow of a page load. It involves
four processes manipulated by different controllers
(shown in gray). Object Loader is the only network-
facing controller; the other three are computational
controllers.

ing for HTTP pages. The cost is that it does not help on
HTTPS pages; and the number of HTTPS pages is arising.
The challenge here is to design a reasonable trust model
when the cloud is a necessary piece in the security chain.

Caching issues. Currently, mobile browsers store Web
cache in the form of raw files directly downloaded from Web
servers such as HTML, CSS, and JavaScript. However, the
cache model is changed when portions of the page load pro-
cess are moved to the cloud and intermediate representations
of Web pages in place of raw pages are transmitted to the
mobile device. The problem here is that a piece of intermedi-
ate representation (e.g., styled DOM tree) can be the result
of multiple raw files (e.g., HTML and CSS) specified with
different expiration times. Thus, it is challenging to keep the
exact pace of cache expiration by working with intermediate
representations on the mobile device.

4. PAGE LOAD PROCESS
Before we describe our proposed offloading approach, we

first review the required background of the page load pro-
cess. Below, we first describe the workflow of a page load
and then highlight the page load bottlenecks.

4.1 Workflow
Figure 1 shows the workflow for loading a Web page.

The page load starts with a user-initiated request that trig-
gers the Object Loader to download the corresponding root
HTML page. Upon receiving the first chunk of the root
page, the HTML Parser starts to iteratively parse the page
and download embedded objects within the page, until the
page is fully parsed. The embedded objects are Evaluated
when needed. To visualize the page, the Rendering Engine
progressively renders the page on the browser. Below, we
describe each of these controllers in detail.

HTML Parser: The Parser is key to the page load pro-
cess, and it transforms the raw HTML page to a document
object model (DOM) tree. A DOM tree is an intermediate
representation of a Web page; the nodes in the DOM tree
represent HTML tags, and each node is associated with a
set of attributes. The DOM tree representation provides a
common interface for programs such as JavaScript to ma-
nipulate the page.

Object Loader: The Loader fetches objects requested by
the user or those embedded in an HTML page. The objects
are fetched over the Internet using HTTP or SPDY [13],
unless the objects are already present in the browser cache.
The embedded objects fall under different mime types:
HTML (e.g., IFrame), JavaScript, CSS, Image, and Media.

47

Embedded HTMLs are processed separately and use a dif-
ferent DOM tree. Inlined JavaScript and CSS do not need
to be loaded.

Evaluator: Two of the five embedded object types, namely,
JavaScript and CSS, require additional evaluation after be-
ing fetched. JavaScript is a piece of software that adds
dynamic content to Web pages. Evaluating JavaScript in-
volves manipulating the DOM, e.g., adding new nodes,
modifying existing nodes, or changing nodes’ styles. Since
both JavaScript Evaluation and HTML Parsing modify the
DOM, HTML parsing is blocked for JavaScript evaluation
to avoid conflicts in DOM modification. However, when
JavaScript is tagged with an async attribute, the JavaScript
can be downloaded and evaluated asynchronously in the
background without blocking HTML Parsing. The process
of JavaScript evaluation generates several intermediate rep-
resentations in both compilation and execution. For exam-
ple, the V8 JavaScript engine [14] generates two levels of
intermediate representations (i.e., Hydrogen and Lithium)
instead of bytecode.

Cascading style sheets (CSS) are used for specifying the
presentational attributes (e.g., colors and fonts) of the
HTML content and is expressed as a set of rules. Eval-
uating a CSS rule involves changing styles of DOM nodes.
For example, if a CSS rule specifies that certain nodes are to
be displayed in blue color, then evaluating the CSS involves
identifying the matching nodes in the DOM (a.k.a., CSS se-
lector matching) and adding the style to each matched node.
A resulted intermediate representation here is the matched
CSS selectors.

Rendering engine: Browsers render Web pages progres-
sively as the HTML Parser builds the DOM tree. Rendering
involves two processes–Layout and Painting. Layout con-
verts the DOM tree to an intermediate representation (i.e.,
the layout tree) that encodes the size and position of each
visible DOM node. Painting converts this layout tree to
pixels on the screen.

Note that the intermediate representations generated from
these controllers are the key to making offloading decisions,
because intermediate representations can be larger than the
raw Web objects which increases the transmission time.

4.2 Bottlenecks
The four processes in Figure 1 can block each other, re-

sulting in dependencies. We have extracted four kinds of de-
pendencies that are caused by (i) the natural order that ac-
tivities occur, (ii) the correctness of execution when multiple
processes modify a shared resource, (iii) tradeoffs between
data downloads and page load latencies, and (iv) limited
computation power and network resources [15]. Our previ-
ous work suggested that improving only network or compu-
tation provides limited benefits to page load time [15]. Un-
like many other page load optimization techniques that only
help network or computation, offloading shows potential to
help both.

The bottlenecks of a page load can be identified by apply-
ing critical path analysis to the dependency graph. Identi-
fying bottlenecks are important. This is because improving
bottleneck activities can improve the overall page load time
but improving non-bottlenecks cannot help page load. The
implication here is that the offloading decisions need to con-
sider reducing the time spent on the bottlenecks.

Figure 2: Architecture of the framework.

5. OFFLOADING TO THE CLOUD
This section describes our proposed approach to offload

mobile page loads to the cloud. First, we propose the frame-
work that allows to offload portions of the page load process.
Note that we propose a framework instead of a design be-
cause some design decisions need to be informed by exercis-
ing with real-world environments. Second, we plan to use
a measurement study on this framework to derive empirical
models of offloading strategies. Based on the empirical mod-
els, we will develop a mobile browser that selectively offloads
portions of page loads by taking real-time measurements of
mobile and environments as inputs.

5.1 Framework
We propose a flexible framework that allows to offload

portions of the page load process. Figure 2 shows the archi-
tecture that consists of three components: a mobile device,
a cloud, and Web servers. The browser is split into two
browsers, one on mobile (device component) and one in the
cloud (cloud component). To fetch a Web page, the mobile
browser makes a request to the cloud and the cloud loads
the Web page on behalf of the mobile device. Then, the
cloud partially processes the page and sends the processed
page in the form of processed portions (a.k.a., intermediate
representations) and unprocessed portions back to the mo-
bile device via a single TCP connection. Below, we describe
the design of key components in this architecture.

5.1.1 Offloading portions of computation
At the core of the framework is offloading portions of the

page load process. To be flexible, the framework needs to
enable fine-grained division of the page load process. Parts
of the divided process are handled by the cloud while the
other parts are handled by the mobile device.

Anatomizing the page load process. We start with the
anatomy of a page load process. Figure 3 shows the data
flow of a page load process that converts raw Web pages
to pixels on the screen. The example page contains a CSS,
two JavaScripts, and an image in the exact order. The data
flow (indicated by gray arrows) is represented by a directed
acyclic graph (DAG) that starts with raw files and ends
with pixels on the screen. Note that Figure 3 only shows a
coarse-grained data flow and does not include all intermedi-
ate representations in a page load. A fine-grained data flow
can be derived by replacing the boxes with detailed flows.

We equal the problem of dividing the page load process to
finding cut(s) of the DAG. One side of the cut is handled by
the cloud component and the other is handled by the device
component. Note that a cut can mean that a process is
partially completed. For example, if there is a cut between
the raw CSS file and the DOM styles in Figure 3, it can

48

Figure 3: Data flow of processing an example Web
page. Note that some IRs for evaluating JavaScript
are omitted here.

represent that CSS evaluation has not yet started or that
CSS evaluation is almost done.

Constraining the divisions by dependencies. Due to
the dependencies within the page load process [15], the cuts
are subject to some constraints. For example in Figure 3,
the first JavaScript can only be executed after the CSS is
evaluated because they both could change the DOM styles
and the order is critical here. We indicate the dependencies
by dashed arrows. Thus, an admissible cut should satisfy
the following constraint: the direction of the dependencies
should be in the opposite direction as the data flows through
the cut. This constraint ensures a cut to be practical and to
represent a real page load division.

Using the division. Although it is possible to divide the
page load process into more than two portions and let the
cloud and device components handle every other portion, we
only consider the case of dividing into two portions. This
is because additional divisions increase the interactions be-
tween the cloud and the device, and thus increases page load
time. We use the cloud to handle the first portion that starts
with raw Web objects and we let the device to handle the
other portion that ends with pixels on the screen. A possible
division would let the cloud compute the DOM and its styles
and let the mobile device do the rest. However, if running
a piece of JavaScript significantly increases the size of the
intermediate representations to transfer, a better division
would be running the JavaScript on the mobile device.

5.1.2 How to use the cloud
We identify two key issues in using the cloud: (i) where

to place cloud servers and (ii) when to make offloading deci-
sions. We leave the discussions of other issues such as load
balancing as future work.

Where to place cloud servers. We have shown that
a single TCP connection between the client and the cloud

servers is likely to reduce round trip latencies. To this end,
we suggest to place the cloud server near or at a CDN service
provider. Since the cloud servers in any case need to cache
the Web page locally, the latency can be greatly reduced if
the servers are located near the CDN service provider. Our
proposed framework, a partial browser in the cloud, can act
as the front-end of the CDN service which is similar to [8].
In most cases, we expect the requested Web page cached in
the cloud so that round trips can be saved. Otherwise, the
cloud can promptly detect the rising hot spots and cache
those Web pages in the server to reduce the latency in the
future.

When to make offloading decisions. The cloud should
be in charge of making offloading decisions because it is the
first of all active components in our framework that collects
all the useful information (e.g., Web pages, and states of
the network and the mobile device) to make offloading deci-
sions. We believe that the decisions depend on the diverse
situations and Web pages. For instance, for Web pages with
complex embedded JavaScripts, offloading the computation
to the cloud would be the most effective; if a Web page con-
sists of lots of images and the mobile devices is on a slow
network, compressing the image in the cloud would benefit.
The problem here is that by the time the first chunk of the
raw page is received the cloud could lack the required infor-
mation to make offloading decisions. Thus, the cloud needs
to either wait until it receives more content of Web pages
or rely on historical information. The former approach can
slow down page load. The latter approach requires us to
identify the content of historical information–features that
affect offloading decisions. We plan to use experiments to in-
form whether the former approach is feasible and if not what
are the determining factors that affect offloading decisions.

5.1.3 Using a single TCP connection
We use a single TCP connection to transfer partially pro-

cessed Web page from the cloud to the mobile device. This
is because a single TCP connection suggests several bene-
fits over parallel TCP connections. It avoids the slow start
phase when opening a new TCP connection, resulting in
more bandwidth. While some Web objects (e.g., JavaScripts
and HTML) are expected to be loaded with higher priority
than some others (e.g., images) [15], parallel TCP connec-
tions evenly divide the bandwidth which suggests no priority.
Instead, a single TCP connection can multiplex Web objects
using specified priority policies.

A hands-on protocol of a single TCP connection that mul-
tiplexes Web objects is SPDY [13]. To make the maximum
benefits out of a single TCP connection, the cloud servers
require some other configurations. For example, while the
TCP initial window size is set to 10 as of Linux kernel 2.6.39
suggested by RFC3390 (and it was 3), configuring a larger
TCP initial window can avoid more slow start. The specified
priority policy needs to consider the dependencies shown in
Figure 3. Intuitively, intermediate representations or raw
pages that are depended by more resources should result in
higher priority.

5.1.4 Others
To address the HTTPS issue, we can establish two

TLS/SSL connections, one between the Web server and the
cloud and the other between the cloud and the mobile de-
vice. This enlarges the trust base by including the cloud,

49

providing less strong security than end-to-end HTTPS. But,
to process the Web pages the cloud needs to know some form
of the page content which in turn weakens security. We leave
the caching issue to the future.

5.2 Measurements
To systematically determine the optimal strategies for

given situations, we plan to conduct extensive measurements
with this framework. We will consider all the situations
that contribute to the tradeoffs between faster computation
and potentially slower network transmission offered by of-
floading. As for network, we consider varying RTTs, band-
widths, and packet loss rates to the cloud that are imposed
by choices of WiFi, 3G, or 4G and by different vendors. The
availability of cloud servers near the Web servers is also a
key factor. As for computation, we consider the differences
in computing power (e.g., CPU speed and memory) of the
mobile device and of the cloud.

Based on the measurement results, we will derive empir-
ical models of offloading strategies that take measurements
of the mobile and cloud environments as inputs. Because
the empirical models will only depend on measurements not
the technologies themselves, our approach is able to accom-
modate situations even if mobile network technologies or
computing power evolve. The outputs of empirical models
will be cuts of data flow in Figure 3 that yield minimal page
load times.

5.3 Cloud-based mobile browser
Informed by the empirical models, we will develop a

browser that selectively offloads portions of the page load
process depending on real-time measurements of the situa-
tions. In this way, mobile page loads can benefit from of-
floading at any situation, or browsers can turn off offloading
if it does not benefit page loads. For example, the browser
had better offload JavaScript evaluation followed by a user-
initiated click if the script will take a long time to run on
mobile. Unlike Opera Mini and Android Chrome Beta, our
browser will offload partial page load process; and unlike
Amazon Silk, our browser will consider ambient situations
when making offloading decisions.

6. RELATED WORK
A large body of previous work has proposed to offload

parts of mobile native applications from mobile devices to
the cloud for the benefits of performance [5, 3] and en-
ergy [4]. Gordon et al. [5] introduced a runtime system
to migrate unmodified Android applications freely between
machines. Chun et al. [3] allowed part of an application to
be cloned and executed in a computational cloud. Cuervo et
al. [4] offloaded smartphone code to save energy. While they
focus on offloading native applications, their proposed tech-
niques are specific to platforms and thus are not applicable
to the Web.

Surprisingly, little has been done to offload mobile Web
applications in the research community. The industry has
pioneered in this field with notable examples of the Opera
Mini browser [11], Android Chrome Beta [2], and the Ama-
zon Silk browser [12]. Opera Mini compresses pages to a
markup format called OBML that reduces both transfer
time and data usage. Android Chrome Beta applies tech-
niques such as mod pagespeed [9] to the pages. But, they
both still leave the full logics of page load processing to mo-

bile devices. The Amazon Silk browser moves portions of
page loads to the cloud which depend on the Web page it-
self. However, it is unclear how the Silk browser divides
the page load process and the choice of offloaded portions
should be a result of ambient situations, not only Web pages.
We advocate an elastic framework that allows to offload any
portions of the page load process; the offloaded portions are
subject to ambient situations such as network speed, not
only Web pages.

7. CONCLUSION
This position paper proposes a measurement-based frame-

work that allows to offload any portions of mobile page load
process to the cloud. We will experiment with a large va-
riety of real-world situations by offloading varying portions
of page loads using our framework. Informed by the ex-
perimental results, we will develop a mobile browser that
considers the diverse situations as well as energy and data
usage.

8. REFERENCES
[1] Alexa. http://www.alexa.com/.

[2] Data compression in chrome beta for android.
http://blog.chromium.org/2013/03/

data-compression-in-chrome-beta-for.html.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and
A. Patti. Clonecloud: Elastic execution between
mobile device and cloud. In Proceedings of Eurosys,
2011.

[4] E. Cuervo, A. Balasubramanian, D. ki Cho,
A. Wolman, S. Saroiu, R. Chandra, and P. Bahl.
Maui: Making smartphones last longer with code
ofSSoad. In Proceedings of Mobisys, 2010.

[5] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao,
and X. Chen. Comet: Code offload by migrating
execution transparently. In Proceedings of OSDI, 2012.

[6] S. Hadjiefthymiades and L. Merakos. Using proxy
cache relocation to accelerate web browsing in
wireless/mobile communications. In Proceedings of
WWW, 2001, New York, NY, USA.

[7] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A Close Examination of Performance
and Power Characteristics of 4G LTE NEtworks. In
Proceedings of Mobisys, 2012.

[8] F. T. Leighton and D. M. Lewin. Html delivery from
edge-of-network servers in a content delivery network
(cdn). In US Patent 7996533, August 2011.

[9] mod pagespeed. http://www.modpagespeed.com/.

[10] Opera binary markup language.
http://dev.opera.com/articles/view/

opera-binary-markup-language/.

[11] Opera mini browser. http://www.opera.com/mobile/.

[12] Amazon silk browser.
http://amazonsilk.wordpress.com/.

[13] Spdy.
http://dev.chromium.org/spdy/spdy-whitepaper.

[14] V8 javascript engine.
https://code.google.com/p/v8/.

[15] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. Demystifying page load performance
with wprof. In Proceedings of NSDI, 2013.

50

