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ABSTRACT
Natural and human factors cause Internet outages—from
big events like Hurricane Sandy in 2012 and the Egyptian
Internet shutdown in Jan. 2011 to small outages every day
that go unpublicized. We describe Trinocular, an outage de-
tection system that uses active probing to understand relia-
bility of edge networks. Trinocular is principled : deriving a
simple model of the Internet that captures the information
pertinent to outages, and populating that model through
long-term data, and learning current network state through
ICMP probes. It is parsimonious, using Bayesian inference
to determine how many probes are needed. On average,
each Trinocular instance sends fewer than 20 probes per
hour to each /24 network block under study, increasing In-
ternet “background radiation” by less than 0.7%. Trinocular
is also predictable and precise: we provide known precision
in outage timing and duration. Probing in rounds of 11 min-
utes, we detect 100% of outages one round or longer, and
estimate outage duration within one-half round. Since we
require little traffic, a single machine can track 3.4M /24
IPv4 blocks, all of the Internet currently suitable for analy-
sis. We show that our approach is significantly more accurate
than the best current methods, with about one-third fewer
false conclusions, and about 30% greater coverage at con-
stant accuracy. We validate our approach using controlled
experiments, use Trinocular to analyze two days of Internet
outages observed from three sites, and re-analyze three years
of existing data to develop trends for the Internet.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring ; C.2.5 [Computer-Com-
munication Networks]: Local and Wide-Area Networks—
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1. INTRODUCTION
Although rare, network outages are a serious concern since

users depend on connectivity, and operators strive for mul-
tiple “nines” of reliability. Replicated services and content
delivery networks may conceal outages, but not eliminate
them, and the size of the Internet means outages are always
occurring somewhere. Outages are triggered by natural dis-
asters [22,33], political upheavals [31], and human error [21].

Prior work has generally focused on outages from the per-
spective of routing. Groups today directly monitor rout-
ing [5], track routable prefixes with control- and data-plane
methods [18,20], and study traffic to unoccupied addresses [8].
While these approaches are useful to detect and sometimes
mitigate large outages related to routing, most of the Inter-
net uses default routing [3], and we show that most outages
are smaller than routable prefixes. While some systems tar-
get probing to detect specific kinds of smaller outages [29],
to our knowledge, no service today actively tracks outages
in all Internet edge networks.

The contribution of this paper is to address this gap, pro-
viding unbiased, accurate measurements of Internet relia-
bility to all analyzable edge networks. First, we describe
Trinocular1, an adaptive probing system to detect outages
in edge networks. Our system is principled, deriving a simple
model of the Internet that captures the information perti-
nent to outages, parameterizing the model with long-term
observations, and learning current network state with prob-
ing driven by Bayesian inference.

Second, using experiments, analysis, and simulation, we
validate that these principles result in a system that is pre-
dictable and precise: we detect 100% of outages longer than
our periodic probing interval, with known precision in tim-
ing and duration. It is also parsimonious, requiring minimal
probing traffic. On average, each Trinocular instance in-
creases traffic to covered networks by no more than 0.7% of
the Internet’s “background radiation”. This low rate allows
a single computer to monitor the entire analyzable Internet,
and multiple concurrent instances to identify outage scope.

Finally, we use Trinocular to observe two days of Inter-
net outages from three sites. We also adapt our model to
re-analyze existing data, developing three years of trends
from measurements of samples of the Internet. This re-
analysis includes observations of outages due to Hurricane
Sandy in 2012, the Japanese Earthquake in March 2012, and
the Egyptian Revolution in January 2012.

2. PROBLEM STATEMENT
Our goal is to provide principled, predictable, precise, and

parsimonious record of network outages at the Internet edge.
By principled, we mean we build a simple model of net-

work blocks and track their status through learning and ac-

1We call our system Trinocular after the three states a block
make take: up, down, or uncertain.
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tive probes (§4). Our simple model is, of course, incomplete
and unsuitable to model all aspects of the Internet, but
we show it is well suited to track outages. We use multi-
year network observations to inform our model, establishing
the expected behavior of each block (a /24 network prefix).
We use Bayesian inference to provide a strong theoretical
basis to learn the status of each block, and to decide how
many probes to send to improve our belief when it is uncer-
tain. We use periodic probes at fixed-interval, multi-minute
rounds to detect network outages with a known degree of
precision. We use adaptive probing at timescales of seconds
to quickly resolve inconsistent information and distinguish
transient or non-network behavior (such as packet loss or
edge system failure) from outages at the target network. Our
default measurements employ three years of quarterly obser-
vations at long timescales, rounds of 11 minutes at medium
timescales (following [13, 29]), and 3 second intervals for
adaptive probes, although these values can be adapted to
trade precision for traffic.

By predictable, we mean our conclusions about analyz-
able network blocks provide guaranteed precision and posi-
tive statements about block status (§5). Our periodic prob-
ing bounds the precision of detecting block transitions, and
we show that error in estimates of outage duration is uni-
formly distributed by one half round (±330 s). As with
all active probing mechanisms, our approach cannot deter-
mine the status of networks that decline to participate, such
as those that use firewalls that block probes, nor networks
that are too sparse for our techniques. We find 3.4M /24
blocks to be analyzable by our method, and we identify non-
analyzable blocks. This coverage is 30% greater than current
approaches, if one holds accuracy constant.

By parsimonious, we mean that we use a minimum num-
ber of probes required to establish our belief in edge network
state. Long-term history informs our model, and Bayesian
reasoning justifies each probe we make, avoiding unneces-
sary probes. Minimizing probing traffic is critical for a ser-
vice that operates across the entire Internet. While money
can solve the problem of outgoing network capacity at the
prober, recipients of probing traffic are very sensitive. Even
modest traffic can draw complaints (for which we maintain
an opt-out list). We evaluate the impact of our traffic on
target networks by comparing it to the amount of back-
ground radiation that all public networks observe [34]. We
show that at steady state, each Trinocular instance increases
background traffic by less than 0.7%, allowing us to run mul-
tiple instances to understand outage scope.

Finally, our target is all edge networks. We are interested
in edge networks because prior work has shown that many
networks employ default routing [3], and outages occur in-
side ISPs [29]. We show that probing all /24s detects many
more outages than considering only ASes or routed prefixes
(§6). We combine data from three sites to study outage
scope, separating outages adjacent to the prober from par-
tial and global outages affecting some or all of the Internet.

These four characteristics distinguish our work from prior
work, which often employs ad hoc mechanisms, does not
provide guarantees about outage precision, requires exces-
sive probing, or monitors routable prefixes instead of con-
sidering smaller outages in edge networks. They also allow
us to provide unique view of Internet reliability, both as a
whole, and of specific events (§7).

3. RELATED WORK
We next review prior outage studies by data source.

3.1 Control-plane Studies
Several prior efforts use control-plane data to study Inter-

net outages. Markopoulou et al. use IS-IS update messages
to categorize failure types in Sprint’s network [23]. Unlike
their work, our system uses only data-plane information.

Omni runs servers in each Autonomous System (AS) and
uses the forwarding tables and traceroutes to diagnose rout-
ing changes [30]. Their approach benefits from non-public
routing information, but deployment is challenging. Our
work uses centrally-collected measurement and analysis and
is easier to deploy since it does not require peering.

Huang et al. combine data from multiple BGP feeds to
detect “faint” outages [15]. We also use data from multiple
vantage points, but to distinguish between global and local
outages; our mechanism can detect small and short events.

BGP misconfiguration is one cause of outages. Mahajan
et al. study routing messages and contact network opera-
tors about problems [21]. They also use active probing to
determine the effects of misconfiguration on connectivity.
They report that 0.2% to 1% of prefixes have problems each
day. We confirm their results on Internet reachability, find-
ing about 0.6% of the Internet blocks are out, on average.

In general, studies using or triggered by control-plane in-
formation are indirect and provide incomplete coverage of
all outage types, as discussed by Bush et al. [3]. We further
verify this result experimentally (§6.2).

3.2 Data-plane Studies
Several efforts use data-plane probes to detect outages

and are close to our work. First, NetDiagnoser [9] and
Cunha et al. [6] explore binary tomography to identify rout-
ing problems. Their work identifies efficient ways to localize
problems with minimal traffic. We also focus on minimiz-
ing traffic, but our goal is continuous monitoring of all edge
networks, not diagnosing problems in specific ASes.

Second, Hubble finds potential Internet outages by survey-
ing all .1 addresses in each routed prefix and selecting one
for regular probes, which trigger traceroutes to confirm and
localize a potential outage [17]. We instead regularly probe
many selected addresses in each /24 block. Our examina-
tion of multiple addresses and /24 blocks detects outages
missed by routing and single-address triggering (§6). IPlane
captures information about network performance, aggregat-
ing information by routable prefixes [20]. We show that it
is possible and beneficial to maintain outage information at
the granularity of /24 blocks. Our work could be extended
with Hubble-like traceroutes to localize outages.

Building on Hubble and iPlane, LIFEGUARD extends
this approach to detect and work around local outages caused
by routing [18]. Our work’s focus on edge networks com-
plements LIFEGUARD’s on partial failures in the routing
system and the network core. LIFEGUARD detects out-
ages for routable prefixes because that coarser granularity is
relevant to re-routing to recover. We instead focus on finer
granularity to understand smaller, edge networks, and do
not attempt recovery because edge networks are not usually
multi-homed.

Schulman and Spring target ICMP probing to study us-
ing weather reports [29]. They probe many individual ad-
dresses in areas with severe weather from around ten vantage
points, and report outages for individual addresses. Like
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their work, we are interested in edge networks, but we track
blocks, not individual addresses, and we track all that are
analyzable, not just those in regions under severe weather.
We consider blocks out of concern that tracking single ad-
dresses risks confounding outages with human activity (such
as suspending a laptop); but a more complete comparison is
future work.

In prior work we took censuses of all IPv4 using ICMP, es-
tablishing what coverage is possible with active probing [13].
That coverage is an upper bound on our coverage of outage
detection. We re-analyze datasets from this work for lon-
gitudinal analysis (§7.2), and it inspires our new adaptive
probing scheme. In later work, we explored using this data
to identify outages [25, 28], and to visualize both outages
and BGP changes [26]. This outage work is only prelimi-
nary (published as a poster [28] and technical report [25]),
and uses methods that require many more probes than Tri-
nocular, and typically underestimate outage duration by 1.5
rounds. We instead use Bayesian analysis to make informed
decisions with far less network traffic, and to improve the
precision of outage detection to within a half-round.

Finally, Bush et al. study the reachability of Internet ad-
dress space using traceroute to detect incorrect filtering [2]
and to find biases in reachability experiments [3]. We pro-
vide additional evidence supporting their observation that
default routes are widely used and that control-plane mea-
surements underestimate outages.

3.3 Client-supported Analysis
Client-side observations provide a wider perspective than

the centralized methods. Several groups have used meshes
of measurement computers [1, 12, 19, 24]. Such experiments
can provide strong results for the behavior of the networks
between their n vantage points (typically less than 50), and
for small n link coverage grows as O(n2), although edge cov-
erage is only O(n). Without probing outside the mesh, how-
ever, these approaches ultimately study only a small fraction
of the entire Internet. Other methods of active probing, and
our work, aim to provide complete coverage.

In early work, Paxson reports routing failures in about
1.5%–3.3% of trials [24]. A more recent work, the RON sys-
tem reports 21 “path-hours” of complete or partial outages
out of a total of 6825 path-hours, a 0.31% outage rate [1].
Feamster et al. measure Internet path failures from 31 van-
tage points, correlated to BGP for causes [12]. They find
that most failures are short (under 15 minutes) and discuss
the relationship between path failures and BGP messages.
SCORE is a system that extends measurements to isolate
the location of problems [19]. As with most of this work, we
validate our findings using control plane data.

Rather than a mesh, PlanetSeer studies traffic from 7–
12k end-users to a network of 120 nodes to track path out-
ages [35]. They report that their larger population identifies
more anomalies than prior work; we expect our edge cover-
age of 3.4M blocks will be broader still. In addition, their
measurements occur only on connected clients; they miss
outages from already disconnected clients.

Choffnes et al. collect information from end systems to de-
tect service-level network events [4]. Our work is different in
that we probe to the network edge and do not require extra
software or specific operating systems in the edge networks.

Client support in these studies allows better fault diagno-
sis than our work. Our work complements theirs by provid-

ing much larger coverage (3.4M /24 blocks, a large fraction of
the Internet edge), rather than “only” meshes of hundreds of
nodes, or thousands of end hosts. Our centralized measure-
ment also allows stronger statements about coverage since
we do not depend on end hosts that may come or go.

3.4 Passive Data Analysis
Recent work by Dainotti et al. considers Internet outages

caused by political censorship [7, 8]. They use a novel ap-
proach that combines observations from both control-plane
(BGP logs) and data-plane sources (traffic to unoccupied
addresses at UCSD network telescope and active probing
data from Ark). They focus on using multiple passive data
sources, finding their active probes are of limited use because
they probe each /24 only every three days. We instead show
that a single PC can actively track millions of /24 blocks,
providing guaranteed precision for blocks that respond to
probes. It is unclear if passive analysis can provide strong
statements about precision or coverage, but it does provide
important insight into networks that block active probes.

Turner et al. have also mined “low-quality” data sources
(router configurations, e-mail and syslogs), to detect failures
in the CENIC network [32]. Such log analysis requires col-
laboration with the monitored networks, thus focuses on a
single ISP. In contrast, our active probing is done indepen-
dent of the target.

4. PRINCIPLED LOW-RATE PROBING
Trinocular carries out principled probing: we define a sim-

ple model of the Internet to capture elements essential to
outage detection. Trinocular establishes belief B(U) that
each block is available, and uses Bayesian inference to learn
the current status of the network. We drive probing using
this model and belief, sending at regular intervals to guar-
antee freshness, and more quickly when necessary to resolve
uncertainty about network state.

4.1 An Outage-Centric Model of the Internet
Trinocular’s model of the Internet tracks block -level out-

ages, measured with probes to active addresses, and reasons
about them using belief changed by Bayesian inference.

We study /24 address blocks (designated b) as the smallest
unit of spatial coverage. Larger blocks, such as prefixes that
appear in global routes, may capture outages due to routing
changes, but they hide smaller outages. Prior work shows
that default routing is widely used [3], and outages occur
inside ISPs [29], and we show that outages often occur in
sizes smaller than routable prefixes (§6.2).

Trinocular sends only ICMP echo requests as probes, each
with a 4-byte payload. We chose end-to-end, data-plane
probing to detect outages unrelated to routing. We use
ICMP because it is innocuous and, compared to other op-
tions, less likely to be blocked or interpreted as malicious [13].

In each block, we model which addresses are active, the
ever active addresses, E(b), a set of up to 256 elements. To
interpret the meaning of probe responses, we model the ex-
pected response rate of E(b) as availability, A(E(b)), a value
from 0 to 1, never to always responding. These dimen-
sions are independent, so a block where E(b) = 64 and
A(E(b)) = 0.5 has one-quarter of addresses that each re-
spond (on average) half the time. We discard very sparse
and very unresponsive blocks as non-analyzable (§4.4).

For blocks when A(E(b)) < 1, a negative probe response
is ambiguous: it can result from probing temporarily unoc-
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probe prior
result U∗ P (probe|U∗) reason

n U 1−A(E(b)) inactive addr.
p U A(E(b)) active addr.
n Ū 1− (1− `)/|b| non-response to block
p Ū (1− `)/|b| lone router?

Table 1: Bayesian inference from current block state U∗ and
a new probe.

cupied address, or from the block being down. Our model
evaluates the likelihood of these events. We show that this
model provides more information per probe than current
approaches, allowing lower probe rates (§6.1).

Finally, we judge blocks as either down (unreachable), up
(reachable), or uncertain, and denote these states as U , Ū ,
or U?. Belief, B(U) ranges from 0 to 1, with low to high
values corresponding to the degree of certainty the block is
down or up. Probes influence this belief as described next.

4.2 Changing State: Learning From Probes
Trinocular uses Bayesian inference to weigh each probe’s

information into our understanding of block status.
Probe responses are either positive, p, or negative or non-

responses, n, and they affect belief according to conditional
probabilities from Table 1. This table reflects the block size,
|b|, the combined rate of probe and reply loss, `, and the
long-term probability that those addresses reply, A(E(b)).

The first two lines of the table represent how belief changes
when the block is currently up. They reflect the probabil-
ity of hitting an active address (A(E(b))), or an inactive
address (1-A(E(b))). In this study we treat A(E(b)) as a
static parameter and derive this value from analysis of long-
term observations, so it reflects both transient address usage
and possible loss of probes or replies. Since outages are very
rare, they have negligible infuence on A(E(b)).

The last two lines characterize what we learn when the
block is down. The final line is a positive reply to a block
that is down. We consider this case to represent the un-
usual situation where a single router is up, but all addresses
“behind” the router are down. This low-probability event
will almost always draw subsequent probes that clarify the
block’s status. This term uses `, representing the probabil-
ity of packet loss of the probe or reply. On-line estimation
of packet loss is future work; we currently use ` = 0.01, a
reasonable but arbitrary value; our results are not sensitive
to small changes to this value. The third line is the comple-
ment of that probability.

A new probe observation results in a new belief B′ based
on our old belief B as influenced by this table. After a
positive response:

B′(Ū) =
P (p|Ū)B(Ū)

P (p|Ū)B(Ū) + P (p|U)B(U)

After a negative- or non-response:

B′(Ū) =
P (n|Ū)B(Ū)

P (n|Ū)B(Ū) + P (n|U)B(U)

with analogous values for B′(U), and B(Ū) = 1−B(U).
These equations break down, failing to consider alterna-

tives, if conditional probabilities (P (probe|U∗)) go to 0 or 1.
We avoid this case by capping A(E(b)) to 0.99 for stable
blocks, and avoiding very intermittent blocks (A < 0.1) as
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Figure 1: Median number of probes needed to reach a defini-
tive belief after a change in block state. Boxes show quar-
tiles, whiskers 5 and 95%ile; both equal median for outages.
Data: analysis and simulation; details: §5.3.

unsuitable for analysis, and we also cap belief to at most
0.99 (and at least 0.01).

4.3 Gathering Information: When to Probe
Trinocular probes each block with periodic probing at

medium-timescales coupled with adaptive probes sent quickly
when we suspect block status may have changed, and recov-
ery probes to account for sparse blocks. We probe addresses
from E(b) in a pseudorandom order, both to gather informa-
tion from many addresses and to spread the reply burden.

Periodic probing: We probe each analyzable blocks at a
fixed interval so we can bound the precision of our measure-
ments of network outages. Like prior work [13,29], we use a
fixed 11-minute interval for basic probing. The precision in
outage measurements follows from this period (see §5.2); we
choose it to trade desired precision against traffic. Periodic
probing and target rotation are design choices that make
Trinocular as lightweight on the target network as possible.

Adaptive probing: We classify a block as down when
B(U) < 0.1, and up when B(U) > 0.9. When a periodic
probe causes our belief to become uncertain, or to shift to-
wards uncertainty, we carry out additional, adaptive, short-
timescale probes to resolve this uncertainty. For adaptive
probing, we send new additional probes as soon as each prior
probe is resolved until we reach a conclusive belief of the
block status. Most probes are resolved by 3 s timeout, so
adaptive probes typically occur every 3 s.

Usually a few adaptive probes will quickly resolve uncer-
tainty in our belief; we study this value in §5.3. As address
usage becomes sparser, the number of probes to converge
grows geometrically (Figure 1). To bound probing, we send
at most 15 total probes per round (1 periodic and up to 14
additional adaptive). We cease probing when belief is defini-
tive and not shifting; if we cannot reach definitive belief in
15 probes we mark the block as uncertain. Uncertainty is
similar to the “hosed” state in prior work [29]. We specu-
late that Bayesian analysis could resolve some intermediate
states in their work, but detailed comparison is future work.

Recovery probing: There is an asymmetry when blocks
transition from down-to-up for intermittently active blocks
(low A(E(b))). While positive responses are strong evidence
the block is up, interpretation of negative responses has in-
creasing ambiguity as A falls. When an intermittent block
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comes back up, we still may see several negative responses
if probes chance upon temporarily unoccupied addresses.

To account for this asymmetry, we do additional recovery
probes for blocks that are down. From A(E(b)), the prob-
ability we get consecutive misses due to k vacant addresses
is (1 − A)k, resulting in a “false negative” belief that an up
block is down. We select k to reach a 20% false-negative rate
as a function of A (k is the “still down” line in Figure 1),
performing up to k = 15 total probes when A = 0.1 With re-
covery probes, false negatives cause outages in sparse blocks
that are one third of a round too long, on average.

Traffic: For long-term operation across the Internet, Tri-
nocular must have minimal impact on target networks. Our
benchmark is Internet background radiation, the unsolicited
traffic every public IP address receives as part of being on
the public network. It thus provides a reasonable baseline
of unsolicited traffic against which to balance our measure-
ment. A typical unused but routable /8 block receives 22 to
35 billion packets per week [34], so each /24 block sees 2000
to 3300 packets/hour. Our goal is to increase this rate by
no more than 1%, on timescales of 10 minutes.

In the best case, we send only 5.4 probes/hour per /24
block in steady state, and if all addresses in a block are
active, we probe each address only every other day. This
best-case is only a 0.25% increase in traffic. With adaptive
and recovery probing, our worst-case probing rate adds 15
probes per 11-minute round, an average probe rate of 82
probes/hour per /24 block, about 5% of the rate of back-
ground radiation. Since this worst case will occur only for
low-A blocks that change state, we expect typical perfor-
mance to be very close to best case, not worst case. In
§5.3 we show experimentally that median traffic is at 0.4%
to 0.7% of our benchmark, our 5% worst case occurs less
than 2% of the time.

4.4 Parameterizing the Model: Long-term Ob-
servation

We determine parameters E(b) and A(E(b)) for each block
to weigh the information in each probe.

Initialization: We use long-term, multi-year, Internet
censuses to initialize these parameters for each block. Prior
work generates regular IP history datasets that provide the
information we need [10]. These datasets include the respon-
siveness of each public, unicast IP address in IPv4 measured
16 times over approximately the last 3 years. We use the
full history (16 measurements) to identify E(b). To use re-
cent data, we consider only the 4 most recent censuses to
compute A(E(b)). We update E(b) every 2-3 months as
new history datasets become available, bringing in newly ac-
tive blocks and retiring gone-dark blocks. Current Internet
censuses are specific to IPv4. Our approach applies to IPv6
if E(b) can be determined, but methods to enumerate all or
part of IPv6 are an area of active research.

It is very traffic-intensive to track intermittent and sparse
blocks with reasonable accuracy (see Figure 1). We therefore
discard blocks where addresses respond very infrequently
(A(E(b)) < 0.1). We also discard blocks that are too sparse,
where E(b) < 15, so that we are not making decisions based
on a very few computers. Because A(E(b)) is based on
only recent censuses, discard of low A(E(b)) blocks removes
“gone dark” blocks [10].

Of the 16.8M unicast blocks as of July 2012, we find 14.5M
are routed, 8.6M are non-responsive, 0.7M have E(b) < 15,

1.5M have A(E(b)) < 0.1, leaving 3.4M blocks that are an-
alyzable: 24% of the routed space (and 40% of responsive).

Since most of the Internet is always up, we set belief to
indicate all blocks are up on startup.

Evolution: As networks change, model parameters may
no longer match the current network. We update our target
list and A-estimations every two months as new long-term
data is made available. At shorter-timescales, we must han-
dle or adapt when parameter estimates diverge from reality.

Underestimating E(b) misses an opportunity to spread
traffic over more addresses. Underestimating A(E(b)) gives
each probe less weight. In both cases, these errors have a
slight affect on performance, but none on correctness.

When E(b) is too large because it includes non-responsive
addresses, it is equivalent to overestimating A(E(b)). When
A(E(b)) exceeds the actual A, negative probes are given
too much weight and we infer outages incorrectly. Ideally
A(E(b)) will evolve as a side-effect of probing to avoid false
outages when it diverges from the long-term average. Our
current system does not track A dynamically (although work
is underway), so we detect divergence in post-processing,
and identify and discard inaccurate blocks. The result is
greater traffic, but few false outages.

Traffic: We do not count long-term observations against
Trinocular’s traffic budget since it is an ongoing effort, inde-
pendent of our outage detection. However, even if we take
responsibility for all traffic needed to build the history we
use, it adds only 0.18 probes per hour per /24 block since
collection is spread over 2 months.

4.5 Outage Scope From Multiple Locations
A single site provides only one view of the Internet, and

prior work has shown that about two-thirds of outages are
partial [17]. We use two approaches to judge outage scope:
we detect and eliminate outages where probers are effectively
off the network, and we merge views from multiple observers
to distinguish between partial and global outages. In §7.1
we report on how frequently these occur in the Internet.

Prober-local outages: Router failures immediately up-
stream of a prober unenlighteningly suggest that nearly the
entire Internet is out. We detect and account for outages
that affect more than half the probed blocks.

Partial and global outages: We detect outage scope by
merging observations from multiple vantage points. Because
each site operates independently and observations tend to
occur at multiples of a round, direct comparison of results
from different sites will show different timing by up to one
round. We correct these differences by taking the earlier of
two changes that occur, since periodic probes always delay
detection of a change in block status. We therefore cor-
rect disagreements in the merged results only when (a) both
sites agree before and after the disagreement, (b) the dis-
agreement lasts less than 1.1 rounds, and (c) the network
changes state before and after disagreement. Rules (a) and
(b) detect transient disagreement that is likely caused by
phase differences. Rule (c) avoids incorrectly changing very
short outages local to one vantage point. Merging results
thus improves precision. After correction, any remaining
disagreement represents partial outages.

4.6 Operational Issues
Our system implementation considers operational issues

to insure it cannot harm the Internet.
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Probing rate: In addition to per-block limits, we rate
limit all outgoing probes to 20k probes/s using a simple
token bucket. Rate limiting at the prober insures that we
do not overwhelm our first-hop router, and it provides a
fail-safe mechanism so that, even if all else goes wrong, our
prober cannot flood the Internet incessantly. In practice, we
have never reached this limit. (This limit is at the prober,
spread across all targets. Figure 4 shows that only a tiny
fraction of this traffic is seen at each target block.)

We expect our monitor to run indefinitely, so we have
implemented a simple checkpoint/restart system that saves
current belief about the network. This mechanism accom-
modates service on the probing machine. We restart our
probers every 5.5 h as a simple form of garbage collection.

We have run Trinocular for several multi-day periods, and
we expect to run Trinocular continuously when adaptive
computation of A is added.

Implementation: We use a high-performance ICMP prob-
ing engine that can handle thousands of concurrent probes.
We use memory-optimized data structures to keep state for
each block, leaving CPU cost to match probe replies with
the relevant block as the primary bottleneck. We find a sin-
gle prober can sustain 19k probes/s on one core of our 4-core
Opteron. Fortunately, probing parallelizes easily, and with
four concurrent probers, a single modest computer can track
all outages on the analyzable IPv4 Internet.

5. VALIDATING OUR APPROACH
We validate correctness with controlled experiments, and

probe rate by simulation and Internet experiments.

5.1 Correctness of Outage Detection
We first explore the correctness of our approach: if an out-

age occurs, do we always see it? For a controlled evaluation
of this question, we run Trinocular and probe 4 /24 blocks
at our university from 3 sites: our site in Los Angeles, and
universities 1600 km and 8800 km distant in Colorado and
Japan. We control these blocks and configure them in two-
hour cycle where the network is up for 30 minutes, goes down
at some random time in the next 20 minutes, stays down for
a random duration between 0 and 40 minutes, then comes
back up. This cycle guarantees Trinocular will reset between
controlled outages. We studied these blocks for 122 cycles,
yielding 488 observations as dataset Acontrolled , combining
data for 4 controlled blocks from datasets A1w (2013-01-19,
4 days), A3w (2013-01-24, 1 day), A4w (2013-01-25, 2 days),
A7w (2013-02-12, 2 days)2.

Figure 2 shows these experiments, with colored areas show-
ing observed outage duration rounded to integer numbers of
rounds. We group true outage duration on the x into rounds
with dotted black lines. Since periodic probing guarantees
we test each network every round, we expect to find all out-
ages that last at least one round or longer. We also see that
we miss outages shorter than a round roughly in proportion
to outage duration (the white region of durations less than
11 minutes). While these experiments are specific to blocks
where addresses always respond (A(E(b)) = 1), they gen-
eralize to blocks with A ≥ 0.3 since we later show that we

2 We name datasets like A7w for Trinocular scans of the
analyzable Internet (A20addr uses a variant methodology),
H 49w for Internet histories [11], S50j for Internet Sur-
veys [13]. The subscript includes a sequence number and
code for site (w: Los Angeles, c: Colorado, j: Japan).
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Figure 3: Observed outage duration vs. ground truth.
Dataset: Acontrolled (same as Figure 2).

take enough probes to reach a definitive conclusion for these
blocks (Figure 1).

These results confirm what we expect based on our sam-
pling schedule: if we probe a block with A ≥ 0.3, we always
detect outages longer than one round.

5.2 Precision of event timing
Figure 2 shows we do detect outages. We next evaluate

the precision of our observed outage durations.
We continue with dataset Acontrolled in Figure 3, com-

paring ground truth outage duration against observed out-
age duration at second-level precision. Our system measures
block transition events with second-level precision, but when
we examine outage durations, we see they group into hor-
izontal bands around multiples of the round duration, not
the diagonal line that represents perfect measurement. We
also see that error in each case is uniformly distributed with
error plus or minus one-half round. As expected, we miss
some outages that are shorter than a round; we show these
as red circles at duration 0. Finally, we also see a few ob-
servations outside bands, both here and marked with an as-
terisk in Figure 2. These are cases where checkpoint/restart
stretched the time between two periodic probes.

These results are consistent with measurement at a fixed
probing interval sampling a random process with a uniform
timing. When we compare observed and real event start-
and end-times it confirms this result, with each transition
late with a uniform distribution between 0 and 1 round.

These experiments use blocks where addresses are always
responsive (A(E(b)) = 1). We carried out experiments vary-
ing A from 0.125 to 1 and can confirm that we see no missed
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outages longer than one round and similar precision as long
as Trinocular can reach a conclusion (A > 0.3). When
0.3 < A < 1, additional adaptive probes add at most 45 s
to detection time (15 probes at 3 s per adaptive probe). For
blocks with A < 0.3, precision will deteriorate and block
status may be left uncertain.

We conclude that periodic probing provides a predictable
and guaranteed level of precision, detecting state transitions
in just more than a round (705 s, one round plus 15 adap-
tive probes) for blocks where A > 0.3. Greater precision is
possible by reducing the round duration, given more traffic.

5.3 Probing rate
Our goal is good precision with low traffic, so we next

validate traffic rate. We use simulation to explore the range
of expected probing rates, then confirm these based on our
Internet observations.

Parameter Exploration: We first use simulation to ex-
plore how many probes are needed to detect a state change,
measuring the number of probes needed to reach conclusive
belief in the new state. Our simulation models a complete
block (|E(b)| = 256) that transitions from up-to-down or
down-to-up. When up, all addresses respond with proba-
bility A(E(b)). When down, we assume a single address
continues to reply positively (the worst case outage for de-
tection).

Figure 1 shows the up-to-down and down-to-up costs.
Down-to-up transitions have high variance and therefore
have boxes that show quartiles and whiskers 5%ile and 95%ile
values. Up-to-down transitions typically require several probes
because Trinocular must confirm a negative response is not
an empty address or packet loss, but they have no variance
in these simulations. Trinocular reaches a definitive belief
and a correct result in 15 probes for all blocks with A > 0.3.

For down-to-up transitions, 15 probes are sufficient to re-
solve all blocks in 50% of transitions when A > 0.15, and in
95% of transitions when A > 0.3. Variance is high because,
when A is small, one will probe many unused addresses be-
fore finding an active one. This variance motivates recovery
probing (the black “still down” line).

Experimentation: To validate these simulations, Fig-
ure 4 shows probe rates from A7w , a 48-hour run of Trinoc-
ular on 3.4M Internet-wide, analyzable blocks starting 2013-
02-12 T14:25 UTC. Here we examine the subset A7w-5.5h

from this data: the first 5.5 hours (30 rounds) from one of
the four probers, with 1M blocks; other subsets are similar.

As one would expect, in most rounds, most blocks fin-
ish with just a few probes: about 73% use 4 or fewer per
round. This distribution is skewed, with a median of 13.2
probes/hour, but a mean of 19.2 probes/hour, because a few
blocks (around 0.18%) reach our probing limit per round.
Finally, we report that 0.15% of blocks actually show more
than expected traffic (the rightmost peak on the graph).
We find that a small number of networks generate multiple
replies in response to a single probe, either due to probing a
broadcast address or a misconfiguration. We plan to detect
and blacklist these blocks.

This experiment shows we meet our goals of generating
only minimal traffic, with probing at 0.4% (median) to 0.7%
(mean) of background radiation, and bounding traffic to
each block.

Probe rate as a function of A(E(b)): The above ex-
periment shows most blocks require few probes, and our
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simulations show probe rate at transition depends strongly
on address responsiveness. To verify this relationship, Fig-
ure 5 breaks down probes required by transition type and
each block’s A(E(b)).

The dotted line and thick quartile bars show aggregate
performance across all states. We track blocks with A >
0.3 with less than 4 probes per round, with relatively low
variance. Intermittent blocks (A < 0.3) become costly to
track, and would often exceed our threshold (15 probes).

Figure 5 identifies each state transition from Figure 4 sep-
arately. We see that the shape of recovery and outages
match simulations (Figure 1), although outage detection has
larger variance because of imperfect estimation of A(E(b)).

Overall this result confirms that Trinocular does a good
job of keeping probe rate low, and of adapting the probe
rate to meet the requirements of the block.

6. EFFECTS OF DESIGN CHOICES
We next explore two design choices that differ from prior

work and contribute to Trinocular accuracy.

6.1 How Many Addresses to Probe
Trinocular sends probes to E(b), the known active ad-

dresses in each block. Most prior systems probe a single
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address, sometimes a single specific address (such as that
ending in .1 [17, 18, 20], or they probe all addresses [28]).
We show that alternatives either can cover fewer blocks or
gather less information per probe, and may miss outages.

Information Per Probe and Coverage: To evalu-
ate the amount of information each probe may provide, we
examine IP history data for each alternative. We begin
with history dataset “it49w” [11] (identified here as H 49w ),
summarizing IPv4 censuses from 2006 to 2012. Figure 6
shows the distribution of availability value A for different ap-
proaches to selecting probing targets per block: probing .1,
a hitlist’s single most responsive address [10], all responsive
addresses (E(b)), and all addresses. This A value correlates
to the information a single probe provides about the block,
since probing an inactive address does not help determine if
the block is up or down.

We first compare probing active to all addresses (E(b) vs.
all). The E(b) line has greater availability for all blocks, so
A(E(b)) > A(b) and each Trinocular probe provides more
information than does probing all.

Dot-one and hitlist do better than E(b) for many of blocks
(about 40% of all, from 3.5M to the right), but poorer for
about 50% of all blocks (from 0.7M to 3.5M). In many cases
(for dot-one, about 2M blocks from 0.7 to 2.5M, about 30%
of all blocks), a single address provides no coverage where
E(b) shows some addresses would respond. Thus, while a
single target, may work well for 40% of blocks, particularly
when probing includes retries, it provides poor or no cov-
erage for even more blocks—probing E(b) can cover about
two-thirds more blocks than .1.

While A characterizes the information provided by a sin-
gle probe, Trinocular sends an adaptive number of probes,
allowing low-A blocks to get good coverage. To show an up-
per bound on Trinocular’s ability to find an active address,
the curve labeled “15-try-E(b)” shows the probabilty that
any of 15 probes will respond, suggesting that Trinocular
can use multiple probes to provide reasponable results even
for blocks with very intermittently responding addresses.

While other systems use secondary methods to improve re-
liability (perhaps verification with traceroute), or use fewer
but larger blocks (§6.2), we show that E(b) provides about
30% broader coverage than depending on a single address.

strategy single hitlist Trinoc. all
samples per /24 1 1 |E(b)| 256
which addresses .1 top ever resp. all

precision 99.97% 99.98% 100% (100%)
recall 58.6% 66.6% 96.6% (100%)

Table 2: Comparing precision and recall of different probing
targets. Dataset: S50j .

Effect on Outage Detection: To evaluate the impact of
probing choice on outages, we next examine a single dataset
with three choices of probe target. We use Internet survey
“it50j” [13], a 2-week ICMP probing of all addresses in 40k
/24 blocks starting 2012-10-27 (here called S50j ). We define
any response in probes to all addresses as ground truth since
it is the most complete. We define a false outage (fo) as a
prediction of down when it’s really up in all-probing, with
analogous definitions of false availability (fa), true availabil-
ity (ta), and true outages (to). We then compute precision
(ta/(ta + fa)), and recall (ta/(ta + fo)).

Table 2 compares these design choices. Here we focus
on the effect of number of targets on precision and recall.
While precision is uniformly good (inference of“up” is nearly
always correct), recall suffers because there are many false
outages. We conclude that probing one target (single and
hitlist cases) has lower recall. The problem is that in some
blocks the target address is never active, and in others with
transient usage it is only sometimes active. Probing multiple
addresses handles both of these cases.

Other systems use ICMP as a triggering mechanism for
secondary methods that verify outages; for example, tracer-
outes may recover from a false trigger. However, these sys-
tems raise other questions (is the target for traceroute up?),
and even when self-correcting, incur additional traffic. We
show that probing E(b) provides 30–40% better recall than
probing a single address, even without secondary verification.

6.2 What Granularity of Blocks
Most previous active probing systems track reachability

per routable prefix [17,20] (Hubble operation probes at most
1 target per BGP prefix [16]). However, reachability is not
correlated with BGP prefixes [3]; we see smaller units.

We next compare block-based schemes that directly mea-
sure each /24 block with prefix-based schemes where mea-
surement of a single representative address determines out-
ages for a routable prefix of one or many blocks. Prefix-
based schemes require little traffic and get broad coverage.
However, their trade-off is that they are imprecise, because
the single representative may not detect outages that occur
in parts of the prefix that are not directly measured. Block-
based schemes, on the other hand, require more traffic and
cannot cover blocks where no addresses respond, so they
have lower coverage. But because block-based schemes di-
rectly measure each block, they provide very good precision.

We first compare how precision and coverage trade-off
with block-based and prefix-based measurement schemes,
then how this difference in precision affects the accuracy
of outage detection.

Methodology: We first must define when block-based
or prefix-based methods can cover a prefix. Block-based
measurement systems can track outages in blocks that have
active addresses that respond. Here we require 20 active
addresses with A > 0.1 (a slightly stricter requirement than
Trinocular). Prefix-based systems expect an active .1 ad-
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in prefixes in blocks
block-direct 184,996 (44%) 2,438,680 (24%)
prefix-direct 240,178 (57%) 219,294 (2%)
prefix-inferred — 8,115,581 (81%)
overlap 152,295 (36%) 2,410,952 (24%)
neither 145,268 (35%) 1,908,122 (19%)
total 418,147(100%) 10,051,431(100%)

Table 3: Comparing coverage by granularity. Dataset:
A20addr .

dress (the target address). To be generous, we consider all .1
addresses in any /24 of a prefix, not just the first.

However, prefix-based systems only directly measure the
target address, and from that infer outages for the rest of the
prefix. Prefix-based systems require less probing traffic, but
we have shown that Trinocular’s probe rate is acceptable.

We evaluate the effects of coverage by re-analyzing an
Internet-wide survey taken 2012-08-03 [27], labeled A20addr .
As with S50j , this dataset consists of ICMP probes sent to
addresses every 11 minutes. But it covers only 20 addresses
in each of 2.5M /24 blocks, and only for 24 hours on 2012-
08-03. We compare this probe data with default-free BGP
routing tables from the same site on the same day.

Precision: We compare precision of coverage in Table 3.
In the left column we consider, for each routable prefix, if
any of its address blocks are covered by block-based mea-
surements, prefix-based, both, or neither. We see 418k pre-
fixes in the BGP routing table. Of these, prefix measure-
ments directly observe 240k prefixes (prefix-direct, 57%),
while block-based measurements include data for only 185k
prefixes (44%). Block-based coverage misses some prefixes
where all blocks include fewer than 20 addresses; prefix-
based coverage misses some prefixes where no .1 addresses
respond. Overall, prefix-based probing covers 13% more pre-
fixes, although block-based picks up 8% that prefix-based
misses (block-direct minus overlap).

The block-level view (right column) presents a different
picture. Prefix-based has much larger coverage (81%) when
one considers inferred blocks. This large coverage is due to
large prefixes that are sparsely occupied, like MIT’s 18/8,
where most blocks do not respond but a prefix-based scheme
allows 18.0.0.1 to represent reachability to them all. Block-
based coverage is also lower because it requires more than
one address per block. However, direct measurements in
these prefixes are quite few: we observe 10 times more blocks
than prefix-direct, but inference allows prefix-based to sug-
gest answers for 3 times more blocks. We next consider how
direct and indirect measurements affect accuracy.

Accuracy: We next compare the different granularities
of prefix- and block-based measurements affect the accuracy
of outages in A20addr .

For prefix-based measurements, we observe the status of
one address as representing the entire prefix. It therefore
directly observes outages in the block of the representative
address, and infers the status of other blocks of the pre-
fix. This approach works perfectly when an outage is prefix-
complete—all parts of the prefix go up or down together,
perhaps due to a common change in routing. It is incor-
rect when the outage is prefix-partial, and can either over-
or under-count the size of the outage when some blocks in
the prefix are up while others are down.

sites (% block-time)
(1 vantage point) (2 vantage points) (3)

status w c j wc wj cj wcj
all down 0.79 0.92 0.74 0.24 0.22 0.26 0.15

all up 99.21 99.08 99.26 98.53 98.62 98.53 98.01
disagree — — — 1.23 1.16 1.21 1.84

Table 4: Outages observed at three sites over two days.
Dataset: A7 .

To compare accuracy we simulate a prefix-based scheme
by observing outages in the prefix’s target. We compare to
re-analysis of A20addr with a Trinocular-like scheme, follow-
ing §7.2, but with all 20 addresses in each block as E(b).

With prefix-based schemes, often a prefix will be declared
down, but the data shows that other blocks in the prefix
remain up. We find that 25% of all block-rounds inferred
to be down are incorrect, so prefix inference often overstates
outages. It can also understate outages when small outages
do not occur at the direct measured block of the prefix; 37%
of block-round outages seen by us are missed by a prefix-
based scheme.

A fundamental limitation of prefix-based measurement is
that outages usually do not affect entire prefixes. To quan-
tify this claim, we examine each routable prefix with any
block-level outages in A20addr . For each prefix, we evalu-
ate if the outage is prefix-complete or prefix-partial. Any
prefix-based measurement scheme will always be incorrect
for prefix-partial outages, over- or under-reporting depend-
ing on the status of the directly measured block. We find
that only 22% of all prefix-rounds (that have any outage)
are prefix-complete, while 78% are prefix-partial, showing
that most outages are partial.

7. STUDYING THE INTERNET
We next examine what Trinocular says about the Internet.

7.1 Days in the Life of the Internet
We begin by evaluating Internet-wide outages to evaluate

the proportion of local and global outages, and demonstrate
Trinocular operation. We collected data tracking outages
on 3.4M blocks over two days, starting at 2013-02-12 14:25
UTC, from three universities, labeled w, c, and j in Los
Angeles, Colorado, and Japan. This experiment produces
three datasets: A7w , A7c , and A7j . For analysis, we then
identify blocks where A is inconsistent and remove them,
leaving 863k, 865k, and 863k blocks.

When rendered to an image with one pixel per round and
block, the data is overwhelming (omitted here for space, but
at [27]), forming an image of 270 pixels wide and 3.4M tall.
The image confirms widespread diurnal “outages”, confirm-
ing those we report on later (for example, in Figure 7).

Data from three vantage points lets us begin to evaluate
how widespread are the outages we observe. Table 4 shows
the level of agreement between the three sites for the pe-
riod when all three had overlapping coverage. We measure
agreement as percentage of block-time, that is, the sum of
the duration of outages for each block for a given status, for
each combination of the three vantage points.

Comparing columns w, c, and j, we see slight variations
between the three sites (from 0.74% to 0.92%). We have seen
this magnitude of variation in most measurements, with no
strong trend favoring any site. We see a similar variation
in these whole Internet measurements (here) as in measure-
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ments of a sample of the Internet in Figure 10, suggesting
that our samples are unbiased.

We can evaluate the degree of local and global outages
by comparing each site with the other. The 2-vantage point
columns (wc, etc.) show that many outages are local and
seen at one site but not another. Overlap of all three vantage
points (column wcj) shows only about 0.15% of the Internet
is down, suggesting only 16–20% of outages seen by a single
site are global. We believe we are converging on reporting
only global outages with three independent vantage points,
but future work should explore additional vantage points to
demonstrate a plateau.

Here we considered two days of the Internet. We are cur-
rently running Trinocular actively, and in future work plan
to compare long-term observations and compare to other
public information about network outages.

7.2 Re-analyzing Internet Survey Data
While §7.1 uses Trinocular to study the global Internet,

it provides only a brief snapshot. To get a longer-term per-
spective we next re-examine existing datasets using the prin-
ciples behind Trinocular.

We draw on Internet survey data collected over the last
three years from Los Angeles, Colorado, and Japan [13].
Surveys start with a random sample of 20k or 40k /24 blocks
(about 1–2% of the responsive Internet), then probes all
addresses in each block every 11 minutes for two weeks.

Survey data is quite different from Trinocular. All ad-
dresses in b are probed, not just E(b), so the survey traffic
rate is 100× greater than Trinocular. To adapt Trinocular
to this bigger but less-tuned data, we track belief of the state
of each block and use all probes as input. Since we probe
all addresses, here E(b) = b (Table 1). Since we cannot con-
trol probing, we have neither adaptive nor recovery probing,
but periodic probing occurs every 2.6 s, slightly more fre-
quent than Trinocular’s adaptive probing. This change is
both good and bad: frequent periodic probing can improve
precision in detection of outage start and end, but many
probes are sent uselessly to non-responsive addresses that
Trinocular would avoid.

Our reanalysis computes A(b) from the survey itself. This
“perfect” value differs from Trinocular operation, where A is
computed from possibly outdated IP history. Adapting A
from probes is work-in-progress.

7.3 Case Studies of Internet Outages
We next examine several cases where Internet outages

made global news. We see that systematic measurement of
outages can provide information the scope of problems and
the speed of recovery. Where possible, we visualize outages
by clustering blocks by similarity in outage timing [26], and
coloring blocks based on their geolocation.

7.3.1 Political Outages: Egypt and Libya
Two major 2011 outages were caused by political events:

most Egyptian routes were withdrawn on 2011-01-27 by the
government during what became the 2011 Egyptian revolu-
tion, and all Libyan routable prefixes were withdrawn 2011-
02-18 during the Libyan revolution. In both cases, we re-
examined surveys covering these events (S38c began 2011-
01-27, just after Egypt’s outage, and ran for 3 weeks to cover
Libya). We have strong evidence of the Egyptian outage,
with 19 /24 blocks of Egypt’s 22k in the survey (visualiza-

Figure 7: Six days of the 600 largest outages in March 2011
showing results of the Tōhoku earthquake. Dataset: S39c .
Colors are keyed to countries.

tion omitted due to space). The end of the observed outage
is confirmed with news reports and analysis of BGP data.

Libya’s Internet footprint is much smaller than Egypt’s:
only 1168 /24 blocks as of March 2011. Only one of those
blocks was in the dataset, and that block is too sparse (only
4 active addresses) to apply Trinocular. However, Trinoc-
ular’s lightweight probing means that it could have covered
the whole analyzable Internet. Had it been active at the
time, we would have tracked 36% of Libya’s 1168 blocks and
likely seen this outage.

7.3.2 March 2011 Japanese Earthquake
In survey S39c , we observe a Japanese Internet outage, in

Figure 7 mid-day (UTC) on 2011-03-11. This event is con-
firmed as an undersea cable outage caused by the Tōhoku
Japanese earthquake [22]. We mark a vertical line 30 min-
utes before the earthquake so as to not obscure transition
times; individual blocks do not cluster well because recovery
times vary, but the outage is visible as a large uptick in the
marginal distribution. Unlike most human-caused outages,
both the start and recovery from this outage vary in time.
For most blocks, the outage begins at the exact time of the
earthquake, as shown by the sudden large jump in marginal
distribution less than 6 hours into 2011-03-11, but for some
it occurs two hours later. Recovery for most blocks occurs
within ten hours, but a few remain down for several days.

This dataset also shows strong evidence of diurnal out-
ages in Asia as the green and white banding seen in the
low 300 blocks. These diurnal outages make Trinocular’s
outage rate slightly higher than our previous approach [26].
We show that these blocks come and go, meeting our defini-
tion of outage. Future work may distinguish between cases
where networks intentionally go down (such as turning of a
laboratory at night) from unexpected outages.

7.3.3 October 2012: Hurricane Sandy
We observed a noticeable increase in network outages fol-

lowing Hurricane Sandy. The Hurricane made landfall in
the U.S. at about 2012-10-30 T00:00 UTC. When we focus
on known U.S. networks, we see about triple the number of
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Figure 8: Six days of the 300 largest outages in U.S.-based
networks showing Hurricane Sandy. Dataset: S50j .
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Figure 9: Median number of outages per day, broken down
by state, weighted by outage size and duration, with jittered
individual readings (dots). Dataset: S50j .

network outages for the day following landfall, and above-
baseline outages for the four days following landfall.

Visualizing outages: Figure 8 visualizes the 400 blocks
in the U.S. with the largest degree of outages, and label (a)
shows a strong cluster of outages at 2013-10-30 (UTC) corre-
sponding with hurricane landfall. Hurricane-related outages
tend to be long, lasting one or more days. We believe these
outages correspond to residential power outages.

Quantifying outages: We know that some part of the
Internet is always down, so to place these outages in per-
spective, Figure 9 plots the exact number of /24 blocks that
are down in each round (this value is the marginal distribu-
tion of Figure 8). We plot each round as small red points
(with small jitter to make consecutive more distinct), and
we show 24-hour median values with the dark line.

Figure 9 shows U.S. networks had an outage rate of about
0.36% before landfall. (This rate seems somewhat less than
the global average.) This rate jumps to 1.27%, about triple
the prior U.S. baseline, for the 24-hours following landfall.
The outage level drops over the next four days, and finally
returning to the baseline on 2012-11-03.

Locating outages: To confirm the correlation between
the hurricane and these outages, we look at the weighted
blocks by state. The bars in Figure 9 identify outages by
state. The top “US” portion represents outages that are
geolocated in the U.S., but not to a specific state.

This figure shows that there are large increases in the
amount of outages in New York and New Jersey (the lighter
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Figure 10: Evaluation of single-site outages in 2-week sur-
veys over three years. Top shows availability, bottom shows
Internet events, outages and outage percentage over time.
(Dataset varies by time, as shown in the figure.)

colored bars in the middle of the graph) after hurricane
landfall on 2012-10-30, about three times the prior baseline.
These problems are generally resolved over the following four
days. (Because of our more sensitive methodology, we see
more outages here than in our prior analysis [14], but our
qualitative results are similar.)

While re-analysis of S50j provides insight into Sandy-
related problems and recover, survey collection places sig-
nificant traffic on the targets. Trinocular can cover 3.4M
blocks, about 80× more than the 40k in a survey, at about
1% the traffic to each target block.

7.4 Longitudinal Re-analysis of Existing Data
Finally, we re-analyze three years of surveys. This data

lets us compare the stability of our results over time and
across different locations.

Probing location can affect evaluation results. Should the
probing site’s first hop ISP be unreliable, we would under-
estimate overall network reliability. We re-analyze surveys
collected from three sites (see §7.2), each with several up-
stream networks. In Figure 10, locations generally alternate,
and each location is plotted with a different symbol (W:
empty symbols, C: filled, J: asterisks), and survey number
and location letter are shown at the graph top. Visually, this
graph suggests the results are similar regardless of probing
site and for many different random samples of targets. Nu-
merically, variation is low: mean outage rate (area) is 0.64%
with standard deviation of only 0.1%. To strengthen this
comparison we carried out Student’s t-test to evaluate the
hypothesis that our estimates of events, outages, and outage
rates for our sites are equal. The test was unable to reject
the hypothesis at 95% confidence, suggesting the sites are
statistically similar.

Besides location, Figure 10 suggests fairly stable results
over time. We see more variation after 2011, when the size
of the target list doubled to about 40k blocks.

These observations are each from a single vantage point,
thus they include both global and local outages. Surveys are
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taken for non-overlapping, two week periods because each
places a significant burden on the subject networks. Trinoc-
ular’s much lower traffic rate to targeted blocks (1% that of
a survey) allows outage detection to overcome both of these
limitations. As demonstrated in §7.1, it can operate con-
currently from three sites. We plan to carry out continuous
monitoring as Trinocular matures.

8. CONCLUSIONS
Trinocular is a significant advance in the ability to observe

outages in the network edge. Our approach is principled, us-
ing a simple, outage-centric model of the Internet, populated
from long-term observations, that learns the current status
of the Internet with probes driven by Bayesian inference. We
have shown that it is parsimonious, with each instance in-
creasing the burden on target networks by less than 0.7%. It
is also predictable and precise, detecting all outages lasting
at least 11 minutes with durations within 330 s. It has been
used to study 3.4M blocks for two days, and to re-analyze
three years of existing data, providing a new approach and
understanding of Internet reliability.
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