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ABSTRACT
While cloud computing providers offer guaranteed allocations for
resources such as CPU and memory, they do not offer any guar-
antees for network resources. The lack of network guarantees pre-
vents tenants from predicting lower bounds on the performance of
their applications. The research community has recognized this
limitation but, unfortunately, prior solutions have significant lim-
itations: either they are inefficient, because they are not work-
conserving, or they are impractical, because they require expensive
switch support or congestion-free network cores.

In this paper, we propose ElasticSwitch, an efficient and practi-
cal approach for providing bandwidth guarantees. ElasticSwitch is
efficient because it utilizes the spare bandwidth from unreserved ca-
pacity or underutilized reservations. ElasticSwitch is practical be-
cause it can be fully implemented in hypervisors, without requiring
a specific topology or any support from switches. Because hyper-
visors operate mostly independently, there is no need for complex
coordination between them or with a central controller. Our exper-
iments, with a prototype implementation on a 100-server testbed,
demonstrate that ElasticSwitch provides bandwidth guarantees and
is work-conserving, even in challenging situations.
Categories and Subject Descriptors: C.2.0 [Computer-
Communication Networks]: General
Keywords: Cloud Computing, Bandwidth Guarantees, Work-
Conserving

1. INTRODUCTION
Today, cloud networks are shared between tenants in a best-effort

manner. For this reason, current cloud providers cannot offer any
guarantees on the network bandwidth that each virtual machine
(VM) can use. The lack of bandwidth guarantees prevents tenants
from predicting lower bounds on the performance of running their
applications in the cloud, and from bounding the cost of running
these applications, given the current pricing models [3]. Further,
the lack of bandwidth guarantees impedes the transfer of enter-
prise applications to public clouds; many enterprise applications
require predictable performance guarantees, but cloud network per-
formance has been shown to vary [4] and congestion does occur in
datacenters [6, 24]. For these reasons, some cloud customers may
be willing to pay extra for bandwidth guarantees in the cloud.
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Bandwidth guarantees can be achieved through static reserva-
tions [4, 11, 21]. In this way, cloud providers can offer tenants an
experience similar to their own enterprise facilities, at a lower cost.
However, static reservations lead to inefficient utilization of the net-
work capacity, as the share of a tenant A cannot be used by another
tenant B when A is not fully utilizing it, i.e., static reservations are
not work-conserving. Considering that the traffic in datacenters is
bursty in nature and that the average utilization is low [6, 24], by
multiplexing networking resources in a work-conserving manner,
cloud providers can offer tenants a significantly better experience
than static reservations, since tenant jobs would complete faster. At
the same time, providers would improve the utilization of their own
infrastructure.

Thus, we aim to design a cloud datacenter network that:
• Provides Minimum Bandwidth Guarantees: Each VM is

guaranteed a minimum absolute bandwidth for sending/re-
ceiving traffic.

• Is Work Conserving: If a link L is the bottleneck link for a
given flow, then L should be fully utilized.

• Is Practical: The solution should be implementable and
deployable today (i.e., work with commodity unmodified
switches and existing network topologies) and scale to large
cloud datacenters.

Existing proposals for sharing cloud networks, e.g., [4,11–13,18,
20, 22], do not achieve all of the above goals simultaneously. For
example, Oktopus [4] and SecondNet [11] are not work conserving
and FairCloud [18] requires expensive support from switches, not
available in today’s commodity hardware (see §2 and §8 for more
details on related work).

In this paper, we propose ElasticSwitch, a solution that achieves
our goals. ElasticSwitch is fully implementable inside hypervisors,
and does not require any support from switches. Tenants request
minimum bandwidth guarantees by using the hose model [4, 9, 12,
18, 20] shown in Fig. 1. The hose model offers the abstraction that
all VMs of one tenant appear to be connected to a single virtual
switch through dedicated links. ElasticSwitch could also be used
with other abstractions based on the hose model, such as the TAG
model [14] or a hierarchical hose model, similar to one in [4] (§9).

ElasticSwitch decouples its solutions for providing bandwidth
guarantees and for achieving work-conservation into two layers,
which both run in each hypervisor. The higher layer, called guar-
antee partitioning (GP), ensures that the hose-model guarantee for
each VM is respected, regardless of the network communication
pattern. The guarantee partitioning layer divides the hose-model
bandwidth guarantee of each VM X into pairwise VM-to-VM
guarantees between X and the other VMs with which X commu-
nicates. The lower layer, rate allocation (RA), achieves work-
conservation by dynamically increasing rates beyond the guaran-
tees allocated by guarantee partitioning, when there is no conges-
tion. For this purpose, rate allocation employs a TCP-like mecha-
nism to utilize all available bandwidth between pairs of VMs. The
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Figure 1: Example hose-model bandwidth guarantees for two
tenants (Blue and Red) and the mapping for their virtual net-
works to a physical network. In the hose model, each VM V
has a dedicated link of capacity BV to a non-blocking virtual
switch.

rate allocation layer dynamically borrows unallocated capacity, or
capacity guaranteed to other VMs but not currently being used.

ElasticSwitch is a distributed solution, where hypervisors oper-
ate without the use of any complex coordination in addition to the
normal flow of traffic. This is unlike prior hypervisor-based pro-
posals for providing bandwidth guarantees, such as Oktopus [4]
and SecondNet [11], which require frequent communication with a
central controller and thus have limited scalability.

Fig. 2 shows an example of how ElasticSwitch gives minimum-
bandwidth guarantees, unlike a “no protection” system, but is
work-conserving, unlike a static-reservation system. In this ex-
ample, one TCP flow, with a guarantee of 450Mbps, competes
with UDP background traffic at various rates, sharing a 1Gbps
link. When there is spare capacity, ElasticSwitch yields lower TCP
throughput than the no-protection system; this gap is a function
of parameters we can set to trade off between accurate bandwidth
guarantees and full utilization of spare capacity (§7). The ideal
work-conserving behavior is also plotted.

Contributions: In this paper, we describe:

1. A hypervisor-based framework that enables work-conserving
bandwidth guarantees without switch modifications (§3). We
construct this framework in two layers: a guarantee par-
titioning layer providing guarantees, and a rate allocation
layer that provides work conservation, by grabbing addi-
tional bandwidth when there is no congestion.

2. Algorithms for guarantee partitioning (§4) and rate alloca-
tion (§5), based on hypervisor-to-hypervisor communication,
which ensure that each VM’s hose-model guarantee is re-
spected, regardless of the other VMs in the network, and that
the network is efficiently utilized.

3. A prototype implementation of ElasticSwitch (§6), and an
evaluation in a 100-server datacenter network testbed (§7).

2. PROBLEM AND BACKGROUND
Our goal is to design a cloud datacenter network that provides

minimum bandwidth guarantees for VMs communicating inside
the cloud, in an efficient, scalable, and easily deployable way.
Bandwidth guarantees: Infrastructure-as-a-Service (IaaS) provi-
ders (either public or private) need to ensure performance isola-
tion among all tenants sharing the underlying physical infrastruc-
ture. However, most academic and industrial work on virtualiza-
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Figure 2: Bandwidth of one VM-to-VM TCP flow guaranteed
450Mbps, with varying UDP background rates

tion has focused on compute and storage, and has only recently
addressed network performance virtualization. Even today, many
public cloud providers, such as Amazon EC2, offer no network
guarantees, and thus tenants experience highly variable network
bandwidth (by a factor of five in some cases [4]).

To model bandwidth guarantees, we focus on the Hose model, a
well-understood model which mimics practical switched networks
[4,9,12,18,20]. For example, in Fig. 1 the Blue tenant sees a virtual
switch VS1, to which each of its VMs is connected via a dedicated
link with a specified “hose” bandwidth. For simplicity, we use sym-
metric hoses, with equal ingress and egress bandwidths. However,
it is easy to extend ElasticSwitch to use asymmetric hoses.

Given a tenant and the hose model for its virtual network, cloud
datacenters need an admission control mechanism to determine if
that tenant’s network can be deployed on the physical network
without violating the guarantees for the existing tenants. This prob-
lem has been studied in the past. For example, Oktopus [4] deter-
mines the placement of VMs in the physical network such that the
physical link capacities (L1-L6 in the example figure) can sup-
port the hose model guarantees for all tenants. In the example of
Fig. 1, assuming the hose-model bandwidths for both tenants are
500Mbps, and all link capacities are 1Gbps, the physical layout
shown in the figure could potentially satisfy the guarantees.

However, just placing VMs without any enforcement of band-
width limits does not necessarily satisfy the hose model guarantees.
For example, in Fig. 1, Red VMs X and Y can send traffic to VM
Q at 1Gbps, interfering with the traffic from Blue VM B to VM A.

The main issue addressed by this paper is the enforcement of
bandwidth guarantees under hose models. We assume that the ad-
mission control and VM placement are existing components in the
cloud computing infrastructure.
Efficiency: While it would be possible to enforce bandwidth guar-
antees through strict static provisioning of each link among the ten-
ants, it would be inefficient in terms of network utilization. Con-
sider the example in Fig. 1. Suppose both tenants are running
MapReduce jobs. When Red VM Q is not using any bandwidth
(e.g., the Red tenant is in the Map phase), Blue VM A could blast
at 1Gbps and thus potentially shorten its shuffle phase by half. So in
this example, and in general, a work-conserving enforcement pol-
icy could substantially improve the performance of a large fraction
of applications. Since network link bandwidths are often signifi-
cantly larger than guarantees (e.g., 10Gbps vs 100Mbps), and since
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Table 1: Summary of previous approaches and comparison to ElasticSwitch
Related Work BW Guarantee Model Work-Conserving Control Model Switch Requirements Topology Requirements
Oktopus [4] Hose, Virtual Oversub-

scribed Cluster
No Centralized None None

SecondNet [11] Hose, VM-to-VM No Centralized MPLS None
Gatekeeper [20] Hose Yes Distributed None Congestion-Free Core

EyeQ [12] ECN
Seawall [22], NetShare [13] No Guarantees (source/ Yes Distributed None NoneFairCloud [18] (PS-L/N) tenant fair sharing)

FairCloud [18] (PS-P) Hose Yes Distributed per VM Queues Tree
ElasticSwitch Hose Yes Distributed None None

Guarantee
Partitioning (GP)

Rate Allocation (RA)

Provides minimum bandwidth
guarantees by carefully dividing
hose model guarantees into VM
to VM guarantees

Provides work conservation by
allocating spare capacity in max
min fashion based on VM to
VM guarantees

VM toVM
Guarantees Demand

estimates

Hypervisor

Tr
af
fic

VMs

Figure 3: Overview of ElasticSwitch

datacenter traffic is bursty [6, 24], work-conservation can give an
order of magnitude more bandwidth to a VM.

Thus, given a choice, customers would prefer providers offer-
ing work-conserving bandwidth guarantees, compared to providers
offering only one of these two properties.
Scalability: Large public cloud providers host several thousands
of tenants, each with tens to thousands of VMs. Further, traffic
demands change rapidly and new flows arrive frequently, e.g., a
datacenter can experience over 10 million flows per second [6].

Given the high frequencies at which demands change and flows
arrive, the provider must also adjust rate limits at a high frequency.
Using a centralized controller to adjust these limits would scale
poorly, since each VM can compete for bandwidth over an arbi-
trary set of congested links, and the controller would have to co-
ordinate across all VMs and all links in the network. This would
entail tremendous computation costs, and communication costs for
control traffic. For example, Tavakoli et al. [25] estimate that a
network of 100K servers needs 667 NOX controllers just for han-
dling the flow setups, which is a significantly simpler problem. Fur-
thermore, making the controller sufficiently available and reliable
would be extremely expensive.

Thus, our goal is to design a distributed bandwidth guarantee
enforcement mechanism that can scale to large cloud datacenters.
Deployability: We aim for our solution to be deployable in any
current or future datacenter. Towards this end, we design our solu-
tion with three requirements. First, we want our solution to work
with commodity switches, and to not assume any non-standard fea-
tures. This reduces the equipment costs for cloud providers, who
are quite cost-sensitive.

Second, we do not want our solution to depend on the network
topology. For example, it should work on topologies with differ-
ent over-subscription factors. Most existing networks are over-
subscribed. While oversubscription factors have decreased over
the last decade (from 100:1 to 10:1), oversubscription has not
disappeared. All of the datacenters studied in [6] were oversub-
scribed; commercial datacenters had an oversubscription ratio of

20:1. Given that average network utilization is low, cost concerns
may encourage oversubscription for the foreseeable future. We are
aware of tens of cloud datacenters under construction that are sig-
nificantly oversubscribed.

Third, to be applicable in a wide variety of cloud datacenters, our
solution should be agnostic to applications and workloads.
Recent work: Recently, researchers have proposed different so-
lutions for sharing cloud datacenter networks, but none of them
simultaneously meets all of the above goals. Table 1 summarizes
these solutions; we discuss them in detail in §8.

3. ElasticSwitch OVERVIEW
In this paper, we focus on a single data center implementing the

Infrastructure as a Service (IaaS) cloud computing model. For sim-
plicity of exposition, we discuss ElasticSwitch in the context of a
tree-based physical network, such as a traditional data center net-
work architecture or the more modern multi-path architectures like
fat-tree [1] or VL2 [10]. For multi-path architectures, we assume
the traffic is load balanced across the multiple paths by an orthogo-
nal solution, e.g., [2,15,19]. (ElasticSwitch can be applied to other
topologies, see §9).

ElasticSwitch decouples providing bandwidth guarantees from
achieving work conservation. Thus, ElasticSwitch consists of two
layers, both running inside each hypervisor as shown in Fig. 3. The
first layer, guarantee partitioning (GP), enforces bandwidth guar-
antees, while the second layer, rate allocation (RA), achieves work
conservation.

The GP layer provides hose model guarantees by transforming
them into a set of absolute minimum bandwidth guarantees for each
source-destination pair of VMs. More specifically, the GP compo-
nent for a VM X divides X’s hose model guarantee into guarantees
to/from each other VM that X communicates with. The guarantee
between source VM X and destination VM Y , BX→Y , is com-
puted as the minimum between the guarantees assigned by X and
Y to the X → Y traffic.

The GP layer feeds the computed minimum bandwidth guaran-
tees to the RA layer. Between every pair of VMs X and Y , the
RA layer on the host of VM X uses a rate-limiter to limit the
traffic. The rate-limit assigned by RA does not drop below the
guarantee BX→Y , but can be higher. Specifically, RA aims to
grab available bandwidth in addition to the provided guarantee,
when the path from X to Y is not congested. RA shares the ad-
ditional bandwidth available on a link L in proportion to the band-
width guarantees of the source-destination VM pairs communicat-
ing on L. For example, assume BX→Y = 200Mbps and BZ→T =
100Mbps (X , Y , Z and T are VMs). In this case, sharing a link
L larger than 300Mbps only between X→Y and Z→T is done in
a 2:1 ratio; e.g., if L is 1Gbps, X→Y should get 666Mbps and
Z→T 333Mbps. For this purpose, rate allocation uses a mecha-
nism similar to a weighted version of a congestion control algo-
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rithm, such as TCP, where each VM-to-VM communication uses a
single weighted flow (TCP flows have equal weights). RA is sim-
ilar to Seawall [22] and the large body of work on weighted TCP,
e.g., MulTCP [8], TCP-LASD [16].

Each hypervisor executes GP and RA periodically for each
hosted VM. GP is performed less frequently than RA, since the
guarantees allocated for the VM-to-VM flows of a VM X should
be updated only when demands change to/from X , while rates allo-
cated for those VM-to-VM flows should be updated when demands
change on any congested link used by X .
VM placement: ElasticSwitch is orthogonal to the VM place-
ment strategy, as long as the admission control criterion is satisfied,
i.e., the sum of the bandwidth guarantees traversing any link L is
smaller than L’s capacity.
External traffic: Traffic to/from hosts located outside the cloud
must also be considered when providing bandwidth guarantees in-
side the cloud, since external and internal traffic typically share the
same datacenter network links. For brevity, we describe only one
way to model the external traffic. In this model, all external hosts
appear as a single node attached to the virtual switch in the hose
model; the guarantee for the aggregate external traffic only applies
up to the egress from the datacenter. For this purpose, the external
traffic must be routed through proxies executing ElasticSwitch.

4. GUARANTEE PARTITIONING (GP)
The distributed GP layer partitions the hose-model guarantee of a

VM X into VM-to-VM guarantees. GP aims to achieve two goals:
(1) safety, meaning that the hose-model guarantees of other VMs in
the network cannot be violated by the assigned VM-to-VM guaran-
tees and (2) efficiency, i.e., VM X’s throughput is not limited below
what X would obtain if it were communicating through a physical
network with capacity equivalent to X’s hose-model guarantee.

We partition guarantees because implementing the hose model
requires rate enforcement at the granularity of VM-to-VM pairs;
per-VM limiters do not suffice. For example, depending on the
communication pattern and demands, some of the VM-to-VM
flows outgoing from VM X can be bottlenecked in the hose model
at the source X , while other VM-to-VM flows from X can be bot-
tlenecked in the hose model at the destination; this situation re-
quires VM-to-VM limiters to emulate the hose model.

For a VM X , suppose Qs
X denotes the set of VMs that are send-

ing traffic to X and Qr
X those receiving from X (almost always

Qs
X = Qr

X ). For any VM Y in Qr
X , X’s hypervisor assigns a

bandwidth guarantee BX→Y
X for the communication to Y . Inde-

pendently, for each VM Y ∈ Qs
X X’s hypervisor assigns guar-

antee BY →X
X for the traffic from Y . The total of such guaran-

tees sums up to X’s hose-model guarantee, BX , in each direction,
i.e.,

∑
Y ∈Qr

X
BX→Y

X =
∑

Y ∈Qs
X
BY →X

X = BX . (Note that it is
straightforward to adapt ElasticSwitch to use an asymmetric hose
model, with different incoming and outgoing guarantees.)

As we illustrate in Fig. 4, the key to ElasticSwitch’s ability to
provide hose model guarantees is to set the pairwise guarantee be-
tween source X and destination Y to the minimum of the guaran-
tees allocated by X and Y :

BX→Y = min(BX→Y
X ,BX→Y

Y )

This allocation ensures the safety property for GP because, on
any link L, the sum of the bandwidth guarantees for the VM-to-VM
flows does not exceed the link bandwidth allocated by admission
control for the hose model on link L. This is easy to see, since X’s
guarantee is divided between its flows, and each VM-to-VM flow
gets the minimum of the guarantees allocated by source and desti-
nation.1 For instance, for X’s incoming traffic,

∑
V ∈Qs

X
BV →X =∑

V ∈Qs
X
min(BV →X

X , BV →X
V ) ≤ ∑

V ∈Qs
X
BV →X

X = BX .
Hence, the guarantees assigned by GP do not oversubscribe the

reserved guarantees on any link, and, if we were to rate-limit all the
VM-to-VM flows of VM X to these values, the guarantees of any
other VM in the network are not affected by the traffic to/from X .

For example, to implement the Blue tenant’s hose model from
Fig. 1 in the physical topology (shown in the same figure), the Blue
tenant should be given a minimum guarantee for its incoming/out-
going bandwidth on link L3. Assuming each server hosts at most
two VMs, the Blue tenant competes on L3 with, at most, the band-
width of the flows communicating with VM Q. However, the total
bandwidth guarantee of the VM-to-VM flows of the Red tenant on
link L3 will always be less or equal to BQ.2 Thus, by ensuring that
BA+BQ is less than the capacity of L3, GP ensures that no tenant
can violate the hose models of other tenants.

The process of assigning guarantees for VM-to-VM flows is ap-
plied for each VM, regardless of whether that VM is a source
or destination. However, to compute the guarantee BX→Y be-
tween VMs X and Y , the hypervisor of the source VM X
must know the guarantee allocated by Y ’s hypervisor to X→Y ,
i.e., BX→Y

Y . ElasticSwitch does this with special remote-guarantee
control packets sent by destination hypervisors to source hypervi-
sors. Initially, each flow is given the guarantee allocated by the
source hypervisor.

One remaining question is how the hypervisor of VM X divides
X’s guarantee between its VM-to-VM flows. The naive solution
is to simply divide X’s guarantee equally between its VM-to-VM
flows. This approach works well when all VM guarantees in the
hose model are equal, and all the traffic demands are either unsat-
isfied or equal. However, this is typically not the case in practice.
For example, many of the flows are short (send a few packets) or
have inherently limited demands.

We first describe GP in a static setting, where VM-to-VM flows
have constant traffic demands and new flows are not generated, and
then describe GP in a dynamic environment.
GP in a static context: In ElasticSwitch, we divide a VM’s guar-
antee between its VM-to-VM flows in a max-min fashion based on
traffic demands. For example, assume BX=100Mbps for a VM X .
Also assume that X communicates with three other VMs Y , Z and
T , and the demand to Y is only 20Mbps, while demands to Z and
T are very large (unbounded). In this case, guarantee partitioning
assigns a guarantee of 20Mbps to the X→Y path (i.e., BX→Y

X =
20Mbps), and a guarantee of 40Mbps to each of X→Z and X→T .
GP in a dynamic context: In practice, actual traffic demands are
unknown and vary in time. ElasticSwitch estimates demands of
1We often refer to a guarantee as assigned by VM X , although
guarantees are always assigned by the hypervisor hosting X .
2We assume here that BQ < BX+BY +BZ+BP , since the hose-
model reservation on link L3 is min(BQ, BX +BY +BZ +BP ).
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VM-to-VM flows by measuring their throughputs between epochs
(information in fact provided by the RA layer). If the demand es-
timate is smaller (by a significant error margin) than the allocated
guarantee, the VM-to-VM flow is considered bounded and its guar-
antee can be reduced. Otherwise, the flow was not satisfied and its
guarantee should be increased, if possible. We describe this process
from the perspective of a new flow.

When a new VM-to-VM flow starts, its demand is unknown. To
optimize for the bi-modal distribution of flows typically observed in
datacenters, in which most flows are very small and a few are quite
large [6, 24], we set its demand estimate (and guarantee) at a small
value. If, at the next periodic application of GP, we detect that the
flow did not utilize its guarantee, then we deem the flow as bounded
and use its measured demand in the previous epoch as the estimate
(guarantee) for the next epoch (plus an error margin). If the flow did
utilize its guarantee in the previous epoch, then we exponentially
increase its guarantee. We increase the guarantee only up to the fair
share of unbounded VM-to-VM flows to/from the VM for which
GP is applied.

We emphasize that the above discussion refers only to new VM-
to-VM flows. However, most of the TCP flows that a VM X initi-
ates will be to VMs that X has already communicated with in the
recent past (e.g., [7] reports that each service typically communi-
cates with a small number of other services). When all TCP flows
between two VMs are short, the guarantee for that VM-to-VM flow
will simply have a small value (since the demand will be small).

If all flows of one VM have bounded demands, any unallocated
part of the bandwidth guarantee of that VM is redistributed (propor-
tional to demands), such that the VM’s entire guarantee is allocated.
This allows a timely response if the demand of a flow increases.
Weak interdependence for efficiency: Up to now, we described
GP as applied for each VM X independently of other VMs. How-
ever, to achieve efficiency and ensure X can fully utilize its guar-
antee in the hose model, it is useful to take into account the guar-
antees assigned by the remote VM with which X communicates.
Specifically, since for the communication between X → Y only
the minimum of BX→Y

X and BX→Y
Y is used, some of X’s or Y ’s

guarantees might be “wasted.” Such potential waste can only occur
for senders; intuitively, receivers simply try to match the incoming
demands, so they cannot “waste” guarantees.

For example, assume that in Fig. 4 all demands are infinite and
all VMs are part of the same hose model with identical guarantees,
B. In this case, the guarantee assigned to the flow X → Y at Y ’s
hypervisor, BX→Y

Y , will be B
3

, which is smaller than the guarantee
assigned by X’s hypervisor, BX→Y

Y = B
2

. Thus, a part of X’s guar-
antee could be wasted because the X → Y flow is bottlenecked at
Y . Thus, we should assign BX→Z

X to be 2B
3

instead of B
2

.
To address this situation, senders take into account receivers’

assigned guarantees. Specifically, if destination Y allocates a
smaller guarantee than sender X (i.e., BX→Y

X > BX→Y
Y ), and

if Y marks this flow as unbounded3, meaning that Y allocates
to X→Y its maximum fair share, the sender simply deems the
demand of the flow as the destination’s guarantee and hence sets
BX→Y

X = BX→Y
Y for the next epoch. Thus, our approach ensures

that taking the minimum of source and destination VM-to-VM
guarantees does not limit VMs from achieving their hose model
guarantees. Note that Y must mark the flow as unbounded since,
otherwise, Y ’s lower guarantee for the flow means that either: (a)
the X → Y flow indeed has lower demand than the guarantees as-

3To mark a flow as unbounded, the remote-guarantee control pack-
ets contain an additional flag bit.

signed by either X or Y , or (b) Y misclassified the flow, a situation
that should be resolved at the next iteration.

Because GP is not entirely independent between VMs, a change
in one VM-to-VM flow’s demand or a new flow can “cascade” to
the guarantees of other VMs. This cascading is loop-free, neces-
sary to fully utilize guarantees, and typically very short in hop-
length. For example, if all tenant VMs have equal bandwidth
guarantees, updates in guarantees cascade only towards VMs with
strictly fewer VM-to-VM flows. More specifically, a new VM-to-
VM flow X1 → X2 indirectly affects guarantees on the cascading
chain X3, X4, X5 iff : (i) all VMs fully utilize guarantees; (ii)
flows X3 → X2, X3 → X4, and X5 → X4 exist; and (iii) the
X3 → X2 guarantee is bottlenecked at X2, X3 → X4 at X3,
X5 → X4 at X4.
Convergence: The guarantee partitioning algorithm converges to a
set of stable guarantees for stationary demands. We do not present
a formal proof, but the intuition is as follows. Assume X is (one of)
the VM(s) with the lowest fair-share guarantee for the unbounded
incoming or outgoing VM-to-VM flows in the converged alloca-
tion; e.g., if all VMs have the same hose bandwidth guarantee and
all demands are unsatisfied, X is the VM that communicates with
the largest number of other VMs. Then, X will (i) converge in the
first iteration and (ii) never change its guarantee allocation. The
senders (or receivers) for X will use the guarantees allocated for
X and not change them afterwards. Thus, we can subtract X and
its flows, and apply the same reasoning for the rest of the VMs.
Hence, the worst case convergence time is is on the order of the
number of VMs.

However, we do not expect the convergence of GP to be an is-
sue for practical purposes. In fact, we expect convergence to oc-
cur within the first one/two iterations almost all the time, since
multi-step convergence requires very specific communication pat-
terns and demands, described earlier for the cascading effect.

In dynamic settings, convergence is undefined, and we aim to
preserve safety and limit transient inefficiencies. GP’s use of the
minimum guarantee between source and destination ensures safety.
We limit transient inefficiencies by not considering new flows as
unbounded, and by applying GP frequently and on each new VM-
to-VM flow. We evaluate transient inefficiencies in Section 7.

5. RATE ALLOCATION (RA)
The RA layer uses VM-to-VM rate-limiters, such that: (1) the

guarantees computed by the GP layer are enforced, and (2) the en-
tire available network capacity is utilized when some guarantees
are unused; in this case, excess capacity is shared in proportion to
the active guarantees.

We control rate-limiters using a weighted TCP-like rate-
adaptation algorithm, where the weight of the flow between VMs
X and Y is BX→Y , the bandwidth provided by the GP layer. We
compute a shadow rate as would result from communicating using
a weighted TCP-like protocol between X and Y . When this rate
is higher than the minimum guarantee BX→Y , we use it instead of
BX→Y , since this indicates there is free bandwidth in the network.

Concretely, the rate-limit from source VM X to destination VM
Y is set to RX→Y :

RX→Y = max(BX→Y,RW_TCP(B
X→Y,FX→Y))

where RW _TCP is the rate given by a weighted TCP-like algorithm
operating with weight BX→Y and congestion feedback FX→Y .

Weighted TCP-like algorithms have been extensively stud-
ied, e.g., [8, 16, 22], and any of these approaches can be used for
ElasticSwitch. We use a modified version of the algorithm pro-
posed by Seawall [22], which, in turn, is inspired by TCP CUBIC.
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Seawall also uses this algorithm to control rate-limiters in hypervi-
sors. Similar to other proposals [12,20,22], we use control packets
to send congestion feedback from the hypervisor of the destination
back to the hypervisor of the source.

The Seawall algorithm increases the rate-limit of the traffic from
X to Y on positive feedback (lack of congestion) proportional to
the weight, using a cubic-shaped4 function to approach a goal rate
and then explore higher rates above the goal. The goal rate is the
rate where congestion was last experienced. Before reaching the
goal, the rate r is increased in a concave shape by w · δ(rgoal −
r)(1−Δt)3 at each iteration, where w is the weight of the flow, δ
is a constant, and Δt is proportional to the time elapsed since the
last congestion. Above the goal, the rate is convexly increased by
n ·w ·A at each iteration, where n is the iteration number and A is a
constant. On negative feedback (e.g., lost packets), the rate-limit is
decreased multiplicatively by a constant independent of the weight.
Rationale for modifying Seawall’s algorithm: Our initial ap-
proach was to actually maintain a shadow TCP-like rate and use
the maximum between that rate and the guarantee. However, sim-
ply running a weighted TCP-like algorithm, such as Seawall, did
not provide good results in terms of respecting guarantees. Un-
like a traditional TCP-like algorithm, the rate in our case does not
drop below an absolute limit given by the guarantee. When there
are many VM-to-VM flows competing for bandwidth on a fully
reserved link, flows would be too aggressive in poking their rate
above their guarantee. For example, the rate of some VM-to-VM
flows would raise above the guarantee far in the convex part of the
rate increase, which would hurt the other flows.

In practice, there is a tradeoff between accurately providing
bandwidth guarantees and being work conserving. This is partic-
ularly true since we do not rely on any switch support, and our
method of detecting congestion is through packet drops. In order
for flows to detect whether there is available bandwidth in the net-
work, they must probe the bandwidth by increasing their rate. How-
ever, when the entire bandwidth is reserved through guarantees and
all VMs are active, this probing affects the rest of the guarantees.

In ElasticSwitch we design the RA algorithm to prioritize the
goal of providing guarantees, even under extreme conditions, in-
stead of being more efficient at using spare bandwidth. As we show
in the evaluation, ElasticSwitch can be tuned to be more aggres-
sive and better utilize spare bandwidth, at the expense of a graceful
degradation in its accuracy in providing guarantees.
Improved rate allocation algorithm: When many VM-to-VM
flows compete on a fully reserved link, even a small increase in the
rate of each flow can affect the guarantees of the other flows. This
effect is further amplified by protocols such as TCP, which react
badly to congestion, e.g., by halving their rate. Thus, the algorithm
must not be aggressive in increasing its rate.

Starting from this observation, we devised three improvements
for the rate-adaptation algorithm, which are key to our algorithm’s
ability to provide guarantees:

1. Headroom: There is a strictly positive gap between the link
capacity and the maximum offered guarantees on any link.
Our current implementation uses a 10% gap.

2. Hold-Increase: After each congestion event for a VM-to-VM
flow, we delay increasing the rate for a period inversely pro-
portional to the guarantee of that flow.

3. Rate-Caution: The algorithm is less aggressive as a flow’s
current rate increases above its guarantee.

4Seawall’s function is not cubic; the convex part is quadratic while
the shape of the concave part depends on the sampling frequency.

Hold-Increase: After each congestion event, the hypervisor man-
aging a VM-to-VM flow with guarantee BX→Y reduces the flow’s
rate based on the congestion feedback, and then holds that rate for
a period TX→Y before attempting to increase it. This period is
set inversely proportional to the guarantee, i.e., TX→Y ∝ 1

BX→Y .
Setting the delay inversely proportional to the guarantee ensures
that (i) all flows in a stable state are expected to wait for the same
amount of time regardless of their guarantee, and (ii) the RA algo-
rithm still converges to rates proportional to guarantees.

Two flows, X → Y and Z → T , with rates RX→Y and RZ→T

should experience congestion events in the ratio of Cratio =
RX→Y

RZ→T . In a stable state, the RA algorithm ensures that rates of

flows are in proportion to their guarantees: RX→Y

RZ→T = BX→Y

BZ→T .

Thus Cratio = BX→Y

BZ→T . Since the number of delay periods is pro-
portional to the number of congestion events and the duration of
each period is inversely proportional to the guarantees, both flows
are expected to hold increasing rates for the same amount of time.

The delay is inversely proportional to the guarantee, rather than
to the rate, to allow the RA algorithm to converge. Assuming the
same two flows as above, when the X → Y flow gets more than
its fair share, i.e., RX→Y > RZ→T · BX→Y

BZ→T , the X → Y flow is
expected to experience a larger number of packet losses. For this
reason, it will have more waiting periods and will be held for more
time than when at its fair rate. This will allow Z → T to catch up
towards its fair rate.

In cases when a large number of packets are lost, the rate of a
large flow can be held static for a long time. For our prototype
and evaluation, we also implemented and tested a scheme where
the delay is computed in proportion to a logarithmic factor of the
congestion events instead of the linear factor described above. We
choose the base such that the holding periods are inversely propor-
tional to guarantees. This approach allows RA to recover faster
than the linear version after a large congestion event. However, for
the specific cases we have tested in our evaluation, both the linear
and the exponential decay algorithms achieved similar results, due
to absence of large congestion events.
Rate-Caution: If the RA algorithm without Rate-Caution would
increase the rate by amount V (there was no congestion in the net-
work), with Rate-Caution that value is:

V ′ = V ·max

(
1− C

RX→Y −BX→Y

BX→Y
, Cmin

)

where C and Cmin are two constants. In other words, V ′ decreases
as the flow’s current rate increases further above its guarantee. C
controls the amount of cautioning, e.g., if C=0.5 then the aggres-
siveness is halved when the rate is twice the guarantee. We use a
minimum value (Cmin) below which we do not reduce aggressive-
ness; this enables even VM-to-VM flows with small guarantees to
fully utilize the available capacity.

Rate-Caution accelerates convergence to fairness compared to a
uniform aggressiveness. When two flows are in the convergence
zone, they are equally aggressive. When one flow is gaining more
than its fair share of the bandwidth, it is less aggressive than the
flows getting less than their fair share, so they can catch up faster.
In this way, Rate-Caution allows new flows to rapidly recover the
bandwidth used by the opportunistic flows using the spare capacity.
The downside of Rate-Caution is lower utilization, since it takes
longer to ramp up the rate and utilize the entire capacity.
Alternatives: We have experimented with multiple versions of the
basic RA algorithm besides Seawall, and many algorithms achieved
similar results in our tests (e.g., instead of the concave-shaped sam-
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pling mechanism of Seawall we used a linear function or encoded
the absolute expected values for the cubic rate). In the end, we de-
cided to use the Seawall-based one for simplicity, brevity of expla-
nation, and since it has been successfully used by other researchers.
In the future, one could also extend RA to also take into account the
current round trip time (similar to TCP Vegas or TCP Nice [26]),
since latency can be a good indicator of congestion.
TCP Interaction: The period of applying RA is expected to be an
order of magnitude larger than datacenter round trip times (10s of
ms vs. 1 ms), so we do not expect RA to interact badly with TCP.

6. IMPLEMENTATION
We implemented ElasticSwitch as a user-level process that con-

trols tc rate-limiters in the Linux kernel and also controls a kernel
virtual switch. We use Open vSwitch [17], which is controlled via
the OpenFlow protocol. Our current implementation has ∼5700
lines of C++ code.

ElasticSwitch configures a tc rate-limiter for each pair of
source-destination VMs. For outgoing traffic, we impose specific
limits; for incoming traffic, we use the limiters only to measure
rates. We configured Open vSwitch to inform ElasticSwitch of new
flows and flow expirations.

ElasticSwitch uses UDP for control messages sent from destina-
tion hypervisors to source hypervisors. Given a sender VM X and
a receiver VM Y and corresponding hypervisors H(X) and H(Y ),
we have two types of control messages: (1) messages from H(Y )
to inform H(X) of the guarantee assigned for the flow from X to
Y , BX→Y

Y , and (2) congestion feedback (packet drop counts) mes-
sages to inform H(X) that there is congestion from X to Y . In
our current setup, hypervisors exchange messages by intercepting
packets sent to VMs on a specific control port.

In order to detect congestion, we modified the kernel virtual
switch to add a sequence number for each packet sent towards a
given destination. We include this sequence number in the IPv4
Identification header field, a 16-bit field normally used for assem-
bly of fragmented packets. We assume that no fragmentation oc-
curs in the network, which is typically the case for modern datacen-
ters. A gap in the sequence numbers causes the destination to detect
a congestion event and send a feedback message back to the source.
To avoid a large number of congestion feedback messages (and ker-
nel to userspace transfers) during high congestion periods, we im-
plemented a cache in the kernel to aggregate congestion events and
limit the number of messages (currently, we send at most one mes-
sage per destination every 0.5ms). This patch for Open vSwitch is
∼250 lines of C code.

We have also adapted ElasticSwitch to detect congestion using
ECN, as an alternative to our sequence-number scheme. If avail-
able, ECN improves congestion detection, and the ability to pro-
vide guarantees and be work-conserving (§7). We disabled ECN
on the hosts, such that ElasticSwitch’s congestion signaling does
not interfere with TCP, and we set the ECN capable bits on all pro-
tocols (e.g., UDP). For this purpose, we created another patch for
Open vSwitch, which also triggers congestion feedback based on
ECN bits at destinations. For accurate congestion detection, we set
the ECN marking probability in switches to a high value (100%),
when the queue is above a given threshold.

7. EVALUATION
The goals of this evaluation are to: (1) show that Elastic-

Switch provides guarantees under worst case scenarios, and iden-
tify its limitations, (2) show that ElasticSwitch is work-conserving
(i.e., can improve utilization when some VMs are not active), (3)

explore ElasticSwitch’s sensitivity to parameters, and (4) quantify
ElasticSwitch’s overhead in terms of CPU, latency and bandwidth.
Summary of results: Our experiments show that:

• ElasticSwitch can achieve the intended guarantees – even in
the worst conditions we tested, when traffic from 300 VMs
compete with traffic from a single VM, or when multiple
VMs run large MapReduce jobs at the same time. Without
guarantees, the completion time of these jobs could be two
orders of magnitude longer.

• ElasticSwitch provides guarantees irrespective of where con-
gestion occurs in the network.

• ElasticSwitch is work-conserving, achieving between 75-
99% of the optimal link utilization. ElasticSwitch can be
tuned to be more work-conserving, at the expense of a grace-
ful degradation in the ability to provide guarantees in chal-
lenging conditions.

• ElasticSwitch’s work-conservation can increase completion
times for short flows, compared to static reservations, by at
most 0.7ms; however, ElasticSwitch’s additional latency is
no worse than when the link is fully utilized.

• ElasticSwitch is not sensitive to small changes in parameters.
• ECN support improves all results, and also makes our im-

provements to the rate allocation algorithm less relevant.
Experimental setup: We used ∼100 servers from a larger testbed
(the actual number varied in time). Each server has four 3GHz In-
tel Xeon X3370 CPUs and 8GB of memory. We use a parallel,
isolated network for our experiments. This prevents interference
between our experiments and other traffic in the testbed. The par-
allel network is a two-level, single-rooted tree; all links are 1Gbps.
By choosing different subsets of servers, we can create different
oversubscription ratios.

Our testbed did not have ECN capable switches. However, we
set up a one-rack testbed with a single ECN-capable switch.

To avoid virtualization overheads, we emulate multiple VMs by
creating multiple virtual interfaces, each with its own IP address,
connected to the kernel’s virtual switch. Each workload generator
on a host binds to a different IP address, thus emulating VMs with
virtual interfaces.

We compare ElasticSwitch with two other approaches: (i) No-
Protection: sending traffic directly, with no bandwidth protection,
and (ii) Oktopus-like Reservation: a non-work-conserving reser-
vation system, with rates statically set to be optimal for the given
workload in order to achieve the hose model. Thus, Oktopus-like
Reservation is an idealized version of Oktopus; in practice, Okto-
pus is likely to perform worse than this idealized version. We also
make qualitative comparisons with Gatekeeper [20] and EyeQ [12],
since those approaches cannot provide guarantees when the net-
work core is congested.
Parameters: We use a 10% headroom between the link capacity
and the maximum allocated guarantees on that link. We set the rate
allocation period to 15ms and the guarantee partitioning period to
60ms. For Seawall: we use as weight w = 450Mbps/BX→Y , we
set the rate decrease constant α = 0.4 (so the rate is decreased to
60% after a congestion event), δ = 0.75, the rate-increase constant
A = 0.5Mbps (§5), and we scale the physical time by TS = 1.5,
i.e., the value Δt = dt/TS , where dt is the physical time differ-
ence. For Rate-Caution we use Cmin = 0.3 and C = 0.5. We
implemented Hold-Increase using an exponential decay of packet
loss history, with decay factor γw, where γ = 0.75.

7.1 Guarantees and Work Conservation
We show that ElasticSwitch provides bandwidth guarantees and

is work-conserving, and that ElasticSwitch provides guarantees in
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Figure 5: Many-to-one in the core. VM X receives from one
remote VM while Y receives from multiple VMs. Both tenants
have a guarantee of 450Mbps over the congested core link.
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Figure 6: Many-to-one UDP vs. TCP. Same setup as Fig. 5, but
senders to Y blast UDP traffic.

challenging conditions, when the entire network capacity is re-
served and all VMs are fully using their guarantees. ElasticSwitch
offers guarantees in all other less-congested conditions (which we
do not show for brevity).
Many vs. One scenario: Two VMs X and Y that belong to
two different tenants compete for a given link. Y receives traffic
from multiple sources (e.g., Y is a MapReduce reducer), while X
receives traffic only from a single remote VM. We assume both
X and Y have the same hose bandwidth guarantees of 450Mbps.
Given our 10% slack in providing guarantees, these represent the
maximum guarantees that can be offered on a 1Gbps link.

Fig. 5 presents the application-level TCP throughput for VM X
as we vary the number of VMs sending TCP traffic to VM Y . The
white bars represent the total throughput in the respective setups.
For Fig. 5, X and Y are located on different servers and the con-
gestion occurs on a core network link. Fig. 6 presents results for a
different scenario, in which X and Y are on the same server and
senders to Y blast UDP flows that are unresponsive to congestion.
(For brevity, we omit other combinations of TCP/UDP traffic and
congestion on edge/core, which exhibit similar results.) We ran the
experiment for 30 seconds and X uses a single TCP flow.

Figures 5 and 6 show that ElasticSwitch provides the intended
guarantees, even when the number of senders to Y is very high,
and, at the same time, ElasticSwitch is able to give X the entire
link capacity when no VMs are sending traffic to Y . VM Y also
achieves its guarantee, as shown by the plotted total throughput;
however, for more than 100 senders, TCP’s efficiency in utilizing
the link decreases, since some of Y ’s flows experience drops and
timeouts and do not always fully utilize their allocated guarantees.
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Figure 7: Many-to-one fairness. Fairness between the flows
sending traffic to Y in Fig. 5 and Fig. 6.

For the scenario in Fig. 5, since the congestion does not occur on
the destination server’s access link, Gatekeeper [20] and EyeQ [12]
would not be able to provide guarantees; we believe these solutions
would perform like NoProtection in such scenarios. Seawall [22]
would also perform like NoProtection for all many-to-one settings.

Fig. 7 shows the Jain’s Fairness Index computed between the
application level throughput of the flows sending traffic to VM Y .
We can see that ElasticSwitch achieves better fairness than regular
TCP and also provides fairness when senders use UDP flows.
MapReduce scenario: We emulate just the shuffle phase of
MapReduce jobs, and measure throughputs and completion times.
For easier interpretation of the results, we use a subset of the
testbed, such that the topology is symmetric—i.e., the oversub-
scription to the core is the same for all hosts. We use 44 servers
where network has an oversubscription ratio of 4:1. We use 4 VM
slots per server, for a total of 176 VMs.

We create multiple tenants, with random sizes from 2 to 30 VMs;
half of the VMs act as mappers and half as reducers. All VMs of
each tenant are provisioned with the same hose-model bandwidth
guarantee, equal to the fair share of the bandwidth to the root of the
topology. This translates into a guarantee of 56.25Mbps (with 10%
headroom). We test with two different placement strategies: (i)
“random”: all VMs of all tenants are uniformly randomly mapped
to server VM slots, and (ii) “unbalanced”: mapper VMs of tenants
are placed starting from the left corner of the tree and reduce VMs
are placed starting from the right corner of the tree. The “unbal-
anced” case stresses the core of the network. We also test a “light”
case, where fewer tenants are created, such that about 10% of the
total VM slots are filled, with “random” VM placement. We use a
single TCP flow between a mapper and a reducer of a tenant.

Fig. 8(a) plots the throughput recorded by each individual re-
ducer when all jobs are active. The horizontal bars at 56.25Mbps
denote the throughput achieved with a non-work-conserving sys-
tem like Oktopus. As one can see, ElasticSwitch fully satisfies
the guarantees in all cases (the throughput is never lower than the
reservation). As expected, when using NoProtection, many VMs
get less than the desired guarantees. In fact, for the “unbalanced”
setup, 30% of the VMs achieve lower throughputs, some as low as
1% of the guarantee value.

Fig. 8(a) also shows that ElasticSwitch exploits unused band-
width in the network and achieves significantly higher throughputs
than an Oktopus-like static reservation system. Even in the case
when all VMs are active, and not all VMs on the same machine are
mappers or reducers, with MapReduce’s unidirectional demand,
there is unutilized bandwidth in the network (in the “unbalanced”
scenarios there is very little available bandwidth). However, the av-
erage throughput achieved by ElasticSwitch is lower than NoPro-
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Figure 8: MapReduce experiment. (a) shows the throughput of each individual reducer. (b) shows the ratio between the worst case
completion time of job (assuming the background traffic remains the same for the duration of the job) to the lower bound completion
time resulted from using the guarantees.
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Figure 9: Short-flow impact on long flows

tection (by 25% on average), because ElasticSwitch is significantly
less aggressive than TCP, so that it can always meet the guarantees.

Note that, since this is an oversubscribed topology, congestion
occurs almost always in the core, and systems like Gatekeeper [20]
and EyeQ [12] would be unable to always satisfy the guarantees.

We observed similar behavior for different oversubscription ra-
tios, ranging from 1× up to 5× (not shown, for brevity).

Since we do not possess a full MapReduce trace, we do not try to
accurately estimate the effect of ElasticSwitch on job completion
time. Instead, we estimate the shuffle completion time under the
worst-case assumption: the background traffic (i.e., the traffic of
the other jobs) remains the same for the entire duration of a job.
This should be true for small jobs, but not necessarily for long jobs,
for which the benefits of bandwidth guarantees might be reduced.

Fig. 8(b) plots the CDF of the ratio between the shuffle com-
pletion time using ElasticSwitch and the shuffle time obtained
with Oktopus-like Reservations, under this worst-case assumption.
Completion times in ElasticSwitch never exceed the completion
time of static reservations (represented by the vertical line at 1),
but jobs can complete significantly faster, as happens when 10% or
even 100% of the VMs are active. When using no guarantees, the
worst case job completion time can be up to 130× longer in this
simple experiment (for the “unbalanced” setup).
Mice vs. Elephant Flows: In this experiment, we evaluate the
effectiveness of GP under large flow rates. Note that GP tries to
partition guarantees across all VM-to-VM flows, to ensure that a
VM can transmit/receive at its hose model guarantee. To stress
GP, we use a workload with varying number of short TCP flows
(mice) created at different flow rates and measure their impact on
an elephant flow.

We set up two VMs X and Y with 450Mbps hose model guaran-
tees that compete over one 1Gbps link L (thus L is fully reserved).
Each of X and Y send traffic using a single elephant TCP flow to
remote VMs (e.g., X sends to VM Z while Y sends to VM T ). In
addition to this flow, VM X generates a number of short TCP flows
(HTTP requests) to other VMs.

We start from the observation that the guarantee can be “wasted”
on short flows only if the short flows are always directed to a dif-
ferent VM. However, actual data (e.g., [7]) shows that the num-
ber of services to which one service communicates are very small,
and thus the number of actual VMs with which one VM exchanges
short flows in a short time should be small.

Fig. 9 shows the throughput achieved by the elephant flow of
VM X for various cases. We vary the total number of short flows
X generates per second from 10 to 100, out of which 10 to 50 are
new VM-to-VM flows. Results show that below 10 new VMs con-
tacted by X every second, there is little impact on X’s elephant
flow, regardless of the number of mice flows generated by X . For
20 or more new VMs contacted by X , there is an impact on the
throughput of X’s long flow. However, we note that even if a VM
were to contact so many new VMs per second with short flows, it
cannot sustain this rate for too long, since it would end up com-
municating with thousands of VMs in a short time. For this reason
we believe the impact of short flows on the throughput of elephant
flows in ElasticSwitch is not a significant concern.
Sharing Additional Bandwidth: We show that ElasticSwitch
shares the additional bandwidth roughly in proportion to the guar-
antees of the VM-to-VM flows competing for that bandwidth. In
this experiment, two flows share a 1Gbps link, with one flow given
a guarantee that is twice the guarantee of the other. We measure the
resulting throughputs to examine how the residual bandwidth on
the link (left over after the guarantees are met) is shared. Table 2
presents these results for three cases. As expected, since the cumu-
lative guarantee is less than 900Mbps, both flows achieve higher
throughput than their guarantees. Ideally, the flow with higher guar-
antee should achieve 2X higher throughput than the other flow and
they should fully utilize the 1Gbps link. However, the flow with the
higher guarantee grabs a slightly disproportional share of the resid-
ual bandwidth, with the non-proportionality increasing with larger
residual link bandwidth. We further analyzed our logs and noticed
that the ratio of the dropped packets did not exactly follow the ratio
of the rates, but was closer to a 1:1 ratio. This causes rate alloca-
tion to hold the rate of the flow with smaller guarantee for longer
periods. This is a place to improve the RA algorithm in the future.
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(b) Many-to-one 2 TCP flows
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Figure 10: Sensitivity vs. various parameters.

Guar. (Mbps) 45 90 90 180 225 450
Rate (Mbps) 203 536 219 531 275 589

Ratio 2.64 2.42 2.14

Table 2: Sharing a 1Gbps link between two VM-to-VM flows
with one guarantee being twice the other

7.2 Sensitivity
Aggressiveness: In general, by tuning the RA algorithm to be more
aggressive in grabbing spare bandwidth, ElasticSwitch can better
utilize the available capacity. On the other hand, a less aggressive
RA makes ElasticSwitch better suited to provide guarantees in dif-
ficult conditions. We now show that ElasticSwitch is resilient to pa-
rameter changes, and that Hold-Increase and Rate-Caution proved
useful for providing guarantees in difficult conditions.

Fig. 10 shows the behavior of ElasticSwitch for different rate al-
location algorithms. By “Less Aggr.” we refer to ElasticSwitch us-
ing the parameters described at the start of this section. By “More
Aggr.” we refer to ElasticSwitch using more aggressive rate in-
crease parameters for Seawall (specifically we use a rate increase
constant of 2.5Mbps for the convex curve instead of 0.5Mbps, and
the time scalar TS=2.0 instead of 1.5 for the “Less Aggr.” case).
By “No H-I” we refer to not using Hold-Increase, by “No R-C”
we refer to not using Rate-Caution, and by “No H-I & R-C” we
refer to not using either of them. Note that not using Hold-Increase
nor Rate-Caution is equivalent to applying Seawall’s algorithm for
rate allocation. All of the last three RA algorithms use the less ag-
gressive Seawall parameters; however, by not using Hold-Increase
and/or Rate-Caution they become (significantly) more aggressive.

Figures 10(a) and 10(b) show a scenario similar to that in Fig. 5
(with the minor difference that the congestion occurs on the edge
link in this experiment, which, surprisingly, proved more challeng-
ing). However, while in Fig. 10(a) all VMs use a single TCP flow,
in Fig. 10(b), all VM to VM traffic consists of two TCP flows.
Two TCP flows better utilize the bandwidth allocated by the RA
algorithm. We observe that increasing the aggressiveness of Elas-
ticSwitch is almost unnoticeable, showing that ElasticSwitch is
quite resilient to parameter changes. We can also see that Hold-
Increase is instrumental for achieving guarantees when congestion
is detected through packet losses. Rate-Caution proves helpful for
more aggressive approaches such as Seawall, though its effect on
the non-aggressive ElasticSwitch is small.

Fig. 10(c) shows the other face of being less aggressive, using
the same TCP vs. UDP scenario as in Fig. 2. When the UDP flow’s

demand is below its guarantee of 450Mbps, the TCP flow attempts
to grab the additional bandwidth. As one can see, in this case being
more aggressive pays off in achieving a higher link utilization.
Periods: Changing the RA and GP periods did not significantly af-
fect the results in our experiments. We experimented with rate allo-
cation periods from 10ms to 30ms and with guarantee partitioning
periods from 50 to 150ms. For brevity, we omit these charts. It is
true, however, that the workloads we considered in this evaluation
do not stress throughputs that vary significantly in time, except for
short flows. Thus, exploring the effects of different periods is also
a place for future work.

7.3 Overhead
We evaluate the overheads of ElasticSwitch in terms of latency,

CPU, and control traffic bandwidth.
Latency: Compared to NoProtection, ElasticSwitch adds latency
due to the rate limiters in the data path and a user-space control pro-
cess that sets up the limiters for each new VM-to-VM flow. Com-
pared to the Oktopus-like Reservation, ElasticSwitch adds over-
head due to the filling of queues in the intermediate switches for
work conservation. Fig. 11 shows the completion time of a short
flow generated by VM X towards VM Y in several circumstances:
(a) when there is no traffic (and this is the first flow between X and
Y , i.e., a “cold” start); and (b) when we vary the number of VM-to-
VM flows that congest a given link L that the short flow traverses.
We vary this number from one up to the maximum number of other
VMs that share the guarantees on link L with X and Y (23 other
VM-to-VM flows in this case; we use a 6× oversubscribed network
with 4 VMs per server). We use a single TCP flow between each
VM pair.

Fig. 11 shows that ElasticSwitch increases completion time only
slightly when there is no other traffic. With background traffic, the
added latency of ElasticSwitch is smaller than when using NoPro-
tection, because rate allocation algorithm is less aggressive than the
TCP flows, and queues have lower occupancy. However, this delay
is always larger than a static reservation system, which keeps links
under-utilized.
CPU: Since ElasticSwitch adds overhead in both kernel and
userspace, and since tested applications also consume CPU re-
sources, we only evaluate the difference in CPU usage between
ElasticSwitch and NoProtection in the same setup. (It is hard for us
to estimate the overhead of an Oktopus-like Reservation solution
since it could be implemented in several ways.)
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Figure 12: CPU Overhead vs. # Active Flows

Fig. 12 shows the overhead of ElasticSwitch compared to No-
Protection, in terms of the capacity of a single CPU core (our im-
plementation is multi-threaded), as we vary the number of active
VM-to-VM flows. These results were measured in the context of
the many-to-one experiment where the two VMs X and Y are lo-
cated on the same server (e.g., the results presented in Fig. 10(a)).
Because a part of the overhead depends on the frequency of apply-
ing GP and RA, we plot two different sets of periods. Our fine-grain
profiling indicates that most of the CPU cycles are spent in reading
and setting the rate-limiters; after a certain number of limiters, this
overhead seems to start to increase nonlinearly.

Fig. 12 shows that the additional CPU overhead of ElasticSwitch
can be handled in typical cases with one CPU core (we note also
that our testbed uses older generation CPUs). We believe this over-
head can be significantly improved in the future, for example, by
using an improved rate-limiting library.
Control Traffic: ElasticSwitch uses two types of control packets:
remote guarantees and congestion feedback, both having the min-
imum Ethernet packet size (64B). For a GP period of 60ms (used
in our prototype), ElasticSwitch sends roughly 17 control packets
per second for each VM-to-VM active flow; e.g., if there are 100
communicating VM-to-VM pairs on one server, the traffic overhead
for sending/receiving remote guarantees is ∼850Kbps. In the cur-
rent implementation, ElasticSwitch sends one congestion feedback
control packet for each congestion event, limited to at most one
message per 0.5ms. However, since ElasticSwitch detects only the
packets effectively lost inside the network (and not in the queue of
the sending host), and since RA is not aggressive and keeps buffers
free, this traffic is very small—on the order of few Kbps.

7.4 ECN
Our limited experience on the single ECN-capable switch setup

suggests that: (i) ECN improves the results both for enforcing guar-
antees and for being work conserving, and (ii) our improvements to

Seawall’s algorithm are not necessary on ECN-capable networks.
In brief, the many-to-one experiment results were ideal in terms of
providing guarantees, showing very little variance (we could test up
to 100 senders). For the experiment of borrowing bandwidth from a
bounded flow (Fig. 2 and Fig. 10(c)), ECN would improve results,
being similar to the more aggressive ElasticSwitch in Fig. 10(c).
For space constraints, we do not plot these results.

8. RELATED WORK
Oktopus [4] provides predictable bandwidth guarantees for ten-

ants in cloud datacenters. Oktopus does both placement of VMs
and enforcement of guarantees. However, the enforcement algo-
rithm is not work-conserving and hence Oktopus does not utilize
the network efficiently. Further, the approach is centralized and
thus has limited scalability.

SecondNet [11] provides a VM-to-VM bandwidth guarantee
model in addition to the hose model. In SecondNet, a central con-
troller determines the rate and the path for each VM-to-VM flow
and communicates those to the end hosts. As with Oktopus, Sec-
ondNet’s guarantee enforcement is not work-conserving and has
limited scalability, because of its centralized controller. Further, it
requires switches with MPLS support.

Gatekeeper [20] and EyeQ [12] also use the hose model, are
fully implemented in hypervisors and are work conserving. They
are also simpler than ElasticSwitch. However, these approaches
assume that the core of the network is congestion-free: they can
provide guarantees only in that case. However, research shows
that in current datacenters congestion occurs almost entirely in the
core [6, 24].5 EyeQ also requires switches with ECN support, to
detect congestion at the Top-of-the-Rack switches.

FairCloud [18] analyzes the tradeoffs in allocating cloud net-
works and proposes a set of desirable properties and allocation
policies. One of FairCloud’s bandwidth-sharing proposals, PS-
P, provides bandwidth guarantees and is work-conserving. How-
ever, FairCloud’s solution requires expensive hardware support in
switches (essentially one queue for each VM) and works only for
tree topologies.

Seawall [22] uses a hypervisor-based mechanism that ensures
per-source fair sharing of congested links. NetShare [13] ensures
per-tenant fair sharing of congested links. However, neither ap-
proach provides any bandwidth guarantees (i.e., the share of one
VM can be arbitrarily reduced [18]). For this reason, these sharing
models cannot be used to predict upper bounds on the runtime of a
cloud application.

Proteus [27] proposes a variant of the hose model, Temporally-
Interleaved Virtual Cluster (TIVC), where the bandwidth require-
ments on each virtual link are specified as a time-varying function,
instead of the constant in the hose model. Proteus profiles MapRe-
duce applications to derive TIVC models. Proteus uses these mod-
els for placement and enforcement of bandwidth guarantees. Thus
Proteus is suited for a limited set of applications; it is not workload-
agnostic, as is necessary for cloud computing.

Hadrian [5] is a recent proposal focusing on providing bandwidth
guarantees for inter-tenant communication. ElasticSwitch can use
Hadrian’s pricing and reservation schemes for inter-tenant commu-
nication. The mechanism used by Hadrian to enforce bandwidth
guarantees has some resemblance to ElasticSwitch at a high level.
However, Hadrian’s approach requires dedicated switch support for
setting flow rates in data packets, unavailable in today’s hardware.

5The core is not guaranteed to be congestion-free even for fully-
provisioned networks. Since these networks are not cliques, ex-
treme many-to-one traffic patterns can congest links inside the core.
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9. DISCUSSION AND FUTURE WORK
ElasticSwitch on Other Topologies: ElasticSwitch can be used on
any single-path routing topology, as long as the admission control
criterion is respected. ElasticSwitch can also be applied to multi-
path topologies, where load balancing is uniform across paths, such
as fat-trees [1] or VL2 [10]. In this case, the set of links on which
traffic is load balanced can be seen as a single generalized link,
e.g., for fat-trees, a generalized link represents the set of parallel
links at a given level (i.e., that can be used by one VM towards the
root nodes). We are working towards deploying a load balancing
solution and testing ElasticSwitch on top of it.

For multi-path topologies with non-uniform load balancing
across paths, such as Jellyfish [23], ElasticSwitch could be ex-
tended to use three control layers instead of two: guarantee par-
titioning, path partitioning and rate allocation. Path partitioning
would divide the guarantee between two VMs among multiple
paths. The other layers would operate unmodified.
Prioritizing Control Messages: Since it is applied periodically,
ElasticSwitch is resilient to control message losses (we have tested
this case). However, the efficiency of ElasticSwitch is reduced, par-
ticularly at high loss rates. Ideally, control messages should not be
affected by the data packets, and one could ensure this by prioritiz-
ing control packets, e.g., using dedicated switch hardware queues.
(In our current implementation, ARP packets supporting the con-
trol traffic should also be prioritized or ARP entries pre-populated;
however, we believe this can be avoided in future versions.)
Limitations: Endpoint-only solutions for providing bandwidth
guarantees are limited by the fact that they use shared queues in-
stead of dedicated queues. For instance, a malicious tenant can cre-
ate bursts of traffic by synchronizing packets from multiple VMs.
Synchronization creates a temporary higher loss rate for the other
tenants, which can negatively affect their TCP flows. We leave ad-
dressing these concerns to future work.
Beyond the Hose Model: The hose model has the advantage of
simplicity. It is ideal for MapReduce-like applications with all-
to-all communication patterns, but it might be inefficient for ap-
plications with localized communication between different compo-
nents [4, 14]. ElasticSwitch can be used as a building block for
providing more complex abstractions based on hose models, such
as the TAG model [14], or a model resembling the VOC model [4].
The high level idea is that each VM can be part of multiple hose
models; e.g., we can have a hose model between VMs from two ap-
plication components, and an additional hose-model between VMs
within a single component. In this case, GP must identify the
hose(s) to which a VM-to-VM flow belongs. ElasticSwitch does
not support hierarchical models that aggregate multiple VM hoses
into one [4, 5], as this would require coordination across VMs.

10. CONCLUSION
We have presented ElasticSwitch, a practical approach for im-

plementing work-conserving minimum bandwidth guarantees in
cloud computing infrastructures. ElasticSwitch can be fully im-
plemented in hypervisors, which operate independently without
the use of a centralized controller. It works with commodity
switches and topologies with different over-subscriptions. Elastic-
Switch provides minimum bandwidth guarantees with hose model
abstractions—each hose bandwidth guarantee is transformed into
pairwise VM-to-VM rate-limits, and work conservation is achieved
by dynamically increasing the rate-limits when the network is not
congested. Through our implementation and testbed evaluation, we
show that ElasticSwitch achieves its goals under worst case traffic
scenarios, without incurring a high overhead.
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