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ABSTRACT
As multi-standard devices and high speed communication standards
are emerging, timeliness requirements and flexibility for both base-
band modem and medium access schemes are becoming essential.
Software Defined Radios (SDRs), in this context, aim at offering
the desired flexibility while satisfying the real-time constraints. An
SDR architecture consisting of many-core homogeneous comput-
ing elements provides easy protocol implementation, a high level
of portability and extension possibilities. It does not require ar-
chitecture specific program code which is needed by the popular
heterogeneous SDR architectures. Therefore, in this paper, we ex-
plore how a homogeneous SDR architecture is used for efficient
realization and execution of Medium Access Control (MAC) pro-
tocols. In particular, we investigate the performance of two broad
classes of MAC schemes on the Platform 2012 (P2012) many-core
programmable computing fabric. We provide a toolchain which
utilizes the characteristics of P2012 for MAC parallelization, run-
time scheduling, and execution. Our results indicate that by using
the supporting toolchain, reconfigurable MAC implementations are
able to exploit the computational power offered by the platform and
adhere to the timeliness constraints. Computationally intensive al-
gorithms for MAC layer parameter optimization show an improve-
ment of up to 85% in the convergence time as compared to using a
single-core architecture.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion

General Terms
Design, Experimentation, Performance

Keywords
MAC, Parallelization, Many-core, SDR platform

1. INTRODUCTION
MAC procedures for emerging network technologies demand

fine grained timing control, high computational power and adapt-
ability. MAC layers for high data rate standards such as LTE and
IEEE 802.11ac require fast real-time response. As spectral re-

sources are shared by multiple networks, different spectrum sharing
policies are enforced which require flexibility at the MAC layer. In
the context of Cognitive Radios (CRs) paradigm, often machine
learning techniques and statistical data analysis algorithms are em-
ployed for runtime resource management, channel allocation at MA-
C layer, and performance optimization based on the PHY- and MAC
parameters. Machine learning algorithms are typically computa-
tionally intensive and a short convergence time is desired for rapid
runtime adaptation of MAC protocols.

SDR platforms emerge to be an attractive option for fulfilling
high flexibility demands. These platforms are typically equipped
with computationally powerful units such as GPPs to handle the
baseband modem signal processing while offering a high level of
flexibility [1,2]. Performance results, however, indicate that this ap-
proach has shortcomings in meeting strict timeliness and schedul-
ing requirements of MAC processing [3]. In this architecture, the
MAC layer is typically isolated and the need for fast PHY/MAC
interaction is not satisfied. Coprocessor-FPGA architectures have
shown to outperform the GPP based protocol processing units [4].
In order to efficiently meet the computational load of evolving high
data rate standards, multiprocessor architectures are proposed to
achieve parallelization gains for baseband signal processing. The
current multiprocessor architecture trend is shifting from multi-
core to many-core. Ron Wilson has pointed out that there is a
shift in the concept from making one processor powerful enough
to handle all the data towards a more distributed approach of many
processors sharing the work [5]. While heterogeneous architectures
are commonly used and are known for their power efficiency, flexi-
bility and reconfigurability offered by them remain limited as large
implementation and debugging efforts are needed whenever exten-
sions or modifications are made [6]. Homogeneous architecture, on
the other hand, makes it easier for a software designer to map the
applications, threads, parallel tasks, onto any processors in a flexi-
ble way as no considerations for different types of processors and
hardware accelerators are necessary. The required implementation
efforts and the resulting performance characteristics also heavily
depend upon the tools and software support provided by an SDR
platform. Highly dynamic MAC protocols, especially for CR en-
vironments, require specialized tools and frameworks to efficiently
schedule tasks and manage radio resources at runtime in order to
achieve desired reconfiguration and adaptation.

In this paper, we describe the implementation details and per-
formance characteristics of two main types of MAC procedures:
classical CSMA based MAC protocols and reconfigurable MAC
schemes using machine learning based algorithms for runtime op-
timization and resource management. The implementation is car-
ried out on a cycle accurate emulator of a homogeneous computing
fabric P2012 [7]. P2012 is a power-efficient many-core comput-
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ing fabric, which is based on four globally asynchronous, locally
synchronous (GALS) clusters and is developed in 28nm CMOS
technology. P2012 has been used to realize the inner modem of
a MIMO OFDM transceiver with maximum 4 x 4 antenna config-
uration and timing requirements from IEEE 802.11n standard [8].
Although the primary target of the platform is not baseband pro-
cessing, real-time performance has been achieved using 8 Process-
ing Elements (PEs) benefiting from the hardware synchronizer and
shared memory architecture offered by the platform. We have re-
alized a toolchain for runtime protocol realization TRUMP [9] on
P2012 for parallelization and scheduling of MAC processes. We
explore how a MAC layer protocol benefits from the supported
tools and capabilities of P2012 with homogeneous computing el-
ements.

The rest of the paper is outlined as follows. In Section 2 we
review different platform architectures used by the SDR commu-
nity and how they perform in terms of flexibility, scalability, and
programmability. We introduce P2012 in Section 3 together with
its software tools support. Section 4 presents the evaluation results
of our two main categories of MAC protocol implementations. Fi-
nally, we conclude the paper in Section 5.

2. SDR PLATFORM ARCHITECTURES
Various technologies such as ASICs, FPGAs, DSPs, and GPPs,

have been used in SDR platforms, commercially available prod-
ucts, military applications, and research prototypes. These tech-
nologies are used in both standalone and hybrid fashion [10]. In
this section, we discuss the characteristics of different technologies
and their implications on real-time MAC protocol performance and
their suitability for emerging MAC protocols which demands high
level of flexibility and computational power.

2.1 Task Specific Processing Elements
In standardized network interface cards such as IEEE 802.11 b/g

where flexibility and reconfigurability requirements are limited, an
ASIC is often used to handle the physical and MAC layer pro-
cesses. ASIC solutions are highly optimized for realizing a partic-
ular computationally demanding protocol algorithms. They offer
high level of computational efficiency and low power consump-
tion. Although ASIC implementations are static and rigid, they can
be suitable for implementing common functionalities across differ-
ent configurations to accelerate the protocol execution speed and
lower the power consumption [11]. The idea of implementing com-
mon and computational intensive functionalities in hardware for
speed gains instead of pure software has also been proposed [12].
While many vendors provide standard compliant NICs, Bianchi et
al. have shown that having programmability and reconfigurabil-
ity at MAC layer helps in increasing the achieved throughput [13].
ASIPs are typically tailored to a specific application and exhibit a
lower energy consumption than GPPs or DSPs while offering more
flexibility than ASICs [14]. However, new standards demanding
high flexibility, reconfigurability and multi-mode operation, make
both ASICs and ASIPs alone not a very viable option for SDR plat-
form implementation.

2.2 Reconfigurable Processing Elements
As compared to ASICs and ASIPs, FPGA is a reconfigurable

solution at the expense of lower processing speed, higher power
consumption and circuit area. There are several SDR development
platform implemented based on FPGA. As an example, WARP
boards [15] developed by Rice university are built using Xilinx
Virtex FPGA and aim at offering flexibly PHY/MAC layer devel-
opment. Computational intensive processes, signal processing are

implemented in the FPGA while the application layer and some
control functionalities are implemented in the PowerPC core in the
FPGA. WiNC2R [16] is another example of a SDR platform built
on a FPGA with soft-core processors and accelerators. Runtime
reconfiguration of FPGA can be realized by partial reconfigura-
tion, which requires significant efforts in FPGA development and is
highly dependent on the tools and devices available. It can also be
realized by software programmable reconfiguration, which has the
limitation that all the program component has to be implemented
before hand and the configuration options are limited to the control-
ling parameters which have been exposed to the soft-core. FPGA
based architecture is more suitable for experimentation and pro-
totyping than standardized commercially available SDR platforms
due to the relatively slow processing speed. Furthermore, since the
size of FPGAs is limited, it does not offer good scalability and is ex-
pensive to implement multiple computational intensive algorithms
for MAC layer optimizations

2.3 General Purpose Processors
Microprocessor systems provide full real-time programmabil-

ity [17]. CalRadio [18] is a flexible wireless platform developed at
UC San Diego targeting at fully programmable MAC protocols. It
uses Intersil HFA3836 baseband chip for IEEE 802.11b PHY layer
implementation which offers parameters such as the data rate and
transmit power to be controlled by the MAC layer through register
configurations. CalRadio provides a DSP for MAC layer imple-
mentation entirely in software which allows a high degree of flex-
ibility in MAC layer design, though the packet transfer delay from
host to DSP to PHY has limited the throughput to IEEE 802.11b
PHY layer [19]. GPPs are typically unable to handle wideband
signal processing in a timely manner to comply with the proto-
col standard. Therefore, multi-core architectures are introduced
to achieve better performance by parallelizing processes. Parallel
operations significantly reduce the execution speed and the power
consumption per instruction. Sora [20] exploits parallelism in the
MAC/PHY layer processing and is able to comply with IEEE 802.11
b/g standard. However, modification and extension to MAC/PHY
implementations on Sora are highly complicated due to the sophis-
ticated distribution of computational processes on multi-core pro-
cessors in an effort to meet the real-time requirements. USRP1.0
[1] does the baseband signal processing are done on the host PC
implemented using GNU Radio or NI LabView. The throughput
achieved on USRP boards is typically little since the CPU process-
ing power is the bottleneck. GPP based approach is good for fast
PHY/MAC layer development. However, the processing latency
and the power consumption are two major issues. Therefore, GPPs
and/or DSPs often require hardware acceleration. Lau et al. have
discussed the use of FPGA and ASIP based hardware accelerator in
SDR waveforms and concluded that hardware accelerator enhances
power efficiency which is essential in making SDR platforms into
mobile terminals and handsets [21].

2.4 MPSoC Approach
Multiprocessor System-on-Chip (MPSoC) consists of multiple

programmable processors. Heterogeneous multi-core architecture
is popular for its power efficiency, high performance and low cost.
IMEC’s baseband engine for adaptive radio (BEAR) platform con-
sists of six cores (three ASIPs, one ARM processor, two architec-
ture for dynamically reconfigurable embedded systems (ADRES)
processors) and two accelerators [22]. Infinion MuSIC-1 platform
[23] is also a heterogeneous multi-core platform which consists
of four programmable DSP cores and accelerators for FIR filter,
Viterbi decoder, etc. The heterogeneity allows different processes
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to be implemented on the most appropriate processor and thus achi-
eve a speed-efficient solution. MAGALI platform [24] is a het-
erogeneous Network-on-Chip (NoC) based MPSoC platform dedi-
cated for mobile terminals. This platform uses a centralized control
processor for achieving power efficiency. However, this scheme
limits the scalability of the architecture. The limitation applies to
heterogeneous architecture in general. Moreover, as the complexity
increases in heterogeneous architecture, often with irregular orga-
nization of memory hierarchy, efficient mapping of protocol algo-
rithms on them is difficult [25].

Homogeneous many-core architecture provides a mid-way be-
tween multi-core CPUs and Graphics Processing Units (GPUs) for
a balance between programmability and parallelism. GENEPY
(homoGENEous Processor ArraY) platform [6] is purely homoge-
neous, with Smart ModEm Processors interconnected with a NoC.
Although homogeneous architecture is, in general, believed to be
less efficient in speed and power consumption than heterogeneous
architecture at the expense for offering easier programmability, hig-
her flexibility and scalability, the authors have shown that for an
LTE application, GENEPY has performance gains of 3% in speed
and 18% in power consumption as compared to MAGALI platform.
In this paper, we have used P2012 which consists of homogeneous
processing clusters for MAC protocol parallelization.

3. P2012 ARCHITECTURE
In order to span the wide efficiency spectrum between fully pro-

grammable homogeneous many-cores and application specific ac-
celerators, a new family of computing systems called Many-Core
Computing Fabrics (MCCFs) have been introduced. MCCF con-
sists of many homogeneous processing cores interconnected by a
NoC infrastructure [26]. P2012 is an area- and power-efficient
MCCF developed by ST Microelectronics. It aims at filling the
gap between general-purpose embedded CPUs and fully hardwired
application accelerators in terms of area and power efficiency. It
is flexible in supporting a wide range applications while not losing
power efficiency. P2012 is based on four GALS clusters. One clus-
ter consists of a multi-core computing engine called ENCore and a
Cluster Controller (CC). The EnCore cluster can host up to 16 PEs.
All EnCore PEs share a L1 tightly coupled data memory (TCDM)
which supports a throughput one data access per PE per clock cy-
cle. A low latency network is used to interconnect the PEs and
on-chip shared memory banks within an EnCore cluster. A hard-
ware synchronizer is used for ENCore to provide scheduling and
synchronization acceleration. The hardware synchronizer also has
a dynamic allocator which allows the system to dynamically allo-
cate the best available PE to execute a task, which is suiting to the
flexible and unpredictable nature of MAC processes in a dynamic
environment. The CC takes care of booting and initializing the
ENCore PEs and deploying applications onto the PEs. It consists
of a Direct Memroy Access (DMA) subsystem which transfers data
blocks between the external memory and the internal memory dur-
ing operation of PEs. The fast memory access facilitates MAC pro-
tocol realization especially in meeting the real-time requirements.
Furthermore, the memory among different clusters are transparent
on the platform, i.e. one cluster can directly access the memory
on other clusters. No memory copying overhead is induced and
therefore real-time MAC execution can be realized as MAC pro-
cesses typically involve multiple data accesses with low-delay tol-
erances. These clusters are connected via a high-performance fully-
asynchronous NoC. The clusters are implemented with indepen-
dent power and clock domains, enabling aggressive fine-grained
power, reliability and variability management.

3.1 Software Tools
There are mainly two layers in the software stack for P2012. The

runtime layer interacts directly with the P2012 fabric and provides
basic functionalities such as task scheduling, dispatching, mem-
ory allocation, resource and power monitoring, host-fabric com-
munication, etc., to upper layers. The programming model layer
provides high level environment for developing specific program-
ming models and applications. P2012 supports industrial standard
programming models such as OpenCL and OpenMP programming
models. We have developed our MAC layer schemes for P2012
using the Native Programming Model (NPM). The NPM allows
developing specific applications running on a P2012 fabric and
integrating them with the host system. The NPM is highly opti-
mized for the P2012 architecture. It takes into account the spe-
cific features of the P2012 architecture like direct access to hard-
ware synchronizer and DMA, or the partition between CC and EN-
Core Processors, thus providing the highest level of control on
application-to-resource mapping at the expense of abstraction. Our
MAC schemes fully utilize the NPM capability to achieve fast ex-
ecution and provide fast response to the network. Applications for
P2012 require execution engines to manage the interaction between
CC and ENCore processors. Execution engines provide methods
for initializing, starting, notifying and stopping ENCore PEs. The
Reactive Task Manager (RTM) is an execution engine supported by
NPM. RTM runs in a cluster and allows easy fork/join and dupli-
cation of jobs on PEs. The Multi-Thread Engine (MTE) is another
execution engine available through NPM. The MTE uses threads
to parallelize processes. Barriers are used for synchronization and
the threads cannot be preempted. Multiple threads can run on ei-
ther single or multiple PEs within one cluster. Using both MTE
and RTM based on their different capabilities in mapping tasks to
PEs, we have implemented a toolchain TRUMP for MAC protocol
parallelization and scheduling.

3.2 TRUMP
TRUMP is a toolchain for runtime protocol realization. It con-

sists of a MAC meta descriptor for MAC protocol design in C-
like syntax, MAC meta compiler which interprets the MAC de-
scription for the target platforms, and Wiring Engine for manag-
ing the runtime execution of the MAC protocol. TRUMP aims
at providing parallelization possibilities of independent MAC pro-
cesses. It has a dependency table which captures the dependencies
among different MAC processes, and a logic controller which gov-
erns the scheduling of the MAC processes based on the availability
of thread/processor core and the state machine of the MAC proto-
col. We have used TRUMP on a x86 Linux based multi-core PC
for simulation of some MAC protocol configurations. A reduction
in terms of execution speed of 90% is observed in our test case
as compared to a single core single thread environment. We have
implemented TRUMP on to P2012 using NPM and its execution
engines for easy MAC protocol realization as shown in Figure 1.
As part of TRUMP, the MAC meta-compiler is implemented on the
host side which processes both the MAC description and the depen-
dencies indicated by the MAC designer for the functions. An exe-
cution list which contains the logic and functions used by the MAC
description is formed. The list is analyzed and a two-dimensional
array is written with the logic operator, functions and the depen-
dency code associated. The array is passed to the Fabric Controller
(FC) as an argument of a message. The FC uses the Wiring Engine
to map the functions in the array to the MAC components in the
library. Depending on the nature of the MAC layer applications,
TRUMP uses different runtime execution engines. MTE and RTM
can also be used together on different clusters. For example, stan-
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Figure 1: System architecture: TRUMP implementation on
P2012.

dard MAC protocol processes uses MTE since individual thread
terminates independently. RTM is more suitable for parallelizing
of duplicated tasks and callback function is only triggered when all
the tasks on the PEs within one cluster are done execution, which
is suitable for some of the machine learning algorithms for MAC
schemes.

4. EVALUATION RESULTS
In order to assess the benefit and drawback that many-core ar-

chitecture brings for new generation of MAC protocols, we have
implemented three types of MAC layer applications on a cycle ac-
curate P2012 emulator for evaluation: a) classical MAC schemes
which do not have significantly computational algorithms; b) ge-
netic algorithm based runtime MAC performance optimization al-
gorithm, and c) swarm intelligence based channel selection algo-
rithm. Additionally, since multi-core architecture requires addi-
tional scheduling and management mechanisms, we also present
the execution overhead for task scheduling and the initialization
and termination overheads of the platform. The error rate of the
cycle-accurate emulator is around 10%.

4.1 Classical MAC Executions
We have implemented a simple MAC protocol as shown in Table

1 using TRUMP. Since the P2012 does not have a radio front-end,
we have used the timing measurements from WARP SDR boards
for all the functions that are used in this protocol to emulate a
more realistic behaviour. Some of the functions are independent
from others and can be executed in parallel, e.g., BackOff()
and SetFrequencyChannel() while some functions have to
be executed in a specific sequence, e.g., SendPacket(ACK) has
to be executed after WriteToTxBuffer(ACK), as the transmit
buffer needs to be filled with the relevant data before a transmis-
sion should take place. We have measured the complete execution

Table 1: MAC protocol description and the measured execu-
tion duration associated with the MAC functions from WARP
platform.

MAC Protocol Description Duration [us]
label Start;
WriteToTxBuffer(DATA); 29.5
label TryToSend;
BackOff(); 18
SetFrequencyChannel(); 22
if(CarrierSensing()) 30

SendPacket(DATA); 433
if(WaitForPkt(ACK)) 144

ReadFromRxBuffer(); 20
goto Start;

else
goto TryToSend;

endif
else

if(WaitForPkt(DATA)) 433
ReadFromRxBuffer(); 50
WriteToTxBuffer(ACK); 11
SendPacket(ACK); 144

endif
goto TryToSend;

endif

time of the above described MAC protocol on P2012 using dif-
ferent number of PEs. Figure 2 shows the ratio of the execution
time of parallelized MAC protocol using multiple PEs against se-
quential execution using one PE over varying number of iterations.
Approximately only 3% of execution time has been saved by using
parallelization for this MAC protocol realization. It is due to the
high level of dependency of the function used in this protocol and
the short execution time required by each functions.

We have analyzed the complete execution time and identified two
main parts contributing to the overhead of executing a MAC pro-
tocol on the P2012. The initialization overhead includes the initial
communication between the host and the fabric and the initializa-
tion of fabric. The scheduling overhead refers to the time taken for
the CC to schedule tasks onto the PEs at runtime. There is always
a delay between task executions due to the central controller. Even
for independent MAC processes, there is a difference in the starting
time since they need to be allocated onto the PEs in sequence. Fig-
ure 3 shows the initialization and scheduling overhead of executing
a MAC protocol. It can be seen that the overheads of using two
PEs and three PEs are almost the same while the one PE results in
a significant increase in the scheduling overhead. It is mainly due
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Figure 2: The ratio of the execution time of the MAC proto-
col described in Table 1 using multiple PEs for parallelization
against sequential execution on one PE.
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Figure 3: The execution overhead of the MAC protocol de-
scribed in Table 1 on different numbers of PEs in one cluster
with different numbers of iterations.

to the shortened total execution time of the program by being able
to parallelize MAC processes onto multiple PEs. The initializa-
tion overhead is around 3% for one iteration of the MAC protocol.
Since MAC protocol runs a long time, the initialization overhead is
almost negligible. There is no significant difference among the ini-
tialization overhead in this test case since the number of PEs used
is small. We show the initialization overhead of the whole P2012
fabric in Section 4.2.

4.2 Genetic Algorithm based MAC
Parameter Optimization

Genetic Algorithms (GAs) have been widely used in the MAC
research community for parameter optimization and performance
adaptations. GAs [27] are a method of search, mainly for learn-
ing and optimization purposes. Although GA is typically not fast
to converge, it is robust, scalable and well suited for optimization
problems involving large search spaces. The GA computation starts
from definition of fitness functions which are measures of perfor-
mance towards an or multiple objectives. A few randomly gen-
erated populations of individuals known as chromosomes are se-
lected. Each chromosome represents a possible solution to a prob-
lem. The fitness of each chromosome in a population in each gen-
eration is evaluated based on the fitness functions. Crossover and
mutation are actions performed to the chromosomes of the pop-
ulations at each generation. In general, chromosomes which are
believed to be able to survive from generation to generation are se-
lected and the population of the new generation is expected to be
better than the old generation. The process is iterated until conver-
gence criteria are met [28].

GA has been used for an engine which provides awareness-proce
ssing, decision-making and learning elements of cognitive func-
tionality [29, 30]. Since CRs are required to adapt based on the
environmental sensing and learning results, GAs are used to evolve
a radio defined by a chromosome. The adjustable parameters of
a radio are presented by genes in a chromosome and a set of pa-
rameters which optimizes the radio for the CR node needs is found
by GA. GA has also been used in other aspects for CRs such as
spectrum management [28], determining of Radio Frequency (RF)
parameters for optimal radio communications in the varying RF en-

vironment for autonomous vehicle communications [31], and chan-
nel allocation [32]. Although GA has been proposed to be used in
various areas for Cognitive Radio Network (CRN), the high com-
putational requirement of the algorithm has been a hurdle to realize
GA in real-time for resource optimization in the MAC layer [33].

Since it is an inherent nature of GAs that the evaluation of indi-
viduals can be conducted independently, the computing time can be
effectively accelerated by means of parallel computation [34]. Par-
allel GAs also have the advantage of modeling natural evolution
more closely by introducing the concept of spatial locality [35].
Therefore, we see great potential in employing GA for MAC layer
optimization at runtime by exploiting the parallelism on many-core
architectures.

4.2.1 Problem Formulation
In this work, we implement a GA with multi-objectives. Our im-

plementation is adapted based on previous work from Newman et
al. [33]. We have included a list of PHY and MAC parameters as
the genes for the chromosomes. The genes include radio transmis-
sion power, modulation type, modulation index, frequency channel,
number of subcarriers, channel coding rate and packet size. A pop-
ulation of 100 chromosomes each of length of 44 bits are generated
randomly. The crossover rate is set to be 90% and mutation rate is
5%. The fitness function is defined as

f = w1 ∗ (fmin_power)+w2 ∗ (fmin_per)+w3 ∗ (fmax_throughput), (1)

where

fmin_per = 1− log 0.5

logPpe
, (2)

and

Ppe = 1− (1− Pbe)
L. (3)

The definitions of fmin_power, fmax_throughput and Pbe are according
to [33] while fmin_per refers to the minimum packet error rate Ppe,
which is related to the bit error rate Pbe and the length of the packet
L. w1, w2, and w3 are the weights assigned to each individual
fitness functions depending on the application scenario and user re-
quirements.

Since the fitness function execution is computationally inten-
sive, involving complicated mathematical functions, we have par-
allelized the execution of fitness function calculation across chro-
mosomes. Each chromosome is assigned to a PE for the fitness
function calculation while the rest of the processes such as muta-
tion, crossover, chromosome selection and replacement is done at
the host.

4.2.2 Execution Time
In this experiment, we execute the GA using varying number

of clusters and PEs to analyze the benefit and overhead in terms
of execution time. Figure 4 shows the overhead of using multiple
clusters and PEs on P2012 for executing the GA. The initialization
overhead increases significantly with the number of clusters while
the termination overhead is comparatively negligible. These over-
heads just occurs once, i.e. when a node is booted and shut-down.
Therefore, they are insignificantly small (less than 80 ms) when the
lifetime of a node can be of days and months.

Figure 5 shows the actual execution time (excluding the initial-
ization and closing overhead) of the GA on P2012 fabric. We can
see that with small number of generations, the execution time does
not differ too much with different amount of computational power,
especially with multiple clusters. However, a GA easily takes ap-
proximately 200 iterations to reach a reasonable fitness score. Sig-
nificant improvement is shown when using more clusters and more
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Figure 4: The initialization and termination overhead of using
different number of PEs and clusters of the P2012 fabric when
executing the parallel GA.

PEs as the number of generation increases. In an extreme case, an
85% improvement is observed for 200 iterations when four clusters
with 64 PEs in total are used as compared to one PE. It shows that
when a change has occurred in terms of either application QoS re-
quirements, or special condition, or network topology, etc., which
demands an adaptation at the MAC scheme, the node is able to find
an acceptable solution in 10 ms if equipped with the whole P2012
fabric for parallel execution as compared to 75 ms with sequential
execution.

4.3 Swarm Intelligence Algorithm for
MAC Layer Channel Allocation

Inspired by the observation that social insects such as ants and
bees work in a self-organized fashion with unsupervised coordina-
tion between simple interactions among individuals in the colony,
Swarm Intelligence (SI) algorithms model network users as a pop-
ulation of simple agents interacting with the surrounding environ-
ment [36,37]. Although each agent has little intelligence, global in-
telligence is resulted from the collaborative behaviour of the colony.
Division of labour is the key in SI where different activities are
performed by those who are better suited to the task. SI algo-
rithms have three characteristics which made them popular in a
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Figure 5: The execution time of the GA with different number
of generations using different number of PEs and clusters of
the P2012 fabric.

wide range of applications: flexibility in adapting to a changing
environment, robustness against failure of individuals, and self-
organization with unsupervised activities [38]. Although in this
work we have applied SI for MAC layer channel allocation, SI has
been widely popular in resource management in CRNs in general.
Doerr et al. have used SI algorithm to dynamically identify com-
mon control channel in CRNs [39]. SI algorithms have also been
used for optimum resource allocation in terms of assigning avail-
able spectrum holes to CR users [40, 41]. BIOlogically-inspired
Spectrum Sharing (BIOSS) algorithm allocates channels to unli-
censed users in CRNs based on the adaptive task allocation model
in insect colonies. BIOSS works with distributed network architec-
ture since the users can distributively select the channels for com-
munication [42]. BIOSS has been enhanced in channel allocation
so that channels which have the minimum excess power over the
node’s transmission power is preferred [43]. This modification has
improved the utilization of low-power channels and thus the global
spectrum utilization.

4.3.1 Problem Formulation
We have followed the enhanced BIOSS protocol (eBIOSS) [43]

closely for our channel allocation algorithm implementation. A
brief overview of the algorithm is described here. The probability
of selecting a particular channel which satisfies the transmission
requirement is

T csp
ij =

{
0, Pj < pi

1− P n
j

P n
j +αpn

ij
, Pj ≥ pi

(4)

where Pj is the permissible power to channel j, pij is the required
transmission power of node i to channel j. It is assumed that the
permissible power to all channels are available at each node through
spectrum sensing, and the required transmission power can be de-
termined according to the user requirements and channel character-
istics. n determines the slope of the channel selection probability
T csp

ij and is set to be 2 in our implementation. α is a constant which
determines the influence of pij and is set to be 10.

The channel selection probability is calculated for all the chan-
nels at a node when an event happens such as a transmission task
arises, the operating environment changes, the QoS requirement
varies, etc. The channel with the maximum T csp

ij is selected. The
selection is then evaluated and good channels are remembered.

4.3.2 Channel Allocation
In our experiment, we assume a one-hop network with fixed

number of channels and nodes contending for transmission. Each
node is assigned with a required transmission power per transmis-
sion task randomly. Each node is equipped with a P2012 fabric.
We initialize each node with a random number of clusters (1 to 4),
which helps us to evaluate the relationship between the process-
ing capability and the opportunity in finding a suitable channel for
transmission. Since there is typically more demand than supply,
i.e. more nodes within a network than the channels which sat-
isfy the required transmission power, some nodes might not find
a suitable channel every time. Channel algorithms are performed
repetitively until a channel is allocated for the pending transmission
task. Figure 6 shows the possibility for a node to find a suitable
channel in a network of varying size. We see that the nodes which
only have one cluster for executing eBIOSS algorithm performs the
worst while the rest nodes have similar level of performance. It is
due to the fact that since the number of total available channel is
20 and the number of PEs in one cluster is only 16, it takes much
longer for the nodes with one cluster to calculate the channel selec-
tion probability for all the channels. Since channels are allocated
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Figure 6: The channel allocation rate of varying sizes of net-
work with different number of clusters for executing the chan-
nel allocation algorithm. The total number of channels is 20.

based on a first come first serve basis, the nodes which are able
to process information faster have higher chance in grabbing the
channels which fit to their transmission requirement. This result
also shows the relationship between network parameters and the
amount of computational power required. The performance curves
of two, three and four clusters lie very close together. It shows that
clusters more than two are not required for this application sce-
nario. Involving more than necessary processing elements results
in extra control overhead. Figure 7 shows the possibility to obtain
a suitable in a network with different number of channels available.
The more channels available, the more computational power is re-
quired from the node to be able to evaluate the channel quality on
time. We see that when only 10 channels are available, nodes with
more clusters do not have any advantage over nodes with only one
cluster and the successful channel allocation rates are the same for
all the nodes. When the number of channels increases, high com-
putational power becomes more beneficial.
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Figure 7: The channel allocation rate at nodes with different
computational power of a network with 30 nodes. The number
of channels varies from 10 to 60.

5. CONCLUSIONS
With increasing requirements of hard real-time constraints as

well as high degree of flexibility for MAC-layer algorithms, SDR
community is exploring multi-core architectures. Since heteroge-
neous platforms exhibit restricted possibilities for extension and
compatibility of the legacy code, we have investigated MAC-layer
realization on the homogeneous P2012 architecture. An OFDM
MIMO PHY layer implementation has already been realized for
P2012 [8]. At the MAC-layer, we focus on the efficient paralleliza-
tion and scheduling of MAC processes benefiting from the platform
architecture and its software tools. We use our toolchain TRUMP to
schedule different MAC processes on different computing elements
according to the state machine of a particular MAC scheme and
the hardware resource availability at runtime. For evaluation, we
have considered two main classes of MAC scheme realizations. We
have observed that classical simple CSMA/CA based MAC proto-
cols benefit little from parallelization. This is owing to the fact that
these protocols do not involve heavy computations and the MAC
processes exhibit short execution and blocking times. Although
the execution speed gain is only 3%, it shows that the scheduling
overhead and communication delays induced for a many-core ar-
chitecture can be compensated by parallelization in simple MAC
protocols. For MAC protocols involving complicated algorithms,
many-core platform architectures show significant benefits from
parallel execution capability. Advanced channel selection and re-
source management schemes often require machine learning based
or statistical data analysis methods. Due to the tight scheduling
and timeliness constraints of reconfigurable MAC schemes, these
computationally demanding algorithms cannot be offloaded exter-
nally due to data and control bottlenecks. Therefore, the on-board
processing power offered by many-core architecture is desired. We
have shown that by fully exploiting the computational power on
P2012, we are able to achieve an up to 85% improvement in con-
vergence time when using genetic algorithm for MAC/PHY param-
eter optimization as compared to using a single-core platform. We
have also shown that when using SI algorithm for channel alloca-
tion, it is 2-6 times more likely for a node with more computing
power to get a desirable channel than a node with limited compu-
tational power. We believe that our results show the importance
of parallelization of computationally complex MAC strategies and
emphasize the need for many-core architecture in SDR platforms.
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