

The value of repeatable experiments
and negative results

Dave Täht
 Bufferbloat.net

 Sigcomm CCW
 Aug 18th, 2014

Installing netperf-wrapper

● Linux (debian or ubuntu)
– sudo apt-get install python-matplotlib python-qt4 fping subversion git-core
– git clone https://github.com/tohojo/netperf-wrapper.git
– cd netperf-wrapper; sudo python setup.py install
– See the readme for other dependencies.(netperf needs to be compiled

with –enable-demo)
● OSX

– Requires macports or brew, roughly same sequence
● Data Set: http://snapon.lab.bufferbloat.net/~d/datasets/
● This slide set:

http://snapon.lab.bufferbloat.net/~d/sigcomm2014.pdf

 Bufferbloat.net Resources
 Reducing network delays since 2011...

Bufferbloat.net: http://bufferbloat.net
Email Lists: http://lists.bufferbloat.net (codel, bloat,
cerowrt-devel, etc)

 IRC Channel: #bufferbloat on chat.freenode.net
 Codel: https://www.bufferbloat.net/projects/codel
 CeroWrt: http://www.bufferbloat.net/projects/cerowrt
 Other talks: http://mirrors.bufferbloat.net/Talks

 Jim Gettys Blog: http://gettys.wordpress.com
 Google for bloat-videos on youtube...
 Netperf-wrapper test suite:
 https://github.com/tohojo/netperf-wrapper

http://bufferbloat.net/
http://lists.bufferbloat.net/
http://www.bufferbloat.net/projects/cerowrt/wiki
http://mirrors.bufferbloat.net/Talks
http://gettys.wordpress.com/
https://github.com/tohojo/netperf-wrapper

“Reproducible” vs “Repeatable”
Experiments

● Researcher MIGHT be
able to repeat experiment
in light of new data.

● Reviewer typically lacks
time to reproduce.

● Reader MIGHT be able,
from the descriptions in
the paper, reproduce the
result, by rewriting the
code from scratch.

● Researcher MUST be easily
repeat the experiment in
light of new data.

● Reviewer SHOULD be able
to re-run the experiment
and inspect the code.

● Reader SHOULD be able
from the code and data
supplied by the research,
repeat the experiment
quickly and easily.

What's wrong with reproducible?

● Coding errors are terribly
common – code review is
needed...

● Reproduction takes time I don't
have.

● Science in physical law is
constant. Gravity will be the
same tomorrow, as today...

● In computer science, the laws
are agreements, and
protocols, and they change
over time.

● You have 30 seconds to get
my attention.

● 5 minutes, tops, to make a
point.

● There are thousands of
papers to read.

● Show me something that
works... that I can fiddle
with, or change a constant
to match another known
value... anything....

Open Access

● Cathedral and the Bazaar
● Why programmers don't bother joining

ACM
● Artifacts

Aaron Swartz

http://legacy.earlham.edu/~peters/fos/overview.htm
http://www.catb.org/esr/writings/cathedral-bazaar/
http://www.itworld.com/cloud-computing/429166/why-many-programmers-don-t-bother-joining-acm
http://www.itworld.com/cloud-computing/429166/why-many-programmers-don-t-bother-joining-acm
http://www.artifact-eval.org/motivation.html
https://plus.google.com/u/0/107942175615993706558/posts/VJKvfvKU9pi

A working engineer's Plea:
Help me out here!

● First, lose TeX:
– HTML and mathjax work just fine now.
– I forgot everything I knew about TeX in 1992....

● Math papers
– Please supply a link to a mathematica, wolfram language, or spreadsheet of your analysis

● You had to do it for yourself anyway...

● CS Papers
– Supply source code in a public repository like github
– Put raw results somewhere
– Keep a vm or testbed around that can repeat your result
– Make it possible for others to repeat your experiment
– It would be great if there was a way to comment on your paper(s) on the web

● And do Code Review, before Peer Review
– Your code might suck. News for you: everyone's code sucks.
– Defect rates even in heavily reviewed code remain high, why should yours

be considered perfect?

Several Fundamental Laws of
Computer Science

● Murphy's Law: “Anything that can go wrong, will...”
– At the worst possible time...
– At the demo...
– And in front of your boss.

● Linus's Law: “With enough eyeballs, all bugs are shallow”
– “With enough bugs, all eyeballs are shallow” - Post-Heartbleed corollary

● Everything evolves – getting faster, smaller, more complex, with
ever more interrelationships...

● And if assumptions are not rechecked periodically...
● You get:

Network Latency with Load: 2011

Fiber

Cable (DOCSIS 2.0)ADSL

Wifi

March, 2011: no AQM or Fair Queue
algorithm worked right on Linux

● Turn on red, sfq, what have you...
● On ethernet at line rate (10mbit, 100mbit, GigE) – nearly

nothing happened
● On wifi – nothing happened
● On software rate limited qos systems – weird stuff

happened (on x86) that didn't happen on some routers
● Everything exhibited exorbitant delays... wifi especially,

but ethernet at 100mbit and below was also terrible...

Bufferbloat was everywhere...And the
fq/aqm field was dead, dead, dead.

And we didn't know why...

Bufferbloat was at all layers of the
network stack

● Virtual machines
● Applications
● TCP
● CPU scheduler
● FIFO Queuing systems (qdiscs)
● The encapsulators (PPPoe and VPNs)
● The device drivers (tx rings & buffers)
● The devices themselves
● The mac layer (on the wire for aggregated traffic)
● Switches, routers, etc.

We went back to the beginning of
Internet Time...

● 1962 Donald Davies “packet” = 1000 bits (125 bytes)

"The ARPANET was designed to have a reliable communications subnetwork. It was to have
a transmission delay between hosts of less than ½ second. Hosts will transmit messages,
each with a size up to 8095 bits. The IMPs will segment these messages into packets, each
of size up to 1008 bits."

-- http://www.cs.utexas.edu/users/chris/think/ARPANET/Technical_Tour/overview.shtml
● 70s-80s packet size gradually grew larger as headers grew
● 80s ethernet had a maximum 1500 MTU
● 90s internet ran at a MTU of 584 bytes or less
● IPv6 specified minimum MTU as 1280 bytes
● 00's internet hit 1500 bytes (with up to 64k in fragments)
● 10's internet has TSO/GSO/GRO offloads controlling flows with up to 64k bursts – TSO2 has

256k bursts...
● Were these giant flows still “packets”? Average packet size today is still ~300 bytes...

VOIP/gaming/signalling packets generally still less than 126 bytes

http://www.cs.utexas.edu/users/chris/think/ARPANET/Technical_Tour/overview.shtml

Fundamental reading:
 Donald Davies, Leonard Kleinrock

& Paul Baran
● http://www.rand.org/content/dam/rand/pubs/research_memoran

da/2006/RM3420.pdf
● Kleinrock - “Message delay in communication nets with storage”

http://dspace.mit.edu/bitstream/handle/1721.1/11562/33840535.p
df

● Are Donald Davies 11 volumes on packet switching not online??
● Van Jacobson & Mike Karels - “Congestion Avoidance and

Control”

http://ee.lbl.gov/papers/congavoid.pdf
● Nagle: “Packet Switches with infinite storage”

 http://tools.ietf.org/html/rfc970

http://www.rand.org/content/dam/rand/pubs/research_memoranda/2006/RM3420.pdf
http://www.rand.org/content/dam/rand/pubs/research_memoranda/2006/RM3420.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/11562/33840535.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/11562/33840535.pdf

Fair Queuing Research, revisited

● RFC970
● Analysis and simulation of a Fair Queuing Algorith
● Stochastic Fair Queueing (SFQ) – used in

wondershaper
● Deficit Round Robin- had painful setup
● Quick Fair Queuing – crashed a lot
● Shortest Queue First – only in proprietary firmware
● FQ_CODEL – didn't exist yet

http://www.eecs.berkeley.edu/~sylvia/cs268-2014/papers//FQ1989.pdf
http://www2.rdrop.com/~paulmck/scalability/paper/sfq.2002.06.04.pdf
http://users.ece.gatech.edu/~siva/ECE4607/presentations/DRR.pdf
http://algo.ing.unimo.it/people/paolo/agg-sched/short-description.php
http://www.internetsociety.org/sites/default/files/pdf/accepted/4_sqf_isoc.pdf

AQM research, revisited

● RED – Didn't work at all like the ns2 model
● RED in a different Light – not implemented
● ARED - unimplemented
● BLUE – couldn't even make it work right in ns2
● Stochastic Fair Blue – implementation needed the sign

reversed and it still didn't work
– We talked to Kathie Nichols, Van Jacobson, Vint Cerf, John Nagle,

Fred Baker, and many others about what had transpired in the 80s
and 90s.

– And established a web site and mailing list to discuss what to do...

http://www.icir.org/floyd/red.html
http://gettys.wordpress.com/2010/12/17/red-in-a-different-light/

Some debloating progress against
all these variables...

● 2011 Timeline:
– April: TSO/GSO exposed as causing htb breakage

● Turning it off gave saner results on x86

– June: Infinite retry bug in wifi fixed
● :whew: no congestion collapse here

– August: “Byte Queue Limits” BQL developed
● Finally, multiple AQM and FQ algorithms had bite
● Even better, they started scaling up to 10GigE and higher!

– October: eBDP algorithm didn't work out on wireless-n
– November: BQL deployed into linux 3.3

● Multiple drivers upgraded
● 2 bugs in RED implementation found and fixed

● Finding these problems required throwing out all prior results (including all of
yours) and repeating the experiments...
– And I stopped believing in papers...

The value of Byte Queue Limits
2 orders of magnitude lag reduction

 0

 0.2

 0.4

 0.6

 0.8

 0 5000 10000 15000 20000

P
(

R
T

T

≤

h

)

RTT h (ms)

Size of

Ring Buffer/qdisc

(packets)

80 4920

128 4872

256 4744

512 4488

1024 3976

2048 2952

4096 904

Latency without BQL

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 50 60 70 80 90 100 110 120 130
P

(
R

T
T

≤

h

)

RTT h (ms)

Size of

Ring Buffer/qdisc

(packets)

80 4920

128 4872

256 4744

512 4488

1024 3976

2048 2952

4096 904

9:Latency with BQL.

Src: Bufferbloat Systematic Analysis
(published this week at its2014)

New starting Point: WonderShaper

● Published 2002:
– Combines fair queuing + a poor man's AQM (permutation) on outbound
– 3 levels of service via classification
– 12 lines of code...

● Worked, really well, in 2002, at 800/200kbit speeds.
– I'd been using derivatives for 9 years...
– Most open source QOS systems are derived from it
– But it didn't work well in this more modern era at higher speeds

● What else was wrong?

(google for “Wondershaper must die”)

http://www.bufferbloat.net/projects/cerowrt/wiki/Wondershaper_Must_Die

2012 progress in Linux

● Jan: SFQRED (hybrid of SFQ + RED) implemented
– ARED also

● May: Codel algorithm published in ACM queue
● June: codel and fq_codel (hybrid of DRR + codel) slammed into the linux kernel
● Aug: pie published
● And....

– The new FQ and AQM tech worked at any line rate without configuration! (so long as you
had BQL,

– Or HTB with TSO/GSO/GRO turned off.
● SQM (CeroWrt's Smart Queue Management) developed to compare them all...
● Netperf-wrappers started to test them all...

FQ_Codel

● A hybrid of
– DRR (Deficit Round Robin) Fair Queueing
– Codel (for queue length management)
– With some SQF-like features for the sparsest flows

● Achieves near-0 queue delay for sparse flows, and under 20ms
of queue delay for heavier loads

● It and variants are currently winner among the congestion
management on-the-router tools in OpenWrt, dd-wrt, CeroWrt,
Ipfire, and free.fr's deployment

● NS2 and NS3 models available
● http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-

00

http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00
http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00

Web page load time wins

Video at: http://www.youtube.com/watch?v=NuHYOu4aAqg

http://www.youtube.com/watch?v=NuHYOu4aAqg

“FQ_Codel provides great isolation... if you've got low-
rate videoconferencing and low rate web traffic they

never get dropped. A lot of issues with IW10 go away,
because all the other traffic sees is the front of the

queue. You don't know how big its window is, but you
don't care because you are not affected by it.

FQ_Codel increases utilization across your entire
networking fabric, especially for bidirectional traffic...”

“If we're sticking code into boxes to deploy codel,
don't do that.

Deploy fq_codel. It's just an across the board win.”
 - Van JacobsonVan Jacobson

IETF 84 Talk IETF 84 Talk

Linux TCP advances: 2010-2014
● Linux 3.0: Proportional Rate Reduction
● Linux 3.3: Byte Queue Limits
● Linux 3.4 RED bug fixes & IW10 & SFQRED
● Linux 3.5 Fair/Flow Queuing packet scheduling (fq_codel, codel)
● Linux 3.6 Stability improvements to fq_codel
● Linux 3.7 TCP small queues (TSQ)
● Linux 3.8 HTB breakage
● Linux 3.11 HTB fixed
● Linux 3.12 TSO/GSO improvements
● Linux 3.13 Host FQ + Pacing
● Linux 3.15 Change to microseconds from milliseconds throughout networking kernel
● The Linux stack is now mostly “pull through”, where it used to be “push”, and looks nothing like it did 4 years ago.
● At least a dozen other improvements I forget

PLEASE don't bother writing any more papers against linux 3.3. Please use the most current kernels you can.

A 3.2.X kernel is a STABLE release containing NONE of these improvements.

Please repeat your experiments!

Host Queue improvments: sch_fq

● Most Fair Queuing systems were developed in the 80s and 90s using
approximations for “Time” and “Flows” due to lack of CPU during those
decades.

● sch_fq is a new pure fq scheduler by Eric Dumazet, using wallclock time
and a red/black tree to manage all flows without any stochastic hashing.

● Parts are inherited from FQ_codel (but no AQM)
● Has sufficient bands to be a drop in replacement for PFIFO_FAST
● Has support for a larger initial quantum (IW burst support)
● Supports “Pacing” of (particularly) ON/OFF flows like DASH with a

setsockopt.
● Works with millions of active flows
● Will probably become the Linux default.

With BQL, TSQ, and fq_codel, most
of us declared victory, and went off
to implement them in the real world!
● And (we're sorry...) didn't write a paper on them.
● Van, Eric, & Andrew went off to google
● OpenWrt “Barrier Breaker”, CeroWrt, Ipfire and free.fr

adopted it all immediately... followed by dd-wrt and others...
● It went into multiple other Linux distros
● PIE went into DOCSIS 3.1
● And we went to try and refine them further...

– With tons and tons of negative results
– And refinements throughout the rest of linux...

26

Some pending Internet Drafts

● AQM working group
● https://datatracker.ietf.org/doc/charter-ietf-aqm/
● Pending drafts:
●

● http://snapon.lab.bufferbloat.net/~d/draft-taht-home-gateway-best-practices-00.html

● http://tools.ietf.org/html/draft-white-aqm-docsis-pie-00

● http://tools.ietf.org/html/rfc2309 Is beiing revised

● http://tools.ietf.org/html/draft-ietf-aqm-recommendation-03

● http://tools.ietf.org/id/draft-kuhn-aqm-eval-guidelines-00.txt

● http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00

● http://tools.ietf.org/html/draft-nichols-tsvwg-codel-02

● http://sandbox.ietf.org/doc/draft-baker-aqm-sfq-implementation/

https://datatracker.ietf.org/doc/charter-ietf-aqm/
http://snapon.lab.bufferbloat.net/~d/draft-taht-home-gateway-best-practices-00.html
http://tools.ietf.org/html/draft-white-aqm-docsis-pie-00
http://tools.ietf.org/html/rfc2309
http://tools.ietf.org/html/draft-ietf-aqm-recommendation-03
http://tools.ietf.org/id/draft-kuhn-aqm-eval-guidelines-00.txt
http://tools.ietf.org/html/draft-hoeiland-joergensen-aqm-fq-codel-00
http://tools.ietf.org/html/draft-nichols-tsvwg-codel-02

Fair Queuing Vs AQM Vs E2E

The debate on where congestion control mechanisms should go has raged for 30+ years,
going back to: Jan 16-17, 1986: The very first ietf meeting

● IMHO: In order of effectiveness
– FQ wins over
– AQM which wins over
– E2E
– AND that all these techniques are useful and needed.

● But: I didn't believe that til after thousands of experiments covering a wide range of
scenarios, using multiple tcps, multiple aqm systems, and writing tons of tests,

● And... doing multiple test deployments across the cerowrt userbase
● “fq-codel” is the thing to beat (on ethernet/cable/fiber) Not wifi! Yet!
● Since then we have focused on improving various tools to look harder at multiple network

scenarios.
● Maybe I can convince you with repeatable experiments. Or you convince me with

repeatable experiments...

http://www.ietf.org/mail-archive/web/aqm/current/msg00469.html

Some Repeatable Experiments
● Tcptrace and xplot.org
● Netperf-wrapper (by Toke Hoeiland-Joergensen)

– Standardized data format, 30+ network specific tests, 20+ plot types, extensive support for batching and other
automation, usage of alternate TCP algorithms, in combination with other web and voip-like traffic

● CeroWrt
– Inexpensive actual router configurable with nearly every AQM and FQ algorithm using “SQM”
– Emulations of common CMTS and DSLAM behavior
– Results proven sane to 50mbits
– Most of cerowrt is already in openwrt “Barrier Breaker”.

● SQM (“Smart Queue Management”)
– Drop in replacement for wondershaper portable to all modern linuxes
– Uses fq_codel by default

● NS2 models of codel, sfq_codel, and pie moving to mainline
● NS3 models of codel, fq_codel, asymmetric edge networks, etc,

– Google 2014 summer of code
– Nearly done!

Installing netperf-wrapper

● Linux (debian or ubuntu)
– sudo apt-get install python-matplotlib python-qt4 fping subversion git-core
– git clone
– cd netperf-wrapper; sudo python setup.py install
– See the readme for other dependencies.(netperf needs to be compiled with

–-enable-demo)
● OSX

– Requires macports or brew, roughly same sequence
● Data Set: http://snapon.lab.bufferbloat.net/~d/datasets/
● This slide set: http://snapon.lab.bufferbloat.net/~d/sigcomm2014.pdf
● Run:

– netperf-wrapper –gui yourchoiceofdata*.gz
– Or netperf-wrapper -x -H snapon.lab.bufferbloat.net rrul

20/8Mbit cable modem performance
 w htb + 3 tier fq_codel (SQM)

Some newer reads
● Controlling Queue Delay : http://queue.acm.org/detail.cfm?id=2209336
● 2002 TCP Pacing paper seemingly refuted

http://reproducingnetworkresearch.wordpress.com/2013/03/13/cs244-13-tcp-pacing-
and-buffer-sizing/

● On the self similar nature of Network Traffic:

http://ecee.colorado.edu/~ecen5032/handouts/94LelandSelfSim.pdf
● Google for lots of papers on “Packet Pairing”.
● Van Jacobson's Queue Rant: http://www.pollere.net/Pdfdocs/QrantJul06.pdf
● Pfabric and related look a lot like “shortest queue first”:

http://www.stanford.edu/~skatti/pubs/sigcomm13-pfabric.pdf
● On the Co-existence of AQM and Low Priority Congestion Control:

http://perso.telecom-paristech.fr/~drossi/paper/rossi13tma-b.pdf
– Note that LPCC has a dirty little secret – 100ms delay target...

http://www.pollere.net/Pdfdocs/QrantJul06.pdf
http://www.stanford.edu/~skatti/pubs/sigcomm13-pfabric.pdf
http://perso.telecom-paristech.fr/~drossi/paper/rossi13tma-b.pdf

I wish I had some red rubber stamps
for new papers....

● [Rejected: Ludicrous constants]
● [Rejected: Can't replicate results]
● [Rejected: Incorrect assumptions]
● [Rejected: Tool is broken]
● [Rejected: can't reproduce results]
● [Rejected: doesn't replicate original bufferbloat experiment]
● [Rejected: over-uses statistical legerdemain]
● [Rejected: doesn't use real-world settings for buffering, rtt, etc]
● [Rejected: tool doesn't work]
● [Rejected: Simulation implements outdated TCP]
● [Rejected: Simulation doesn't measure sane loads]
● [Rejected: Analytical TCP models completely disregard slow start]
● [Rejected: Poisson not pareto distributions]
● [Rejected: 95th percentile considered acceptable]

Kathie Nichols, Van Jacobson

Gripe #1: Acceptable queueing delays?

Academia
(from multiple papers, this chart

considers 200ms to be a
“bufferbloat episode:” from

“characterising bufferbloat from end
hosts”) Dave Taht,

Eric Dumazet
Jim Gettys Rong Pan

Bufferbloat.net,
linux netdev
Google, etc.

Gripe 2: Bandwidths and Physical
RTTs under test

Technology Bandwidth Down/Up RTT Typical buffering

Cable 8M/1M, 20/5, 50/10,
100/20, higher

16-38ms 256k-1Mbyte
down
256kup

FIOS 25M/25M, 50/50,
higher

8-18ms 512K down

DSL 1M/384k, 8/768,20/1 8-40ms 64k down, 64k up

Wifi 1Mbit-1+gbit 1ms-80s 512 packets

Google Fiber 5M/1M,1G/1G 3-5ms Unk

Compared Verses Academia

NS2 1-10Mbit 100ms 50-100 packets

NS3 1-10Mbit 4-200ms 50-100 packets

Mininet 1-100Mbit 4-100ms 50 packets

http://reproducingnetworkresearch.wordpress.com/2014/06/03/cs244-14-confused-timid-and-unstable-picking-a-video-streaming-rate-is-hard/

Real Network “Constants”

● Speed of light in the medium
● Media Acquisition time (Cable Request/Grants, Wifi EDCA)
● Min/max Packet size (MTU)
● TCP

– Initial window (IW4, IW10)
– Slow Start Threshold
– RTO timeout

● Aggregation sizes
● These constants matter hugely at low bandwidths (< 10Mbit),

increasingly less as you get past 100mbit.
● If you start fixing the endpoints, your choices change

Gripe 3: More realistic loads

Moving forward: Further challenges

● Quest for a full replacement for PFIFO_Fast (diffserv support)
● Adding support for software or hardware rate limiting at higher rates
● Other delay based AQM systems (fq_PIE, etc)
● Further research into the interrelationship of drop mechanisms and fair

queuing at high (1gig+ rates) on real traffic
● Developing better tests
● Pouring codel and fq_codel derivatives into hardware and other operating

systems
● Coaxing the universe to try it to try it and deploy itdeploy it
● And there are a few problematic protocols like uTP and DASH, and new

ones like webrtc, that need to be looked at harder
● And...

Smarter Queue Management

● Smashing bloat in Device Drivers
● Tighter OS abstractions
● Applications
● Policing
● Rate Shaping
● Active Queue Length Management
● Fair or Flow Queueing
● DiffServ-based Prioritization

What role for ECN?
(Explicit congestion notification?)

● Positives:
– Use a spare 2 bits to mark a packet: lossless signaling of congestion
– Very useful in Data Centers and in well controlled links

● Negatives:
– Used to crash a lot of
– API Breaks “the everything is a file” abstraction
– No sane way to negotiate end to end and easily abused on the open Internet
– After 10 years of near-deployment some theorists want to redefine it from “Floyd ECN”

(a mark is equivalent to a drop) to “Immediate ECN” (DCTCP) , a multi-bit-over-multi-
packet signal.

● Support for it is on by default in FQ_codel, but off in everything else, including
TCP endpoints. Mosh is using it as a test, with good results.

● Can it be used in new protocols like Quic, or in Videoconferencing, or routing
protocols?

Open questions on FQ_Codel

● It and variants win across the board against pure AQM.
● Still some debate about SFQ-like or DRR-like attributes

– At lower bandwidths SFQ-like wins
– Higher bandwidths DRR wins
– QFQ has “interesting” results

● What's the right number of flows relative to bandwidth and real use?
● Can it be implemented in hardware?
● What's the right target delay?
● Can the random permutation of the hash be detected and abused?
● What's the right things to hash against (5 tuple? Mac addr?)
● What are the effects inline with other Queue management systems?
● Can it apply to tx-op limited layer 2 rather than just packets?
● Can weighting be used?

Big Layer 2 problems ahead

● Wireless-n/AC,DOCSIS, GPON, MOCA, all
do packet aggregation.

● They also do scheduling (request/grant for
DOCSIS, GPON, MOCA, EDCA for wireless)

● All these new technologies aren't very open
and move a great deal of “intelligence” into
places where they can't be analyzed or
improved by open engineers or academia

Bufferbloat.net's next project:
MAKE-WIFI-FAST

● We think we can cut queue delay on w ifi under
load to 20ms or less, at any bandwidth.

● There are hard problems left with aggregation,
txop optimization, qos, driver re-organisation,
and EDCA scheduling.

● Please come help!
● https://lists.bufferbloat.net/listinfo/make-wifi-fast

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

